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Zusammenfassung

Im Mittelmeer sterben jährlich tausende Menschen auf der Flucht nach Europa,

somit ist diese Region eine der tödlichsten Grenzen der Welt. NGOs versuchen die

humanitäre Krise abzumildern, indem sie mit Rettungsschiffen und Flugzeugen ver-

suchen Menschen in Seenot zu finden und ihnen zu Helfen. Die NGO Space Eye e.V.

arbeitet u.a. daran Satelliten Daten für die zivile Seenotrettung zu verwenden. Satel-

liten Bilder geben einen exzellenten Überblick über die Situation, allerdings entsteht

durch das Versenden und Verarbeiten der Daten eine zeitliche Verzögerung. Dennoch

nutzt die europäische Grenzschutzagentur Frontex zusammen mit der EMSA bereits

erfolgreich Satelliten Bilder, um Menschen in Seenot zu finden. Viele Forscher haben

Algorithmen und Frameworks entwickelt, um Boote verlässlich und schnell zu ent-

decken. Die Boote, die zur Flucht über das Mittelmeer zum Einsatz kommen, sind

häufig klein und daher schwer zu entdecken. Diese Arbeit untersucht die Anwen-

dungsmöglichkeiten von Sentinel-1 Bildern für die zivile Seenotrettung. Hierzu wird

ein Datensatz mit einer neuen skalierbaren Methodik erstellt, eine spezielle Metrik

eingeführt und spezialisierte Convolutional Neural Networks trainiert. Diese wer-

den anschließend mit dem aktuellen Stand der Forschung verglichen. Die besten

Modelle waren TinyNet3 und der traditionelle Algorithmus MMSE PWF. Diese

wurden genauer getestet, um die Limitierungen für eine erfolgreiche Detektion von

kleinen Schiffen zu untersuchen. Die beiden stärksten Faktoren waren dabei die

Länge der Schiffe und die Wellenhöhe. Da der erstellte Datensatz einen Bias en-

thält, fiel der Zusammenhang zum Einfallswinkel deutlich geringer aus. TinyNet3

erreicht eine Detektierbarkeit von Schiffen zwischen 15 und 20 Metern von über

90%, was wesentlich höher ist als der bisherige Forschungsstand. Tests mit Bildern

von bekannten Seenotrettungsfällen in der Vergangenheit ergaben, dass die Kombi-

nation von traditionellen Algorithmen mit Machine Learning Modellen brauchbare

Ergebnisse liefert und ermöglicht, diese Fälle mit Satellitenbildern zu untersuchen.

Darüber hinaus wurde getestet, ob die Algorithmen schnell genug sind, um komplette

Bilder zu analysieren. TinyNet3 erreicht dabei 2586 Bilder pro Sekunde und MMSE

PWF nur 96 Bilder pro Sekunde. Damit wäre TinyNet3 grundsätzlich gut geeignet

um Sentinel-1 Bilder für die Seenotrettung zu untersuchen, jedoch muss mit einem

größeren Datensatz trainiert werden um die Verlässlichkeit zu erhöhen.
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Abstract

The Mediterranean Sea is known to be the deadliest border in the world, where thou-

sands of people die every year. NGOs are trying to counter this ongoing humanitarian

crisis with ships and airplanes equipped for Search and Rescue operations. The NGO

Space-Eye e.V. is working on adding satellite images to the civil Search and Rescue

efforts. Using satellite imagery gives an excellent overview of the situation but lacks

real-time capabilities and detail. However, the European border and security agency

Frontex is already using satellite images to spot people in distress together with the

EMSA. Many researchers are tackling the issue of detecting particular weak targets

like the small boats used by refugees and designing algorithms and frameworks to

use them in Search and Rescue. This study explores using Sentinel-1 images and

CNNs for their application in this context. A novel, scaleable classification datasets

with AIS ship positions, a specialized metric and a series of specialized lightweight

CNN architectures for tiny object detection are derived and tested against state-of-

the-art algorithms. The best-performing models were the newly designed TinyNet3

and MMSE PWF. They were tested on the dataset to derive the limiting factors

for the detectability of ships, with the most notable ones being the wave height and

the ship’s length. Because of a bias in the dataset, the incident angle appears not

to play a noticeable role. The detectability of ships with a length between 15 and

20 meters was above 90%, which is noticeably higher than the current state-of-the-

art. When testing the models on known past cases of refugee boats, the results are

only conclusive when different models are combined. The CNN model outperforms

the traditional algorithm in execution time with 2586 frames per Second against 96

frames per second. The initial results are promising for future deployment in Search

and Rescue, but additional data and evaluation is recommended.
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1 Introduction

The Missing Migrants Project of the International Organization for Migration
has counted 28106 dead or missing in the central Mediterranean since 2014,
which is likely to be an undercount [1]. Since 2020, the numbers have risen
again, with no end to the humanitarian crisis at Europe’s border in sight [1].
That makes the Mediterranean Sea the deadliest border in the world. Refugees
fleeing life-threatening conditions like war, discrimination, food shortage, or
extreme poverty are forced to pay smugglers and human traffickers to get into
a safe country. Often they pay for traveling in small (about 10m long), unsea-
worthy boats [1], like hand-made metal boats, rubber inflatable boats, coastal
fishing boats, decommissioned fishing vessels, or decommissioned sailing boats.

Since 2015, the EU and its member states continued to withdraw from their
Search and Rescue duty and funded the so-called Lybian Coastguard instead,
which has repeatedly faced scrutiny for human rights violations [2]. Since then,
non-governmental organizations (NGOs) like Sea-Watch reported many violent
encounters between them and refugees fleeing. For example, some reports show
that they rammed refugee boats or performed dangerous maneuvers nearby
that caused panic and capsizing of the boats [3]. Civil actors like Sea Watch,
RESQSHIP (the author is a member of RESQSHIP e.V.), and a few other
organizations filled the Search and Rescue void left behind. These NGOs are
present with vessels on the water and airplanes in the sky to spot and rescue
people in distress. While these organizations have become very professional,
they differ from what an EU-led Search and Rescue mission could accomplish.

Satellite images, for example, are used by the state actors but not yet
by NGOs. In 2014, an EU project called SAGRES used Radarsat2 images
to detect a 7m long rubber boat, leading to the rescue of 38 survivors [4].
Since then many researchers have been working on this problem using different
approaches [5]–[9]. Meanwhile, the European Border and Coast Guard Agency
(Frontex) is using the capabilities of the European Maritime Safety Agency
(EMSA) and the Copernicus Border Surveillance program to spot refugee boats
[10], [11]. Because Frontex does not share the information with the NGOs, the
registered association Space-Eye plans to provide the civil actors with satellite
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analysis in the future. To date, they only rely on optical images and do not
have the capabilities to use synthetic aperture radar (SAR) data like EMSA
does. Using the freely available Sentinel-1 images would significantly improve
the efforts to support NGOs in their Search and Rescue operations. This study
is moving toward this goal by investigating the limits and conditions of ship
size detectability in Sentinel-1 images and how this technology can be applied
in Search and Rescue.
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2 State of the art

This chapter describes the state of the art of refugee boat and general ship de-
tection in remote sensing and its unique challenges. It also covers the necessary
basics of SAR and its preprocessing.

2.1 Refugee Boat Detection

As explained in Section 1, the EMSA uses its ship detection capabilities to
detect refugee boats. Unfortunately, they do not share details about their
technology. The SAGRES report [4], which was working with Frontex, claims
to be capable of detecting small targets of 5-10 meters by processing single-
channel images. They also refrain from sharing any details on the utilized
detection methods. Instead, the report focuses on setup of tasking satellite
images to deliver the analysis result to Frontex promptly, which then delimits
the search area based on that knowledge. As mentioned, they successfully
supported a Search and Rescue mission leading to the rescue of 38 survivors
from a seven-meter-long rubber inflatable boat. The boat was spotted in a
Radarsat2 image with 3m resolution less than 3 hours after acquisition and
was later found by a rescue vessel 14.5 nm away from the location in the
satellite image.

Topputo et al. [8] explored how to use satellites for Search and Rescue
operations. They proposed a framework to task satellite images with differ-
ent sensors from different satellite constellations. With such a system a vessel
could be detected in more than one image at different points in time. They
propose a minimum noise fraction algorithm for optical images to detect a ship
followed by segmentation and a threshold rule set. Then, the ship and the wake
are individually fitted with an ellipse to derive the vessel’s size, course, and
speed. For SAR, they proposed CFAR-based algorithms with clustering of the
detection points. The ship parameters are then derived from sub-aperture pro-
cessing and ship-wake displacement. They dismiss more complex approaches
like polarimetry for being too costly or time-consuming. This statement might
be outdated since computational power is higher nowadays compared to the
paper’s publication in 2015. The bottleneck for real-time applications is rather
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the delivery time of satellite images [4]. The study does not give a detailed
description of their performance or success.

Kanjir [9] explored the capabilities of optical Sentinel-2 images to detect
refugee boats in the Mediterranean Sea. This study concludes that it will
overlook smaller vessels of less than 20m in length but might be helpful when
combined with other Search and Rescue methods. A modified Normalised Dif-
ference Water Index was used in combination with binominal logistic regression
to detect vessels.

Melillos et al. [12] used an adaptive threshold algorithm on Sentinel-1
ground range detected (GRD) images off the coast of Cyprus to detect refugee
boats. They compared their detection with reports from refugee boats collected
from open-source data. They claim to successfully detect refugee boats without
specifying the size of the boats. Their results show more detections than just
the refugee boat, which the paper does not address further.

Lanz et al.[5]–[7] conducted a considerable in-situ study about the de-
tectability of rubber inflatable boats on a lake in Germany. The boat was
fixed at a specific position and orientation when different sensors and acqui-
sition modes were tasked to take images of the lake. They tested different
algorithms and designed new ones around their experiments. Furthermore,
they simulated different wave conditions by pasting the boat in other scenes
from the ocean. The study showed that detecting the 12 by 3.5 meter boat in
different high-resolution images with a near-perfect area under curve (AUC)
of 0.94 is possible. For lower-resolution Sentinel-1 Interferometic Wide swath
(IW) images, they report a much lower performance and cannot detect the
boat in all images. Their findings show a performance drop at 2.5-meter high
waves [7]. Real images of boats in the open sea are not yet available.

2.2 Ship Detection

Besides Search and Rescue, ship detection is of interest for other reasons such
as fishery control, pollution control or border surveillance, customs, and law
enforcement [13]. Especially SAR images gathered special attention as most
ships are made of metal and provide a clear signal. Hence, many researchers
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addressed the broader term of ship detection in remote sensing. The following
chapter picks up a few of them.

Torres et al. [14] published a paper about the Sentinel-1 mission stat-
ing that it is particularly suitable for an emergency response. However, they
projected that the probability of ship detectability is 90% for ships between
25-34m without specifying the probability of false alarm. The limiting fac-
tors are the incident angle, clutter limit for the co-polarization channel and
the noise floor in the cross-polarization channel. These theoretical values are
based on algorithms that only consider intensity and dismiss geometric features
or polarimetric methods.

Paolo et al. [15] used Sentinel-1 GRD images to find fishing boats and
reveal industrial fishing activities worldwide. They used the CFAR algorithm
as a first step and a convolutional neural network (CNN) as a second step to
classify what kind of boat is present and if it is engaged in fishing. They report
a detectability of 70% for vessels between 15-20 meters in length. However,
the parameters needed to be tweaked for different time intervals to obtain this
result. They do not provide a detailed description of the limiting factors nor
the number of false alarms, as the focus was on revealing fishing activity that
has not yet been tracked. Their findings are summarized in a publicly available
map.

Bentes et al. [16] examined the theoretical limit of ship size detectability in
TerrarSAR-X images. They concluded that wind direction and incident angle
are the driving factors in ship detectability. They state that ships with half the
length of the resolution cell should be detectable. However, this study is purely
theoretical and focuses on the CFAR algorithm on X-Band radar images.

Different polarimetric algorithms were proposed to enhance the perfor-
mance of the CFAR algorithm and improve the detection of ships [17], [18].
They utilize more information from the image but still do not take the geo-
metric features into account. Some of these traditional methods are explained
in greater detail in Section 3.3.

With the rise of machine learning (ML) and CNNs, many researchers have
adopted the techniques to detect ships in remote sensing images. Li et al. [19]
summarize the effort to use ML for SAR ship detection in a literature review
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of 177 papers. They point out that the traditional algorithms might be robust
when well-tuned to the ship size and number of ships in a scene but cannot
generalize well. On the other hand, ML methods achieve better performance
and do not need much preprocessing like land masking. They also looked
at real-time algorithms and found high-performing examples with an average
precision of 97.2% at 50% intersection over union. For future research, they
are pointing out what the next challenges might be; among them are:

• training from scratch

• small ship detection

• real-time detection

The challenges of detecting small targets and being able to compute in real-
time are general problems in remote sensing and ML.

Pawlowski et al. [20] created a dataset with tiny objects based on MNIST
and explored what factors influence the performance of ML methods. They
found that the dataset size scales with the inverse of the object-to-image ratio.
The less space the object occupies, the bigger the dataset has to be. Also, the
global pooling methods play a significant role in the performance with very
low signal-to-noise ratios, with max pooling being more robust than average
pooling. Adapting the receptive field to the object size increased the perfor-
mance further, which was also found by Pang et al. [21]. The last thing they
found is that larger capacity models exhibit better generalization. This is in
conflict with the need for real-time algorithms.

Pang et al. [21] are addressing the need for real-time algorithms and
propose a new backbone model called TinyNet which in combination with a
global attention block showed better performance in optical images compared
to state-of-the-art detectors.

Radosavovic et al. [22] worked on lightweight model design and methods to
find suitable architectures. They narrowed down the design space to make the
search more efficient and came up with a series of well-performing networks
called RegNet. They summarized their findings and derived a set of guidelines
for architectural design spaces.

6



Ma et al. [23] examined what factors influence the computation time of a
model beyond the floating point operations (FLOPs). They conducted a series
of experiments and derived guidelines. With those guidelines in mind, they
proposed a new architecture called ShuffleNet V2.

2.3 Dataset

Suitable datasets are crucial for ML, and more high-quality datasets for ship
detection in SAR images have been published over the last eight years. They
are often built using automatic identification system (AIS) data [24]–[26]. AIS
is a system ships use to communicate static information, like their IMO reg-
istration number, dynamic information like navigational status, and voyage-
related information like position, speed over ground (SOG), and heading to
other ships in the area for safety reasons [27]. Only passenger ships and cargo
ships of a specific size are required by the International Maritime Organiza-
tion to carry this system. However, many boats still have AIS because of its
safety benefits, even though they are not required to. The signal is broadcast
via radio and can be picked up by terrestrial or spaceborne receivers. Many
sensors pick up these signals and track the boats, but the information is often
incomplete because of reception problems over large distances. This can lead
to a mismatch between the date and time of image acquisition and the re-
ported AIS signal that needs to be compensated. The position will often still
not match perfectly, making manual labeling necessary [24]. Usually, these
datasets come with bounding boxes [26] as labels, but higher quality labels
like rotated bounding boxes or polygon labels are also found [24].

The SAR Ship Detection Dataset (SSDD) was one of the first publicly
available ship detection datasets and was used in many studies [19], [28]. The
official release comes with a bounding box, rotated bounding box, and polygon
pixel-level annotations in over 1000 images with over 2000 ships. The images
are in different polarizations and resolutions from different sensors, all at the
GRD processing level. Therefore, no phase information is given. The SSDD
dataset contains many ships with an average size of 35x35 pixels, which is still
relatively large.
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Because detecting small objects is a scorching topic Zhang et al. [24] pub-
lished a second dataset, called LS-SSDD, addressing this problem. It lowers
the average size to 20x20 pixels. Small in this sense means small in scale and
not absolute measures; therefore, the objects might be "big" but appear small
in Sentinel-1 images. 15 large scene Sentinel-1 images are used, which contain
6015 labeled ships. These images are delivered at the GRD processing level
with co-polarization only. However, there is no detailed description of the ship
parameters, only the number of pixels the ship occupies [24].

There is much more related work that cannot be covered in this study, but
the following chapters will discuss some of them in greater detail.

2.4 Synthetic Aperture Radar

SAR uses microwave signals to build two-dimensional images. The used fre-
quencies are between 1 and 10 GHz, interacting more with objects with a high
relative permittivity (dielectric constant). Microwaves have the advantage of
being mostly independent of atmospheric conditions and being active sensors;
they are also independent of sunlight to illuminate the scene. The technology
advanced from the airborne side looking radars and achieves a higher spatial
resolution than stationary radars by sending and collecting the signal sequen-
tially over the flight path. The echos are recorded at different times, giving
the target information at slightly different positions. This strategy is epony-
mous as it creates a synthetic aperture along the flight path to record the echo
and provides a high spatial resolution in the Azimuth direction. For a high
resolution in Range direction, the signal time-of-flight is used to calculate the
distance to the sensor. The time length of the signal pulse limits the smallest
separable time difference that can be measured and, therefore, the range reso-
lution. The imaged scene is assumed to be stationary relative to itself, which
is not always the case since many targets, like boats, are moving [29]. These
principles of SAR are illustrated in Figure 1.
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Figure 1: Principles of SAR

Currently, there are several satellite-based SAR instruments in orbit. Table
1 compares different instruments concerning frequency, swath width, resolu-
tion, launch year, and access. Two things stand out. First, most satellite
data providers do not have an open-access policy. However, most of them, like
TerrarSAR-X, might have research access or open-source archives. Second, the
swath width and resolution are always a trade-off; either the spatial resolution
is high, or the swath is wide.

A vital property of SAR, polarization, has yet to be mentioned. Besides
phase and amplitude, the horizontal and vertical polarization of the outgoing
and incoming signals can be recorded. This leads to four different polarizations:
The co-polarizations, horizontal-transmit-horizontal-receive (HH) and vertical-
transmit-vertical-receive (VV), and the cross-polarizations with horizontal-
transmit-vertical-receive (HV) and vertical-transmit-horizontal-receive (VH).
Not all instruments have four polarizations available in all imaging modes.
Sentinel 1, for example, only provides VV and VH as dual-polarisation in the
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Table 1: Comaparison of different satellite SAR platforms

Name Frequency Swath width Resolution Year Access
[GHz] [km] [m· m]

Sentinel 1 5.405 250 5·20 2014 Open
Gaofen-3 5.4 100 10·10 2016 Paid
TerrarSAR-X 9.65 30 3·3 2007 Paid
COSMO-SkyMed 9.6 40 3·3 2007 Paid
CSG 9.6 100 4·20 2019 Paid
Radarsat 2 5.405 150 8·8 2007 Paid

IW mode over the Mediterranean Sea. Polarization provides valuable infor-
mation about the scattering effects of the target. Figure 2 shows different
scattering effects, which may overlay each other in one resolution cell. Only
the coherent sum signal of these scatterers can be measured, leading to the
characteristic speckle in SAR images. The strongest scatterer in a resolution
cell may dominate the measurement, so targets much smaller than the actual
resolution cell can be visible in the image if they provide strong backscatter.
Much like light reflectors appear bigger in the beam of a flashlight, an object
that reflects the radar signal well appears bigger in the image. Radar corner
reflectors, used for external sensor calibration of Sentinel-1, are only 2.8m on
each leg but appear very bright if oriented correctly [30]. The double bounce
and rough surface scattering lead to a strong signal in co-polarization, while
the volumetric scattering gives a stronger signal in cross-polarization. Mirror-
ing surfaces, like flat water, reflect the signal away from the sensor and give
an overall low backscattering intensity [31].

2.4.1 Preprocessing of SAR images

Radar images are delivered in different processing levels. Standard options
include raw, single look complex (SLC) and GRD with multilooking. Raw
images are unprocessed data from the instruments and are not part of this
study. SLC Images are the next processing level; the raw signal is focused
and combined into a 2D image of complex values representing the amplitude
and phase of the signal. GRD is a higher processing level in which the SLC
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Figure 2: Different scattering effects that may overlay each other in one reso-
lution cell.

data is projected from the slant range into the ground range direction and
converted to dB values. The phase information is lost that way. Often, the
GRD is combined with multilooking to reduce the speckle at the cost of spatial
resolution. Originally, multilooking is achieved by splitting and merging the
raw data, but mean filtering gives similar results and is often used instead [32].

For polarimetric methods, the SLC image is used to form polarimetric
matrices. The complex scattering matrix [33] in Equation 1 is used as a basis.
E denotes the electromagnetic wave, h horizontal, v vertical, s the scattered
wave, i the incident wave, r the distance to the receiver, and k the wavenumber.[

Es
H

Es
V

]
=
e−jkr

r

[
SHH SHV

SV H SV V

][
Ei

H

Ei
V

]
(1)

According to Equation 2, the covariance matrix can be formed from the
scattering matrix [34]. Here, k denotes the target vector consisting of the
elements of the scattering matrix, T denotes the transpose, and overline the
complex conjugate.

11



k = [SHH , SHV , SV H , SV V ]

C = kk
T

=

 |SHH |2
√
2SHHSHV SHHSV V√

2SHV SHH |SHV |2
√
2SHV SV V

SV V SHH

√
2SV V SHV |SV V |2


(2)

For dual-polarisation with VV and VH this is reduced to Equation 3.

k = [SV V , SV H ]

C2 = kk
T

=

[
|SV V |2 SV V SV H

SV HSV V |SV H |2

] (3)

There are more methods for polarimetric analysis, like coherency matrices
or different compositions [33], which are not part of this study.
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3 Methodology

This study empirically examines the limits of small vessel detectability in
Sentinel-1 SAR images to determine how suitable these images are for Search
and Rescue. Therefore, a dataset of such vessels is needed. Then, different
algorithms can be tuned, trained, and tested to detect the vessels in the im-
ages with a special focus on CNNs. The Hypothesis is that even with tiny
targets of only a few pixels, the convolution-based methods outperform the
adaptive-threshold-based methods because they can take the surrounding area
into account. State-of-the-art models are trained to create a baseline for the
dataset and determine favorable architectural characteristics. Also, new model
variations are tested, both newly designed and reimplemented from the litera-
ture. Two novel designs are contributed, the use of max pooling for downsam-
pling the residuals and the Reception block described in Section 3.5.1. The
best-performing model is then selected and further analyzed. All experiments
are carried out in Python with the PyTorch framework and the Python library
Ray. The following chapters discuss the methods in greater detail, starting
with the necessary dataset and ending with the applied ML methods.

3.1 Dataset

As stated in Section 2.3, datasets are a crucial part of all ML approaches.
Especially supervised learning requires high-quality datasets with labeled data.
For the specific task of detecting tiny boats, we need a dataset with as little
preprocessing as possible so as not to blur out the target. Furthermore, we
want to focus on Sentinel-1 IW mode since they are publicly available and
can be delivered timely, which is crucial for the application in Search and
Rescue. Since many researchers have pointed out the usefulness of polarimetric
information, we want to have both channels available. The size needs to be
sufficient for ML; since SSDD is a popular choice [19], we want at least 2456
vessels. Many images should be acquired at different times of the year to
capture different sea states. To derive the limiting factors, we need to gather
the environmental conditions, the image properties such as the incidence angle
and the vessel parameters, such as type and length. The minimal requirements
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can be summarized as follows:

• low-level preprocessing

– SLC

– no geometric correction

– no multilooking

• minimum 2456 vessels

• Sentinel-1 IW mode only

• both polarizations

• vessel type and length

• incidence angle

• wave height

• wind speed

• wind direction

Even though ML became a research hotspot in SAR ship detection, there is
still a lack of SAR ship detection datasets [24]. Table 2 compares five different
datasets about the SAR platforms used, the number of scenes, and the number
of ships. Compared to modern ML datasets like Imagenet, which consists of
14197122 images, all SAR datasets are relatively small [35]. The second thing
that stands out is that, apart from the SSDD, all datasets are derived from
relatively few scenes and, therefore, probably do not depict a diverse spectrum
of environmental conditions. For the specific task of detecting small targets,
the LS-SSDD dataset might be most suitable. However, it only comes with the
GRD preprocessing level with georectification and multilooking. The accurate
vessel description is also not available.

We have to conclude that, to the author’s best knowledge, no suitable
dataset exists to this point, and a new dataset needs to be designed for the
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Table 2: Comaparison of SAR ship detection datasets

Name Year Platform Number of
images

Number of
ships

SSDD [36] 2017 RadarSat-2,
TerrarSAR-
X, Sentinel-1

1160 2456

AIR-SARShip-1.0 [37] 2019 Gaofen-3 31 461

LS-SSDD-v1.0 [24] 2020 Sentinel-1 15 6015

SAR-Ship-Dataset [26] 2019 Gaofen-3,
Sentinel-1

210 59535

specific needs of the task. The goal is to have a balanced classification dataset
with images of vessels under 30 meters long and corresponding images with no
vessels. That means, for simplicity, no bounding boxes or higher-quality anno-
tations are used. Higher-quality annotations would be beneficial, but image-
level annotation is sufficient for answering if a ship is detectable. Furthermore,
different processing levels should be included for easy access and to measure
their effect on classification. Nine different preprocessing levels are chosen:
GRD with thermal noise removal (TNR), SLC and the covariance matrix C2,
each as a multilooked image, a larger cutout that covers about the same area
as the multilooked image and a single looked image. Preprocessing is done
with the SNAP Toolbox; the different steps with the different parameters are
described in Figure 3. Georeferencing is not used to avoid interpolation.
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Figure 3: Preprocessing pipelines

We also use AIS, gathered from UNBigData [38], to obtain the ship loca-
tions. As explained in Section 2.3, only some ships are equipped with AIS,
and the coverage varies. Especially in the area of interest (AOI), the central
Mediterranean Sea between Libya and Lampedusa, the AIS coverage could be
better [15]. To be able to collect enough data for this dataset, two more areas
in the Mediterranean Sea that provide good AIS coverage [15] were chosen.
The Ligurian Sea in the south of Genoa, Italy and the Gulf of Lion in the
south of France. Figure 4 shows these areas. First, we gather all Sentinel
1 images between January 2021 and November 2023 that intersect the AOI.
Then, all AIS information is requested for the footprint within ±20 minutes
of the acquisition time of the image. The vessel’s position is linearly interpo-
lated to the exact acquisition time of the image. The position may be wildly
inaccurate because of the interpolation but also because of poor georeferenc-
ing of the image and the Doppler shift of moving targets [39]. That means
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the snippets of the images with a vessel visible need a large enough cutout
around the suspected position. Furthermore, the object should always be in
a different position in the image, not always close to the center. A cutout of
256 by 256 pixels around the reported location is chosen and randomly shifted
by up to 53 pixels in each direction. This shift ensures a 75-pixel, up to 1500
meters, buffer zone at the edge of the image to account for the inaccuracy of
the position. This setting was manually verified by the author for each ship
and proved to be a good choice. The 256-pixel square corresponds to roughly
7240 meters on the diagonal and, therefore, less than a radius of two nautical
miles. If the weather conditions allow, a Search and Rescue crew could see the
vessel from the center of the cutout, which is essential to the application in
Search and Rescue. Such a cutout is made for all boats of less than 30 m in
length. Then, all the AIS positions within that cutout are transferred to the
pixel position in the image, where the origin lies in the top left corner.
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Figure 4: Acquisition areas and positions of ships with less than 30 m in length.
Background map: OpenTopoMap®

A more complex approach is needed for the image that only shows water
without any boat because there might be boats without AIS. First, a three
times larger search area for a suitable cutout location is chosen. It must be
relatively close to the vessel to show similar ocean state and environmental
conditions. However, it should also be far enough not to be affected by sec-
ondary features of the vessel, which leads to the following approach: First, a
search area is chosen, which lies ahead of the vessel’s traveling direction. Then,
to make it less likely that a vessel without AIS is in that area, the CFAR al-
gorithm is used on GRD TNR multilooked images on both polarisations and
combined with bitwise AND to find a spot where probably no boat is present.
The AIS positions of the other boats are also added to this mask. If no cut
out of 256 by 256 pixels can be found in that area, the next best search area
is chosen, first 90 degrees to the left and right and then behind the vessel. If
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no cutout is found, the image is skipped.
The position of the cutouts is saved as metadata, and then the exact cutout

is made for all nine different preprocessing levels. If no pair of vessel and water
images are found or one preprocessing level is corrupted, the corresponding
image pair is dropped. All remaining image pairs are manually checked in the
GRD TNR processing level to see if they contain a vessel or not to verify this
approach. The dataset is split into training, validation, and test datasets with
the popular ratio of 70-20-10 for good model training. The dataset is binned
according to its vessel length in 5-meter steps to achieve a similar vessel length
distribution among all splits. Then, the split is made randomly for each bin
and set. This is done once for every vessel and water image pair so that all sets
contain the same geographic cutout of a vessel and water in all the different
preprocessing levels.

The weather information is requested and averaged for each image and
added to the metadata. The wave height is requested from the Copernicus
Marine Service Mediterranean Sea Waves Reanalysis data [40]. The wind
speed and direction are requested from the Global Ocean Hourly Sea Surface
Wind dataset also provided by the Copernicus Marine Service [41]. If the
wind data was not available from that source, the ERA5 hourly data from the
Copernicus Climate Data Store is used instead [42].

The approach led to a perfectly balanced, binary classification dataset con-
sisting of 6192 cutouts from 1080 different scenes with rich metadata ready
for ML. Unfortunately, the heading information is often incorrect; many AIS
positions are reported with a heading of zero, as can be seen in Annex A. This
is not seen as a probably for the water images, because we also use a suffi-
cient distance to the ship’s position and not just ahead of the ship’s traveling
direction. This lack of metadata is a problem for the analysis of the limita-
tions but cannot be further addressed. Besides that, the dataset meets all the
requirements stated before.

Figure 5 shows the distribution of the theoretical positions of the vessels in
the cutouts with the 75-pixel buffer zone for each dataset split. It can be seen
that they are well distributed within the allowed zone. To verify the diversity
of incidence angle, wave height, and ship length are plotted for each dataset
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(a) Training dataset (b) Validation dataset (c) Test dataset

Figure 5: Theoretical positions of the vessels in the cutout for each dataset
split. The positions are accumulated over all respecting ship cutouts.

(a) Incidence Angle (b) Wave Height (c) Ship Length

Figure 6: The distribution of incidence angle, wave height, and ship length for
each dataset split.

in Figure 6. The overall distribution of the different factors is not uniform
but similar for each split. Annex A shows the parameter distribution in more
detail in a scattering matrix. It needs to be mentioned that the dataset split
is not visualized in the scattering matrix.

3.2 Metric

To evaluate the performance of the model different metrics exist for binary
classification. The confusion matrix summarizes the quality of the prediction
by showing the true positives, false positives, false negatives, and true neg-
atives. Torres et al. [14], Paolo et al. [15], and Tings et al. [43] used the
detectability in their papers, which is simply the ratio of true positives to false
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Table 3: Binary confusion matrix and metrics

Predicted True Predicted False

Tr
ue

True Positive false negative Recall
TP

TP+FN

Fa
ls

e

False Positve true negative Specificity
TN

TN+FP

Precision
TP

TP+FP

Negative
Predicted Value

TN
TN+FN

P4
4·TP ·TN

4·TP ·TN+(TP+TN)·(FP+FN)

Accuracy
TP+TN

TP+TN+FP+FN

F1-Score
2·TP

2·TP+FP+FN

Fowlkes-Mallows index√
recall · precision

negatives. It, therefore, lacks the valuable information of false positives and
true negatives. Table 3 shows the confusion matrix together with different
ratios and metrics that are typically derived from the confusion matrix. These
ratios and metrics are also displayed in Figure 7 for different false negative and
false positive counts.

In Search and Rescue, it is more important not to miss a potential case
than to have a false alarm. Therefore, the metric should punish false nega-
tive predictions harder than false positives. As can be seen from Figure 7,
the F1-Score, the Fowlkes-Mallows index, the recall, and the NPV do that.
Unfortunately, they do not punish trivial cases, always bedding on true or
false or random bedding, as the P4 score does. We designed a new metric for
this study to address this problem. Inspired by the Fowlkes-Mallows index,
the square root of basic ratios is used as described in Equation 4. Figure 7i
shows that it punishes trivial cases and mainly prefers a high number of false
positives over false negatives. Additionally, it discriminates much finer if the
score is above 50% accuracy and is close to zero for everything with less than
50% accuracy.
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(a) Recall (b) Specificity (c) Precision (d) NPV

(e) Accuracy (f) F1-Score (g) Fowlkes-Mallows (h) P4

(i) FM3

Figure 7: Different metrics and ratios for binary classification over different
false negative and false positive percentage. The FM3 score is a new metric
designed to favor false positives over false negatives and punish trivial choices.

FM3 =
√
recall · specificity2 ·NPV 3 (4)

Introducing a new metric is problematic since it does not allow the direct
comparison of the results of different models in the literature. However, this
metric helps to compare different approaches tested in this study. To be able to
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compare the results better and to have a complete picture of the performance
for different thresholds can be drawn with the receiver operating characteristic
(ROC) curve, which plots the true positive rate (TPR) over the false positive
rate (FPR) as described in Equation 5 for the different thresholds.

Recall = TPR =
TP

TP + FN

FPR =
FP

FP + TN

(5)

Figure 8 is an example of different ROC curves. The dotted line is a perfect
classifier, while the dashed line is a random classifier. The solid line is the result
of the CFAR algorithm on the dataset and lies between the other two lines.
Additionally, the AUC is calculated with trapezoidal numeric integration. The
closer the AUC value is to one, the better the model.

Figure 8: ROC curve examples.

3.3 Traditional Boat Detection

Over the past decades, many algorithms have been designed to detect ships.
However, they are also suitable for small rubber inflatable boats in combi-
nation with traditional algorithms, as the research from Lanz et al. showed
[5]–[7]. Probably the most common algorithm to this day is the constant false
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alarm rate (CFAR) algorithm, which goes back to the year 1966 when it was
first published [44] and is used in many research efforts to this day [5], [13],
[15]. CFAR is based on the observation that ships provide higher intensity val-
ues than the water’s backscatter. This backscatter is modeled with a suitable
statistical distribution and fitted with samples from the image. Usually, these
samples are taken from a guard window around the cell under test. When the
distribution parameter is known, the probability of false alarm can be derived
from the probability density function. Therefore, the algorithm can be tuned
to have a constant false alarm rate [44] if the distribution is well-chosen and
well-matched. However, the image might also have texture, which is not well
represented in backscatter statistics. A simpler version of the CFAR algorithm
only uses the expected value and variance of the pixel values and determines a
threshold as a multitude of the variance. This approach assumes the backscat-
ter to be normal distributed and allows for skipping more computationally
costly distribution modeling. Since the normal distribution can not accurately
model the backscatter, this method does not give a constant false alarm rate.
For simplicity, that method is used and referred to as CFAR in this study
according to Equation 6, where µ is the expected value, σ is the variance, Y
is the pixel value, and T is a threshold value.

Y > µ+ T · σ (6)

This basic algorithm was often improved but requires tuning to specific
images and scenes [15]. Filtering the image before detection can improve
the signal-to-noise ratio. Since these traditional algorithms are fast, easy
to implement, and still used in recent publications, they will also be tested
on the dataset. Besides the CFAR algorithm, the polarimetric whitening fil-
ter (PWF), the polarimetric match filter (PMF), the polarimetric notch filter
(PNF), normalized intensity sum (NIS), and the dual-pol ratio anomaly de-
tector (DPolRAD) filtering techniques are investigated closer.

The PWF was introduced by Novak et al. in 1990 [45] for fully polarized
SAR images. It tries to reduce the noise level by minimizing the ratio of the
standard deviation over the mean pixel value. The optimal solution is found
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to be the quadric with the inverse of the covariance matrix C as a weighting
matrix and is described in Equation 7. Here, y denotes the optimally filtered
image, C is the covariance matrix, and Y is the original pixel values of the
image as a vector consisting of the different polarisations.

yPWF = Y C−1Y (7)

The PWF was further modified by An et al. [46] to compensate for the loss
of power information in PWF filtering. Usually, the PWF is multiplied with the
co- or cross-polarization intensity value to bring back the power information.
An et al. [46] propose multiplying the weighting matric first with an optimal
vector representing the power of the different channels. The optimal solution
they found is minimizing the mean squared error between the original data X
and the optimal data Y as described in Equation 8. X denotes the elements
of the polarimetric scattering matrix.

yPWFMMSE
=

1

m2
Tr2(C

1
2 )XT∗C−1X (8)

Novak et al. also introduced the PMF in 1989 [47]. The goal is to maximize
the target-to-clutter ratio used in the CFAR algorithm to detect targets. The
optimal solution is to find the maximum eigenvalue of the covariance matrices
of the clutter and target and use them as a filter. The filtered image is obtained
by applying Equation 9. X denotes the intensity values of the image bands
as a vector, W is the eigenvector corresponding to the maximum eigenvalue
λ, and y is the optimally filtered image. The subscript t denotes target, while
c denotes clutter. The clutter values are derived by spatial averaging around
the target, similar to the guard window of the CFAR algorithm.

yPMF =
∣∣∣W T

X
∣∣∣2

C−1
c CtW = λW

(9)

The PNF was specially designed by Marino in 2013 with ship detection in
mind [18]. The aim is to highlight the different polarimetric behaviors of a
target area compared to the clutter around that area. A filtered image can be
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calculated using Equation 10. y denotes the optimally filtered image, Tr is the
Trace of a Matrix, ψ is a complete set of basis matrices under the Hermitian
inner product, Tn is a threshold used for detection, and RedR is a constant
called Reduction Ratio and can be set individually. However, the formula for
RedR given in 10 has proven to be a good choice. The subscript c denotes
clutter and is calculated by averaging over a large window area, while the
subscript t denotes target. Pmin

t is the minimum intensity of a target.

yPNF =
1√

1 + RedR

t∗T t−|t∗T t̂c|2

t = Tr(Cψ)

t =
[
|SHH |2 , |SHV |2 , |SV V |2 , S∗

HHSHV , S
∗
HHSV V , S

∗
HV SV V

]
t̂ =

t

∥t∥

RedR = Pmin
t

(
1

T 2
n

− 1

)
Pt = t∗T t−

∣∣t∗T t̂c∣∣2

(10)

In the dual polarimetric case, t reduces to Equation 11.

t = Tr(Cψ)

t =
[
|SV V |2 , |SV H |2 , SV V S

∗
V H

] (11)

The NIS is based upon the PWF and states that the inter-channel correla-
tion between co- and cross-polarization is low so that the PWF can be derived
as the NIS [17]. The NIS can be calculated according to Equation 12. R1 and
R2 are the intensity values of the respective channels.

yNIS =
R1

C11c
+

R2

C22c

C11c = |SCo|2

C22c = |SCross|2
(12)

Marino et al. also developed the DPolRAD detector for sea ice detection, a
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topic closely related to ship detection [48]. They call it a detector because it is
meant to be used with a threshold to detect objects, but before thresholding,
it is effectively a filter. As the name implies, it is based on the ratio of the
polarisation channels according to Equation 13. The ⟨⟩ denotes a spatial av-
erage over a particular area. The subscripts c and t denote clutter and target,
respectively.

y =
⟨|SCross|2⟩t − ⟨|SCross|2⟩c

⟨|SCo|2⟩c
⟨|SCross|2⟩t (13)

This ratio was further improved upon by Lanz et al. [6] with the detection
of particular small boats in mind. After thresholding the image, the developed
detector combines 13 with 14 through bitwise OR operation after thresholding
the image. This study will not use the bitwise operation but only the two
filters separately as CrossDPolRad 13 and CoDPolRad 14.

y =
⟨|SCo|2⟩t − ⟨|SCo|2⟩c

⟨|SCross|2⟩c
⟨|SCo|2⟩t (14)

3.4 Machine Learning and Convolutional Neural Net-

works

ML, specifically CNNs, showed excellent performance in image recognition [49].
At least since 2017, when the SSDD dataset was published, ML emerged in
SAR ship detection [36], [50]. The main advantages of ML in SAR are better
generalization, the option to do classification and regression in one step, and
the performance of CNNs, which were reported to be much better compared to
traditional methods [19]. The traditional methods need more pre- and post-
processing to achieve the same results. As stated before, it is sufficient for
this study to do binary classification and not do classic object detection as the
term is often used in computer vision. An architecture sweep, in which many
models are trained, and tested is used to find good-performing models. When
introducing a new dataset it is helpful to establish a baseline with state-of-
the-art models, which will be the starting point of the architecture sweep. For
the use case in Search and Rescue, it is crucial to have fast computation of
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large volumes of data to deliver the results timely. Furthermore, SAR comes
with unique problems for CNNs, like strong speckle, but also offers new op-
portunities with complex-valued inputs and complex-valued CNNs. Therefore,
this study will explore lightweight CNNs, tiny object detection, and CNNs for
complex inputs. The following chapters describe the steps used in this study,
from training to model architecture design.

3.4.1 Training

The training needs to be adjusted in a hyperparameter search for each model
to achieve good performance. Statistical gradient descent combined with an
exponential learning rate scheduler is used to update the weights and biases
in the network. The statistical gradient descent can be controlled with the
learning rate and momentum to adjust the stepsize after each iteration. The
exponential learning rate scheduler reduces the learning rate after each epoch
and is controlled through the gamma value. The gradients are computed with
backpropagation through the cross entropy loss, a common choice for classifi-
cation tasks [51]. The batch size can influence the training performance and
must match the other parameters. The optimal choice of these hyperparame-
ters can not be known in advance and must be tested for each trial. During the
architecture sweep the ASHA scheduler, which uses parallelization and early
stopping of unsuccessful trials, is chosen. The hardware setup with a single
RTX 4090 does not allow massive parallelization of the training, but the ASHA
scheduler chooses the training parameters and terminates trials early if they
are not performing well concerning the FM3 score [52]. Each trial has a grace
period of at least 10 iterations before it may be terminated. The parameters
of the hyperparameter search are identical during the architecture sweep and
are summarized in Table 4. The images are normalized with a mean of 0.5
and a standard deviation of 0.5. Different image augmentation techniques,
like rotation, flipping, or cropping, can be applied to avoid overfitting and
compensate for the small size of the dataset. These techniques may lead to
unreasonable results for SAR images because of the characteristics of the side-
looking sensor. For example, overlay and foreshortening will always be in the
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same direction if georectification is not applied. The only standard methods
that can be applied to keep these characteristics consistent are cropping and
vertical flipping. Since the ship’s exact location is unknown, random cropping
may lead to images with false labels. That leaves random vertical flipping as
the only option and is used with a probability of 50% in the training.

Table 4: Training parameter space.

Parameter distribution values

Learning Rate loguniform 0.0001 - 0.5
Batch Size choice 32, 64, 128, 256
Gamma uniform 0.7 - 0.9
maximum epochs choice 100
samples choice 30
grace period choice 10

3.4.2 Baseline

There is a wide variety of models to choose from. Table 5 compares a selec-
tion of different state-of-the-art models available from Torchvision regarding
parameters and computational complexity in the form of giga FLOPs. Fur-
thermore, their accuracy on the ImageNet dataset, the year of publication,
and their size in MB are shown in Table 5. These specific models have less
than 12 million parameters, an arbitrary limit chosen because of the limited
hardware, dataset size, and training time. The selected models are known to
be lightweight. The characteristics of SAR images described in Section 2.4
make the available pre-trained weights, which are based on Imagenet training,
less useful. Each is trained from scratch on the dataset to create a baseline
and determine which design choices may be favorable for this specific task.
The hyperparameter search is repeated with different inputs from the different
preprocessing levels of the dataset to see which preprocessing is favorable.
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Table 5: Different Models available at PyTorch. The underlined values are the
most favorable in each category.

Model Accuracy Parameters GFLOPs Size[MB] year

ShuffleNetV2 0.5 60.552 1366792 0.04 5.3 2018
MNASNet 0.5 67.734 2218512 0.1 8.6 2019
small MobileNetV3 67.668 2542856 0.06 9.8 2019
MobileNetV2 71.878 3504872 0.3 13.6 2019
RegNetY_400MF 74.046 4344144 0.4 16.8 2020
EfficientNet B0 77.692 5288548 0.39 20.5 2020
large MobileNetV3 74.042 5483032 0.22 21.1 2019
MNASNet 1.3 76.506 6282256 0.53 24.2 2019
RegNetY_800MF 76.42 6432512 0.83 24.8 2020
GoogLeNet 69.778 6624904 1.5 49.7 2014
ShuffleNetV2 2.0 76.23 7393996 0.58 28.4 2018
EfficientNet B1 78.642 7794184 0.69 30.1 2020
Densenet-121 74.434 7978856 2.83 30.8 2018
EfficientNet B2 80.608 9109994 1.09 35.2 2020
ResNet-18 69.758 11689512 1.81 44.7 2015

3.4.3 Lightweight Models

Lightweight models are needed for real-time applications and platforms that
do not have high computation power, like smartphones. So, the model should
be as small as possible in memory space and as fast as possible by reducing
memory access cost (MAC) and FLOPs. In recent years, new architectures
have been designed that compromise as little as possible on performance while
improving execution speed.

Rodriguez-Conde et al. [53] looked at different approaches to lightweight
model design and reported that "the most critical point" in a detection model
is the backbone architecture. The classification models tested in this study
are similar to such backbones and can be seen as a step toward lightweight
object detection. To achieve a lightweight model, modifications are made on
a micro-level, like changing inner layers, or on a macro-level, like changing the
depth and width of the model. To come up with a good macro-level design
choice, many researchers rather define a design space and find an optimal
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solution through different techniques for neural architecture search instead of
handcrafting different designs. This approach requires a lot of computational
power and time to complete and adds complexity to the methodology.

Radosavovic et al. [22] analyzed many design spaces and derived good
performing choices from them, which helped reduce the size of the design space.
They proposed a simple, straightforward architecture design by dividing the
model into a stem, a body, and a head and derived a series of models called
RegNet. The findings can be summarized as follows:

D1 The width increases by 2.5 per block.

D2 Do not reduce the resolution by more than a factor of 2 per block.

D3 Do not use more than 20 blocks in total.

D4 Do not group convolutions by more than 8 or 16.

Ma et al. [23] introduced guidelines for lightweight model architecture.
Based on their findings, they derived a new architecture called ShuffleNetV2.
The main points they derived are:

L1 Equal channel width reduces MAC

L2 Excessive group convolutional increases MAC

L3 Network fragmentation reduces the degree of parallelism

L4 Elemntwise operations are non-negligible

The authors also mention that the properties depend strongly on platform
characteristics and that the actual speed should be considered for performance
metrics instead of indirect metrics such as FLOPs.

3.4.4 Tiny Object Detection

Detecting Tiny Objects can be challenging for state-of-the-art CNNs since
they are often designed around different problems, such as automated driving
or quality control. Since remote sensing images often have relatively low spatial
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resolution, tiny object detection has become an active research field in remote
sensing and has led to specialized model architectures [21], [54], [55]. That
often goes hand in hand with the need for fast, lightweight models so that
large areas can be analyzed in a reasonable time.

Pang et al. [21] designed an object detection model for fast tiny object de-
tection with a new lightweight backbone called TinyNet. It is based on residual
blocks similar to [56] but has a lot fewer layers and parameters compared to
ResNets. This allows to train TinyNet from scratch with limited dataset size
and computational resources. The TinyNet architecture was reimplemented
and tested for this study.

As explained in Section 2.2, Pawlowski et al. [20] experimented with differ-
ent global pooling operations for tiny object detection. They found that global
max pooling is more robust than global average pooling. This study will test
global max pooling, global average pooling and fully connected layers before
feeding them into the softmax activation.

3.4.5 3D CNNs

Usually, 2D convolutions are used in image recognition models to capture the
geometric information. The channel information is processed by summing the
same filter over all channels as described in Equation 15. The ⋆ denotes the
2D cross-correlation operator. The correlation between the input channels is
weak, and the polarimetric information is not used properly [57], [58].

out(Ni, Coutj) = bias(Coutj) +

Cin−1∑
k=0

weight(Coutj , k) ⋆ input(Ni, k) (15)

For polarimetric SAR images or optical hyperspectral images, the channel
information can be just as important as the geometric information, which leads
to using 3D convolutions instead of 2D convolutions to capture the channel
information [57]–[61]. In that case, the third dimension is not geometric but
the channels. Different variations and combinations of 2D and 3D convolutions
have been tested by researchers over the years. Fully 3D convolutions showed
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good performance [59], [60] but often struggle from structural redundancy,
which makes alternating sequences of 2D convolutions and 3D convolutions
beneficial [61]. Dong et al. used 2D convolution followed by 1x1xC 3D con-
volution, similar to Figure 9, which reduces the number of parameters and
achieves better performance in their experiments [58].

Figure 9: 3D 1x1xC convolution.

3.4.6 Complex-Valued CNNs

As described in 2.4.1, the polarimetric information can only be fully used when
using complex-valued data. Tan et al. [57] designed a fully 3D CNN, which is
wholly complex-valued. They tested it against complex-valued CNN and found
it to have only 0.03% higher overall accuracy while taking three times longer to
train and 1.5 times longer to test. The convolutions can handle complex-valued
data well, but new methods need to be developed for activation, pooling, and
batch normalization. For activation and pooling, Tan et al. [57] apply the
function on the real part and the imaginary part separately. This is a common
practice in complex-valued deep learning and is often used to feed complex
values into a real-valued network [62]. Before softmax activation, the real and
imaginary parts are split again and fed into fully connected layers. Splitting
into real and imaginary parts performed noticeable better than splitting the
complex value into amplitude and phase [57].
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3.5 Model Architecture Design

Based on the literature findings above, two major points for improvements are
identified: increasing the receptive field and carrying the weak signal of tiny
objects along in the network. Therefore we introduced a new block design with
dilated convolutions and made changes on the microlevel architecture design,
which are explained in Section 3.5.1 and 3.5.2. We test these new designs and
the design choices described above in a series of handcrafted models in another
architecture sweep. The design terminology is adopted from [22], where the
model is divided into stem, body, and head. The stem is the first stage of the
model and prepares the input for the body. The body is the biggest part of the
model with many blocks of operations. The head is last and outputs a vector
resembling the result. The last layer always uses softmax activation to get
pseudo probabilities of the prediction. The design strategy is split accordingly
into three iterations. First, different blocks and depths of the body are tested
with RegNet [22] and TinyNet [21] architecture to find a suitable configuration
regarding the FM3 score. The best-performing architectures are then further
tested with different heads. The last step is to test different stems and use the
complex inputs for some of them. The following Sections go into greater detail
about the different architectures.

3.5.1 Reception Block

It is beneficial to increase the receptive field and consider the surrounding
area to classify tiny objects correctly [21]. This can be done in different ways,
for example, with bigger kernels or dilated convolutions. The latter has the
advantage of not adding too many parameters or FLOPs to the network. We
designed a new block with three dilated convolutions with different dilation
rates, which are combined to increase the receptive field within one operation.
Figure 10 shows this novel design that we call Reception block. The first
convolution has a dilation of zero, the second has a dilation of one, and the
final convolution uses a dilation of two. The outputs of each convolution are
then concatenated to get the final output. Accordingly, the output channels
will always be a multiple of three.
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Figure 10: Dilated convolution in the Reception block.

3.5.2 Block Design

In the context of this study, a block is a combination of different operations like
convolutions, activations, or normalization. Four block designs were used: the
Residual block [56], the xBlock, the yBlock [22], and the TinyBlock similar to
[21]. Figure 11 shows the details of each block. It can be seen that their designs
are very similar, as they all use skip connections as ResNet uses them [56], and
each convolution is followed by batch normalization and ReLU activation. The
Residual block consists of one 1x1 convolution with increasing width. The
second convolution uses a 3x3 kernel and equal numbers of channels. This
combination of 1x1 and 3x3 convolution reduces the number of parameters
and MAC according to L1. If the block is used for downsampling the second
convolution is strided. The residual is formed by 1x1 convolution to adapt
the width; if downsampling is applied, this convolution is also strided. The
residual is added to the feature map before ReLU activation. The xBlock is
similar to the Residual block, but the 3x3 convolution is followed by another
1x1 convolution. We changed the downsampling of the residual and used a max
pooling followed by a 1x1 convolution instead of a strided 1x1 convolution,
which is in conflict to L4 but expected to be an improvement. This novel
design should conserve the weak signal of tiny objects, inspired by Pawlowski
et al. who looked at global pooling operations [20]. The yBlock is similar to
the xBlock but adds a squeeze excitation after the 3x3 convolution. Hu et al.
[63] introduced squeeze excitation, which uses global average pooling followed
by a fully connected layer with fewer channels and ReLU activation, as well
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as a fully connected layer with the original number of channels and sigmoid
activation. The resulting vector is then multiplied with the feature map. Last,
the TinyBlock is also similar to the xBlock but inspired by [21], which uses
two 3x3 convolutions to capture the surrounding information better. This is
equivalent to one 5x5 convolution [64].

Figure 11: Design of the Residual block, the xBlock, the yBlock, and the
TinyBlock.
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3.5.3 First Iteration

Figure 12: First design iteration with different numbers of downsamplings,
width and blocks.

First, the TinyNet backbone from Pang et al. [21] is implemented with slight
variations. The original architecture is based on residual blocks similar to
ResNet, but the characteristic of TinyNet is the smaller width of only 72
layers maximum. Since the original TinyNet is used as a detection backbone,
the classification head is missing and needs to be added to predict the output
class. In this first iteration, that will be a multi-layer perceptron (MLP) with
three layers. Following D1 to D4 from Radosavovic et al. a series of so-called
TinyRegNets is designed. The main macro-level difference from TinyNet is
the broader width of the network. Because of that bigger width, the depths
can not be increased, similar to the TinyNet. Also, a 3-layer MLP cannot be
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used as a head since it would require too many parameters. Instead, a max
pooling head is used in which a global max pooling operation is followed by a
fully connected layer. These two architectures are tested with different blocks
in the body, depths, downsampling, and width. Figure 12 gives a detailed
description of the tested architectures. The TinyNets used all different kinds
of blocks with a width between 72 and 104 and six to seven downsamplings.
The TinyRegNets, on the other hand, only used the xBlocks and yBlocks in
the body with a downsampling of four to five stages and a maximum width of
600.

3.5.4 Second Iteration

Figure 13: Second design iteration with different head designs.

In the second iteration, three types of heads are tested: a global average pool-
ing head, a global max pooling head, and an MLP head. The pooling oper-
ations have the advantage of drastically reducing the number of parameters
and FLOPs depending on how strongly the image resolution was downsam-
pled. The pooling layer is followed by a single fully connected layer to predict
the class. The MLP head might consist of up to two fully connected layers of
different widths with ReLU activations in between. In the previous iteration,
the MLP with three layers was already tested. The final layer is a softmax
layer to get pseudo probabilities of the prediction. The details of the different
architectures can be seen in Figure 13.
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3.5.5 Third Iteration

Figure 14: Third design iteration with different stem designs.

A basic stem with two 3x3 convolutions with batch normalization and ReLU
similar to Pang et al. [21] was used in the previous iterations. In the last itera-
tion, these are changed to various combinations of 3D convolutions, Reception
blocks, and standard 2D convolutions, as described in Figure 14. Because of the
large amount of parameters in the head, TinyNet15 to TinyNet17 are repeated
with global max pooling heads. The last three trials are with complex-valued
stems and complex-valued inputs. Here, no batch normalization was imple-
mented, and instead of ReLU activation, CReLU activation is used. Before
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entering the body, the absolute value of the complex-valued feature maps is
computed and passed on.

3.6 Analysis

As the first step, the different tuning and training results of the traditional
and ML models will be analyzed in terms of their parameters, training time,
and FM3 score. Then, the best-performing model architecture and the best-
performing traditional algorithm are compared to one another in four different
ways. First, their performance on the test set is analyzed in depth to find out
more about the limiting factors of the detection task. Secondly, the ML model
is analyzed using the Grad-CAM ++ method to explain the predictions. For
the traditional algorithms, we will look at the same image after filtering and
locate the maximum value. Since the goal is to develop a model that can be
used in Search and Rescue, the third analysis will investigate past cases, and
lastly, a complete Sentinel-1 scene will be analyzed. The following Sections
describe the methods in greater detail.

3.6.1 Training and Tuning

The training and tuning are analyzed with box plots for each design choice
or tuned parameter. We have 30 training runs for each ML model and, ac-
cordingly, 30 results on the validation set. Additionally, each best-performing
trial is evaluated once on the test set. During training, the model is evaluated
against a threshold of 0.5 for simplicity and fast computation. On the test
set, the prediction is tested against 100 thresholds between 0 and 1 to find the
best threshold, which strongly influences the scores. All these results are then
aggregated towards their common design choices, like width, downsamplings,
block type, head, and stem. This will tell us how well the model performs on
the test set and how easy it is to train the model. Additionally, the training
time is evaluated with boxplots, which is a proxy for the model’s complex-
ity. For the traditional algorithms, the boxplots show how well the chosen
parameters, inputs, and filterings perform on the test set.
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3.6.2 Test Set

The results of the two models on the test set are compared concerning the dif-
ferent conditions in the image to analyze the driving factors. These conditions
are ship length, SOG, heading, incidence angle, wind speed, wind direction,
and wave height. As a first step, they are compared against one another in
a partial correlation matrix. This matrix is extended by the partial correla-
tion to having a correct prediction. These partial correlations only capture
linear relationships, so to analyze the interesting factors further, they will be
visualized as binned and plotted against their detectability or FM3 score. As
explained in Section 3.2, the detectability alone is a weak measure and is only
picked up because of its use in literature [14], [15], [43]. The FM3 score is used
because it discriminates much finer. We keep a table of the test set results in
the Annex to make this study comparable to other research.

3.6.3 Grad-CAM ++

Grad-CAM++ is used to analyze how the model makes the decisions and to
verify that the actual boat leads to the decision. This method was designed
in 2018 by Chattopadhyay et al. [65] to "provide better visual explanations of
CNN model predictions." Grad-CAM++ was chosen over Grad-CAM because
it uses pixel-wise weighted gradients instead of the average gradient. This
proved beneficial for small target areas, which are the main focus of this study.
The feature maps of the body’s final layer will be used as input to derive
the class activation map (CAM). Through the strong downsampling of the
input, this CAM will only give a rough localization of what area of the image
influenced the prediction. This will also help answer the hypothesis that using
CNNs over adaptive-threshold-based methods is beneficial as they incorporate
secondary features around the ship.

3.6.4 Search and Rescue Cases

Past Search and Rescue cases are analyzed to test if the algorithm is capable
of detecting actual refugee boats. The rubber inflatable used by Lanz et al.
could not be used because the lake is too small and crowded to be used with
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the 256 by 256 cut-outs which TinyNet3 needs as an input. It can not be
garunteed that the model will react to the rubber inflatable or other objects in
the vicinity. Instead, the NGOs, Resqship, Sea Watch, and Pilotes Volontaires
provided the author with an archive of past cases spotted by airplanes or
Search and Rescue vessels. The data is considered sensitive, so no case details
can be published. The case time and positions are matched with Sentinel-1
images, and three cases within ±20 min of the acquisition time are analyzed.
The image is preprocessed like the dataset’s images and split into 13 by 13
patches around the reported location. Each patch is 256 by 256 pixels in size
and collected with a stride of 128 pixels, which leads to a 50% overlap with
neighboring patches. This creates a buffer zone of roughly 26880 by 8960
meters around the reported location and should account for the inaccuracy of
the reported position and the mismatch between acquisition time and the time
the case was reported. If the case is in the area, it should be detected in the
overlapping area of four images. This overlap has a diagonal of 1.88km and
is, therefore, as good as reportings from airplanes that are precise to the one
nautical mile.

3.6.5 Complete Sentinel-1 Image

As mentioned before, the timely delivery of the results is a crucial factor for the
application in Search and Rescue. To benchmark the algorithms regarding exe-
cution time, they are tested on a complete Sentinel-1 scene. An image acquired
on the 7th of January 2024 at 05:05:59 UTC over the central Mediterranean
Sea without any landmass is chosen. Similar to Section 3.6.4, the image is pre-
processed and split into 256 by 256 pixel patches with a stride of 128 pixels.
In total, 55284 image patches were created for a single Sentinel-1 IW image.
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4 Results and discussion

This Section presents the findings of our experiments starting with the base-
line for the dataset and the newly designed architectures. Then the limits of
detectability are explored and finally, the methods are tested for their use in
Search and Rescue.

4.1 Problems

The training of many models struggled to converge. This is a common problem
in machine learning, and the reason needs to be investigated more closely in
future work. However, the problem might be connected to the small size of the
dataset, the inherently low signal-to-noise ratio, and the choice of loss function.
All training runs with an FM3 score of zero are filtered out so as not to clutter
the following analysis.

4.2 Tuning and Training

Figure 15 compares the traditional algorithms with CNNs regarding their FM3
score on the test dataset. What stands out is that the MMSE PWF algorithm
outperforms all others, followed by the ResNet-18 architecture, the RegNetY
800MF, and the Densenet121. The dataset is biased towards the adaptive-
threshold-based algorithms, especially towards the CFAR algorithm, since they
were used to determine the water cut-outs. The CFAR algorithm still produces
false positives, which can be explained by the fact that in the creation of the
dataset, a bigger area of the image was used to determine the clutter statistics,
and in the test, there were only smaller cut-outs.
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Figure 15: Boxplot of the FM3 score of the trials with traditional algorithms
and the CNNs. The results of the traditional algorithm were achieved on the
test set while the results of the CNNs were achieved on the validation set,
except for the star which marks the highest score on the test set. The line
indicates the number of parameters.

4.2.1 Tradtional Algorithm

The boxplot in Figure 15 shows that the traditional algorithms can compete
well with the ML methods. This is unexpected but showcases the importance
of these algorithms and their usage to this day. The PMF, PWF and NIS
performed a lot worse compared to the other traditional algorithms. These
filtering techniques lose the intensity information which needs to be fed back
by multiplying the filtered image with one of the intensity channels. This was
not done in this experiment. The MMSE PWF on the other hand does feed
back the intensity in an optimal way with clear success. Figure 16a shows the
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input types used for the traditional algorithms. As expected, the multilooked
images perform much worse than their single-look counterparts. Furthermore,
the ground range images performed much better than complex-valued slant
range inputs, which might be caused by the methods used rather than by the
projection to ground range or scaling to dB. This theory is backed up by the
fact that the methods using the C2 matrix performed best, which is directly
derived from the complex-valued slant range input.

(a) Traditional algorithms. (b) Deeplearning algorithms.

Figure 16: Boxplot of the FM3 scores achieved for different input types by a)
the traditional algorithms on the test set and b) by the ML algorithms on the
validation set.

4.2.2 CNNs

When comparing the baseline algorithms in Figure 15, the ResNet, RegNetY,
and Densenet architecture performed best. RegNet had a better median per-
formance and might be easier to train for this task. A clear dependency on
trainable parameters can not be drawn. The best-performing models tend
to have more parameters but overall the specific design choices seem to play
a more noticeable role. Inverted bottlenecks used by EfficientNet and Mo-
bileNet as well as channel shuffle used by ShuffleNetV2 seem to be less useful.
Residuals, squeeze excitation and dense layers used by ResNet, RegNetY and
Densenet respectively performed well. When concerning the time used for
training, Figure 17 shows that the Resnet is found in the middle field, which is
outstanding for the good performance it showed on the test dataset. Densenet,
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on the other hand, took much longer to train. We can also see that the best
model weights marked with the star are often close to the beginning of the
training and not at the respecting maximum training time, showing that the
models struggled to converge and had a tendency to overfit. ResNet, RegNetY
400MF and ShuffleNetV2 seemed to have better converging training, Densenet
an EfficientNet and MobileNet less. For Training time the amount of param-
eters did matter with lighter models being faster to train. ResNet18 seems to
be an exception to this rule. However, we need to keep in mind that training
time and inference time are different from one another and should be evaluated
separately. When looking at the inputs used in Figure 16, the C12 input was
the best, which was expected since this input also showed great performance
in traditional algorithms and has favorable theoretical properties as it corre-
lates the cross- and co-polarization [66]. Using the complete C2 matrix, on
the other hand, showed not as good results, which might be caused by the fact
that the channels correlate with each other, which makes it harder for the net-
work to learn meaningful features. However, as we can see in Annex C there
are exceptions to this rule, for example with the EfficientNet-B2. From that
Table, we can also see that for GRD TNR images using both channels usually
worked best and for the single-channel inputs the VH channel was preferred.
This can be explained by the fact that cross-polarization is less dependent on
the incidence angle, which results in a uniform performance across the image
swath [14], [24]. In Annex C we can see that all models were able to reliably
detect water with only very view false positives. Detecting the boats on the
other hand was much harder as the high number of false negatives tells us.
The tiny features are not well captured by these state-of-the-art models. It
also shows the importance of having a suitable metric, because the MMSE
PWF and the ResNet18 do reach the same accuracy, but the MMSE PWF has
fewer false negatives at the expense of more false positives. This difference is
reflected in the new FM3 score.
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Figure 17: Time in seconds used for training until the best FM3 score is
reached. The line indicates the number of trainable parameters in the model.
The star marks the best FM3 score on the test set.

4.2.3 Model Architecture Design

Based on the findings of the baseline training, ResNet and RegNetY archi-
tectures were chosen for further study. As input only the GRD TNR images
without multilooking were used since they showed consistently better perfor-
mance in Figure 16. The FM3 scores of the training trials are drawn with
boxplots, while each best result on the test set is marked with a star.

In the first iteration, the two different architectures were tested with dif-
ferent depths, widths, and blocks. Figure 18 shows the results for these four
factors. From Figure 18a, it can be seen that both architectures perform well
regarding the maximum FM3 score on the validation and test set, but the
lighter TinyNet is slightly better. The Median FM3 score is noticeably higher
for the TinyNet architecture. This behavior is also seen in Figure 18d for
the width of the network. The two much wider networks reach lower scores,
while the two slim versions reach higher maximum and median scores. When
concerning the network depth in Figure 18c, four downsampling operations

47



(a) Archicteture (b) Block Design

(c) Model Depth
(d) Width of the Final Convolutional
Layer

Figure 18: Results on the validation set of the first architecture sweep iteration.
Each factor is plotted against the FM3 score. The star indicates the best FM3
score on the test set.

seem to be not enough while the difference between five and six downsam-
plings is not as pronounced. Five downsamplings performed best concerning
the maximum score. When looking at the block design in Figure 18b, the two
3x3 Convolutions of TinyBlock seem beneficial, as well as the squeeze excita-
tion of the yBlock. The xBlock and Residual Block showed noticeably lower
Median performance. When comparing the xBlock to the Residual block, it
seems to matter that instead of a 1x1 convolution with a stride of two, first
a MaxPooling operation is performed and followed by a 1x1 convolution with
stride 1 in the xBlock. Therefore we conclude that our new design choice is
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successful. Overall, the best architecture of the first iteration was TinyNet3
with five downsamplings, a width of 72 layers, and yBlocks.

In the second iteration, the TinyNet3 design was tested with different
heads. As can be seen from Figure 19, the MLP heads showed the best perfor-
mance, while the average pooling head showed the worst performance. It seems
to wash out the weak signal of the vessels. The MaxPooling head showed the
best performance on the validation dataset and a better median performance
for the training runs but had a slightly less high score on the test set. This can
be explained by the fact that the MLP requires noticeably more parameters
than the MaxPooling head and is, therefore, harder to fit. This can also be seen
when comparing the median FM3 score of the single-layer perceptron MLP1
and the MaxPooling head to the other methods. They both have noticeably
better median scores, as they both have the least amount of parameters. How-
ever, the best result on the test set was achieved with the MLP with three
layers; the second best result was with the MLP with one layer, and therefore,
these variations are prioritized.

Figure 19: Results on the validation set of the second architecture sweep iter-
ation. Each head variant is plotted against the FM3 score. The star indicates
the best FM3 score on the test set.

The final step is to test different stems and complex-valued inputs. Sur-
prisingly, the complex-valued inputs performed noticeably worse compared to
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the real-valued stems, as can be seen in Figure 20. This might be influenced
by the 3D convolutions that were used in all complex-valued stems, which did
not perform as well as their 2D counterparts. However, that does not fully
explain the noticeably lower performance. The lack of normalization proba-
bly also played a role but further research needs to be done to explore the
complex-valued inputs. It is worth noticing that the best result on the test set
was achieved with the 2D convolutions, and the best result on the validation
set with stems that use the Reception block. The highest median can also be
found in these stems, and the difference between the score on the validation set
and the test set is smaller. This might point to a better separation of classes
when using dilation.

Figure 20: Results on the validation set of the training runs with different
stems. Each factor is plotted against the FM3 score. The star indicates the
best FM3 score on the test set.

To summarize the architecture sweep, we can look at Figure 21. A strong
correlation to the number of trainable parameters can not be seen in the FM3
score nor in the training time, except for the TinyRegNet architectures, which
have noticeably more parameters and usually take longer to train. The overall
best-performing model on the test set was TinyNet3, with an FM3 score of
0.86, as can be seen in Figure 21a. This architecture uses 2D convolutions in
the stem, yBlocks in the body with five downsamplings and a width of 72,
finishing by an MLP with three layers. The score on the validation set was
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noticeably lower, with a difference of 0.06 points. This can be explained by
the fact that the score on the validation set was evaluated against a threshold
of 0.5, while the score on the test set was achieved against a threshold of 0.16.
The highest score on the validation set was achieved with the TinyNet21 and
a score of 0.81. This architecture starts with a Reception block in combination
with standard 2D convolutions followed by yBlocks and a MaxPooling Layer.
Again, five downsamplings are used, and a width of 104 because the Reception
block creates a wider network at the start. The gap between the best result
on the validation set and the test set is much smaller, with a difference of 0.03
points, which again might show a better separation of classes with MaxPooling
heads. When comparing the training time in Figure 21b, we can see that
TinyNet3 took noticeably less time to train than TinyNet21.

(a) FM3 score (b) Training time

Figure 21: Results of all different models regarding the FM3 score and the
training time. The star marks the best trial that is then used on the test set.
The line shows the number of trainable parameters in the model.

When we compare the performance of these newly designed CNNs to the
baseline we can see that our specialized architecture performed noticeably
better in all regards. The tables in Annex B and C show that especially
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the amount of false negatives went down drastically, while the amount of false
positives went up far less. Figure 21b and Figure 17 can see that the models
in the architecture sweep took less time to train compared to the baseline
models, therefore the models not only perform much better but are also very
lightweight. The best-performing models lie also closer to the higher training
times hinting at a better convergence during training.

4.3 Analysis on Test Dataset

The two best-performing algorithms are the MMSE PWF for the traditional
algorithms and the TinyNet3 for the ML models. Their performance on the
test set is closely analyzed in this Section to find out more about the limitations
of the detection task. To start off we first compare the overall performance of
the algorithms in Figure 22. We can see that the TinyNet3 has a much stronger
and sharper discrimination compared to the MMSE PWF. This means that
the highest FM3 score is achieved with fewer false positives. TinyNet3s AUC
of 0.96 is higher than the reported AUC of Lanz et al. [67], while the MMSE
PWFs AUC is similar. This is an uneven comparison since we tested real data
of bigger boats while Lanz et al. simulated data by combining real scenes of
smaller boats. The best FM3 scores were reached with a threshold of 0.16 for
TinyNet3 and 4.59 for MMSE PWF. These thresholds are used from now on
in the analysis.
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Figure 22: ROC curve for the MMSE PWF and TinyNet3 on the test set. The
star marks the position of the highest FM3 score on the ROC curve

To get a feel for the data, we look at the partial correlation between the
different factors and their correlations to the algorithms’ correct predictions
in Figure 23. It needs to be mentioned that these correlations only pick up
linear relationships and that this can not be expected for the heading or wind
direction. The first thing that stands out is that all factors are not strongly
correlated because they have a partial correlation of less than 0.7. By far, the
highest correlation is between the wave height, and the wind speed, which is
expected. It is also worth noticing that there is a weak correlation between
length, wave height and wind speed. This is also expected, as most larger
vessels handle rough seas better.
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Figure 23: Partial correlation matrix between the different factors. The two
additional lines at the bottom show the partial correlation between the factors
and the respecting algorithm to predict the correct label.

Let’s take a closer look at how the vessel length influences the performance.
As expected, we do find a positive correlation for both algorithms, which is
stronger for TinyNet3. When looking at Figure 24, we can verify that there is
indeed a positive correlation, but for vessels of 10 to 15 meters, we see an in-
crease in performance. There are far fewer samples available for these sizes, so
the increase in performance might have been caused by another bias in the test
dataset. When comparing the detectability over the ship length in Figure 24b,
we see that it has mostly the same behavior as the FM3 score in Figure 24a,
but the lower performance of the MMSE PWF for 15 and 20 meters bins is not
picked up, which shows the importance of a suitable metric. Both algorithms
show almost 10% higher detectability and noticeably better performance com-
pared to Paolo et al., which is expected because these are more sophisticated
algorithms compared to the CFAR algorithm [15]. However, this comparison
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needs to be taken with a grain of salt because the detectability does not take
the false alarm rate into account. Also, we did not use multilooked images,
because they proved to have much lower performance at the beginning of the
experiments. It has to be mentioned that Paolo et al. might have used a larger
dataset and that the test dataset might be biased because of the use of the
CFAR algorithm in its making.

(a) FM3 score (b) Detectability

Figure 24: FM3 score and detectability of MMSE PWF and TinyNet3 binned
over the vessel length in meters. The second axis shows the number of samples
for each length bin.

The speed of the vessel is suspected to have a negative correlation because
the moving objects can not be properly focused in an SAR image, leading to
smeared targets and a lower signal-to-noise ratio. When looking at the partial
correlation in Figure 23 and the graph in Figure 25, we can see the opposite.
While there is a decrease in FM3 score at first, the TinyNet3s performance
increases for speeds above 4 knots, and for the MMSE PWF, the score increases
again from 7 knots. Higher speeds lead to stronger wakes, which might be
picked up by the TinyNet3. But again, it needs to be mentioned that the
sample size for higher speeds is very low, which might cause biases.
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Figure 25: FM3 score of MMSE PWF and TinyNet3 binned over the vessel
speed in knots. The second axis shows the number of samples for each speed
bin.

Next, we take a closer look at the significant wave height, which is suspected
to cause more backscatter and, therefore, make correct predictions harder.
From Figure 23, we can see that there is indeed a negative correlation for
both algorithms. However, it’s weaker for TinyNet3. This indicates that the
TinyNet3 is less distracted by the overall characteristics of the clutter. As
can be seen in Figure 26, the sample size for higher waves is very small and,
therefore, assumptions about these states are unreliable. However, there is
indeed a negative correlation for wave heights below 1m, where the sample
size is sufficient. The weak positive correlation between vessel length and sea
state is not taken into account in Figure 26 and might explain the increase for
bigger wave heights. Furthermore, Lanz. et al. reported a noticeable drop in
performance only for a wave height of 2.5 meters [7], which is not covered in
this dataset.

56



Figure 26: FM3 score of MMSE PWF and TinyNet3 binned over the significant
wave height in meters. The second axis shows the number of samples for each
wave height bin.

Many researchers suspect wind speed and direction to be significant factors
[7], [16], [43], [68]. Surprisingly, the correlation of the wind speed is 0.03 for
the MMSE PWF and only 0.01 for the TinyNet3. In Figure 27a, we can see
the FM3 score over the wind speeds. Except for very low and very high wind
speeds we see virtually no influence on the FM3 score; the reason for this is
unknown but may be caused by a bias in the dataset. Figure 27b shows the
FM3 score over the wind direction, which is much more volatile. However, the
cause for the minimum FM3 scores could not yet be determined. The wind
direction is not relative to the sensor’s line of sight which might give further
insight as suggested by [16].
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(a) (b)

Figure 27: FM3 score of MMSE PWF and TinyNet3 for a) wind speed and b)
wind direction. The second axis shows the number of samples for each bin.

In the literature, the incidence angle is also described as a strong driving
factor [7], [14], [16], [43], [68], but in this dataset and with these algorithms, it
shows only an insignificant correlation. Figure 28 shows that the distribution
of incidence angles is uneven for this dataset, which might lead to biases.
However, it can also be seen that for the low incidence angles, TinyNet3 shows
noticeably less volatile behavior than the MMSE PWF. For high incidence
angles > 42◦, we see a decrease in performance, which might be caused by
other parameters of the subset. The sample size for these bins is small and,
therefore, assumptions about these states are unreliable. This might be caused
by the higher backscatter that confuses the MMSE PWF, while the CNN can
handle such effects better.
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Figure 28: FM3 score of MMSE PWF and TinyNet3 binned over the incidence
angle in degrees. The second axis shows the number of samples for each angle
bin.

Overall, the TinyNet3 showed a more stable performance and seemed to
deal a lot better with effects that are more spaced out, like smearing because
of target movement or higher backscatter because of the weather or incidence
angle. However, the sample size is often not big enough to be certain of the
results. Unfortunately, the dataset size can only be addressed in future work.

4.4 Grad-CAM ++ and Filtered Image

Since we can not look at all images, only two scenes are shown here where
TinyNet3 correctly predicted the vessel presence and the position estimation
by AIS is relatively good. However, these results were checked against 43
random samples, and they showed more or less similar behavior. The first
selected scene in Figure 29 shows a clearly visible ship in the top right corner;
the red circle marks the ship’s AIS position. In Figure 29c, we can see that
TinyNet3 uses the ship’s location and direct surroundings to predict the ship
with a pseudo probability of 0.99. We can also see that there is a large artifact
in the bottom right corner and some more artifacts on the other edges. This
is seen often among the 43 samples in different intensities and locations along
the edges. Also, for an untrained model, the edges show similar artifacts.
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It may be caused by the zero padding applied by many convolutional layers.
When we look at the MMSE PWF filtered image after the CFAR algorithm
was applied without thresholding, we can see the ship’s position. The highest
value is 10.8, which is high above the tuned threshold for MMSE PWF of 4.59.
The position of the ship is also picked up precisely, which can not be expected
for the TinyNet3 because of the strong downsampling, as mentioned in Section
3.6.3.
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(a) VV polarization (b) VH polarization

(c) Grad-CAM ++ for predicting ship (d) MMSE PWF

Figure 29: Visual analysis of ship number 2714 called "Mare Chiaro", a 22
meter fishing vessel. a) and b) show the VV and VH polarization of the GRD
TNR processed image. c) shows the Grad-CAM ++ result for the prediction
ship and d) the image after the MMSE PWF and CFAR filtering. The red
circle marks the reported AIS position while the black x marks the highest
value in the filtered image.

The second scene in Figure 30 shows a very weak signal of the ship in the
image, and even experienced SAR experts might struggle to locate the vessel in
the GRD TNR image. It’s located in the center of the image, a little bit to the
bottom. The signal is a bit more pronounced in the cross-polarization channel
which shows the importance of using both channels. The TinyNet3 locates the
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ship correctly with a pseudo probability of 0.99, again taking the surroundings
into account. The adaptive-threshold-based MMSE PWF also locates the ship
correctly, but with a value of 3.24, it would be below the tuned threshold
and not detect the ship’s presence. We can also see in this image how the
surroundings produce similar patterns, which leads to confusion.

(a) VV polarization (b) VH polarization

(c) Grad-CAM ++ for predicting ship (d) CFAR

Figure 30: Visual analysis of ship number 960, called "Palermo Nostra", a 20
meter fishing vessel. a) and b) show the VV and VH polarization of the GRD
TNR processed image. c) shows the Grad-CAM ++ result for the prediction
ship and d) the image after the MMSE PWF and CFAR filtering. The red
circle marks the reported AIS position while the black x marks the highest
value in the filtered image.
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We can conclude that the CNN does indeed capture the ship’s location
and takes the surrounding area into account, proving the hypothesis to be
true. However, we can also see some artifacts on the edges that should be
addressed in future work. While these artifacts are quite strong in these two
examples, they are not always as strong and are not unique to images with
ships. Figure 31 shows the respecting water images of ship numbers 961 and
2714, and the same artifacts are visible on the edges, especially in the bottom
right corner. However, this did not affect the prediction, as both images are
correctly predicted to be water with a pseudo probability of 1. Therefore, it’s
safe to assume that the artifacts do not show a bias of the TinyNet3, and they
might explain why the global pooling operations lead to weaker performance.

(a) Water number 2714 (b) Water number 960

Figure 31: Visual analysis of the Grad-CAM ++ result for the water images
corresponding to ship number a) 2714 and b) 960.

4.5 Analysis of Past Cases

As the performance regarding the training and the test set is evaluated in
depth, it is important to test these models in real-world scenarios. Figure 32
compares the algorithms on three different cases by applying the threshold of
0.16 for TinyNet3 and 4.59 for MMSE PWF and then counting how many
images were predicted as being positive within each overlapping area. When
looking at case number 10 in Figures 32a and 32d, we can see that the MMSE
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Table 6: Conditions for the three past cases.

case mean wave mean wind mean wind incidence
height [m] speed [m/s] direction [°] angle [°]

10 0.63 5.39 158.24 39.24-39.58
12 0.53 4.26 73.48 41.87-42.17
15 0.27 4.21 121.16 37.50-37.86

PWF produces way too many false positives to be conclusive. When we change
the threshold, the picture becomes clearer and similar to the result of TinyNet3.
TinyNet3 is also not completely conclusive as not all four images of the overlap
agree, but only three of them agree on the presence of the case. In the image
of case number 12 in Figures 32e and 32b, the situation is similar, with a lot
of noise and inconclusive information, especially for the TinyNet3. Here, the
MMSE PWF agrees in one position with all four overlapping images, which also
happen to be positively predicted by TinyNet3 but with only one single image.
For the last case, no method was able to detect the presence of the case. The
conditions of the image are favorable, as the wave height is quite low and the
incidence angle of >37° not too low. Therefore, the boat might have been too
small to be detected or its position is not reported correctly and it is not present
in this scene. In all three cases, the environmental conditions are favorable,
as the wave height and wind speed are comparable and the incidence angle
is high. When we compare the number of false positives for these three cases
they might be explainable by the difference in wave height and wind speed,
which is higher for case 10 and lower for case 12 and 15. These experiments
show that it is not impossible but still very difficult for both models to detect
known cases in Sentinel-1 images. It also shows that it is beneficial to combine
both models to get a more clear image. Further research needs to be done
with more cases and more detailed information about them, like the size and
material of the boat or the number of people on board.
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(a) MMSE PWF Case 10 (b) MMSE PWF Case 12 (c) MMSE PWF Case 15

(d) TinyNet3 Case 10 (e) TinyNet3 Case 12 (f) TinyNet3 Case 15

Figure 32: Three different cases analyzed with TinyNet3 and MMSE PWF.

4.6 Analysis of Complete Image

To investigate if these models are suitable for monitoring the Search and Res-
cue area, we processed a complete scene, which was split into 55284 images
as described in Section 3.6.5. The main focus lies in the time it takes to get
the complete analysis. Table 7 shows the execution time and speed for each
processing step. The download took 7 minutes with 20Mb/s, and the prepro-
cessing took 11 minutes to finish. These processes are not fully optimized but
are reasonably fast. The algorithms should be at least as fast as these steps so
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Table 7: Execution time of the different processing steps.

Operation Time [s] Speed

Download

Preprocess

TinyNet3

MMSE PWF

420

660

21.4

573

20 [Mb/s]

84 [FPS]

2586 [FPS]

96 [FPS]

that they do not become the bottleneck. The TinyNet3 was able to analyze
all images in only 21.4 seconds on a Nvidia RTX 4090 graphics card and a
batch size of 256, which means it processed 2586 frames per second (FPS).
The MMSE PWF, on the other hand, took 573 seconds, which is only 96 FPS,
with 16 parallel Threads on an Intel i9-13900K CPU and 128 GB RAM. In this
scenario, the CNN-based model is far superior, but the traditional algorithm
could be improved by using bigger cutouts. Which model performs better will
depend on the hardware available, but both models are reasonably fast for use
in Search and Rescue. When we look at the quality of the result in Figure 33,
we can conclude that both methods seem to produce a lot of false positives.
The dependency on the incidence angle appears to be much stronger as the
analysis of the test dataset suggested. The incidence angle increases to the
west, where less false positives are seen. The main reason for the high number
of false positives is probably the high waves and high wind speed as can be
seen in Table 8. Both are higher than any image in the dataset. While that
makes it harder to judge the quality of the results, it opens up a new insight:
Similar to what Li et al. [19] suggested, the ML approach generalizes much
better than the traditional algorithm because we can see that TinyNet3 strug-
gles more on the edges but a lot less overall. The edges have no-data-values
that are not present in the dataset and therefore the CNN could not learn
that pattern properly. While the MMSE PWF cannot be further tuned with-
out compromising on detectability, the ML model could be further trained to
overcome this problem.
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(a) MMSE PWF (b) TinyNet3

Figure 33: Analysis of a complete image with MMSE PWF and TinyNet3.
Background map: OpenStreetMap®

Table 8: Environmental conditions for the complete image.

wave height [m] wind speed [m/s] wind direction[°]
min max mean min max mean min max mean

2.06 5.80 4.25 12.44 16.24 14.04 82.78 99.94 93.62
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5 Conclusion and further directions

In this thesis, we have achieved a milestone by successfully pushing the bound-
aries of tiny ship detectability using a novel Sentinel-1 dataset in combination
with new CNN designs. Two novel design choices are introduced, which show
noticeable improvements for CNNs in tiny object detection. We then explored
its application in civil Search and Rescue by analyzing real cases and a theo-
retical monitoring application. This study, which encompasses various aspects
from model design to limitations and possible applications, opens up numerous
avenues for further exploration.

The novel approach to building a ship-water classification dataset with AIS
to detect ship locations and CFAR to detect water locations successfully led to
a medium-sized dataset with over 6000 images of over 1000 Sentinel-1 scenes.
The size was big enough to successfully train lightweight CNNs from scratch,
but a larger dataset would likely allow for better training and a better under-
standing of the limitations for detectability. A low-hanging fruit would be to
repeat the experiments but switch the test dataset with the validation dataset.
Rerunning the same evaluation, this time with twice as many images available
for testing might lead to a more accurate evaluation of the limitations. Since
the training data is still limited, it could be extended with augmentation meth-
ods beyond the flipping operation used in this study. Some researchers have
proposed different methods especially designed to work with SAR images [69],
or to simulate the training data of different targets in different environments
based on statistical properties [70], machine learning techniques such as Gener-
ative Adversarial Networks [71], [72], or physical accurate models [73]. Some of
these may decrease the amount of false positives by simulating realistic water
patches of different sea states. Extending the dataset with publicly available
datasets could mitigate the strong bias towards calm sea states and less intense
background scattering. They often come with bounding boxes that could add
more ship and water chips. Higher-order labels like bounding boxes could be
derived from Grad-CAM ++ or MMSE PWF to improve the dataset’s quality.
This would require a lot of manual labor, but make the dataset compatible
with detection tasks and other publicly available datasets. As explained in
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Section 3.1, it is challenging to determine true water patches. The settings
used in this study led to a clean dataset suitable for training with cross en-
tropy loss. Lowering the CFAR threshold for the water patches would reduce
the bias towards calm sea and more ship water pairs would be accepted at the
cost of noisy labels. However, these noisy labels are a problem for the cross
entropy loss [74] and need to be adressed with regularization and more suitable
loss functions [74]–[76]. This could be used in future research with this dataset
approach.

We also found that CNNs must be designed with special care to compete
with adaptive-threshold-based methods. An architecture sweep was carried
out, and a model was found that outcompetes the traditional algorithm and
ML state-of-the-art algorithms. The results on the new dataset are noticeably
better than what can be found in the literature [15]. The model uses squeeze
excitation and residuals with max pooling instead of strided convolutions. Es-
pecially the max pooling operation is a novel design choice and noticeably
contributed to the model performance. The experiments showed that average
pooling and strided convolutions, common operations for many architectures,
are unsuitable for tiny ship detection. Often, the valuable information is only
a couple of pixels big and not carried along with these operations. The added
computational complexity of this elemntwise operation is justified by the im-
provement. So far, that was only reported for global pooling operations by
Pawlowski et al. in tiny object detection [20]. Using more 3x3 convolutions,
as done in the TinyBlock, and changing the global average pooling of the
squeeze excitation to max pooling may result in further improvements. Less
wide model designs performed better on this binary classification task, mean-
ing that D1 of Radosavovic et al. [22] does not hold in this case. That might
be different for classification tasks with more than two classes.

Furthermore, we tested 3D convolutions and complex-valued convolutions.
None of these showed better performance compared to the 2D convolutions.
However, the 3D convolutions showed better median results, which hints that
they are easier to train and worth further exploring. The complex-valued con-
volutions could have performed better, and the valuable phase information
seemed not unlocked. This study only briefly tested simple approaches with
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CReLU, but without normalization, so there might be more potential that
could not be explored in this study. Investigating the complex-valued convo-
lutions is still promising, and the performance might increase with suitable
batch normalization or other activation functions as the research suggests [62],
[77]–[80]. However, it is unclear if the model will capture meaningful phase
information or simply introduce a new dimension to separate the data, as
suggested by Trabelsi et al. [81]. With the current state of research, it is
hard to draw a definite conclusion. All these techniques could be extended to
the whole network architecture, coupled with group convolutions or depthwise
convolutions. A network architecture search with more variations would help
to determine further which design choices influence the performance.

We introduced a new combination of dilated convolution to increase the
receptive field of a convolution layer, the so-called Reception block. It showed
promising results in this study with a higher median score during training and
the highest FM3 score on the validation set. Further research might be done
incorporating this idea into other blocks and using it in more parts of the
network. Since the receptive field plays a noticeable role, transformer-based
models are especially interesting as they keep a global receptive field [82], [83].
They showed promising results in the literature regarding remote sensing and
tiny object detection [72], [82], [83].

The network could also be improved by adding more outputs like vessel
type and activity or by using a regression task to predict the vessel size. This
information is already available in the dataset. During training, the images
were only preprocessed with standard image normalization, with a mean and
standard deviation of 0.5. This preprocessing is an elementary part of ma-
chine learning and might influence performance noticeably but could not be
investigated closely in this study.

The experiments on real-world Search and Rescue cases show that Sentinel-
1 images might be helpful in the investigation of past cases. None of the
methods showed satisfactory results alone, but only in combination they gave
conclusive results on the presence of a ship in the image. With an ensemble
of detection algorithms tuned and trained on this dataset, a framework for
investigating past cases could be set up. The results obtained in this study
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could not yet be effectively used for regular monitoring with Sentinel-1 images.
The traditional algorithm produces far too many false positives, and raising
the threshold would lead to more false negatives. The TinyNet3, on the other
hand, could be further trained to better distinguish between ship and water;
however, a larger dataset is required to do so. To this goal, the dataset-building
approach of this study can not be used because it introduces a bias towards
high incident angles and less diverse water images. After more suitable train-
ing, the architecture itself could be used for the inference of complete images,
as it computes extremely fast with less than 30 seconds on a consumer-grade
GPU. The proposed method of using four overlapping patches already leads
to satisfactory detection performance with roughly one nautical mile preci-
sion. Higher-quality image detection tasks like bounding boxes or polygons
are, therefore, optional. Further research needs to be done before Sentinel-1
images will be usable in the context of Search and Rescue monitoring.
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B Archicteture design test resuls

Name Params TP TN FP FN ACC

TinyNet 485570 291 295 19 23 0.93
TinyNet2 504482 287 302 12 27 0.94
TinyNet3 513988 296 302 12 18 0.95
TinyNet4 606470 297 298 16 17 0.95
TinyNet5 413298 293 292 22 21 0.93
TinyNet6 454258 292 302 12 22 0.95
TinyNet7 474840 288 303 11 26 0.94
TinyNet8 680422 296 297 17 18 0.94
TinyNet9 511972 289 298 16 25 0.93
TinyNet10 226084 296 296 18 18 0.94
TinyNet11 217012 299 289 25 15 0.94
TinyNet12 217012 283 297 17 31 0.92
TinyNet13 225892 284 303 11 30 0.93
TinyNet14 227380 283 296 18 31 0.92
TinyNet15 476476 288 298 16 26 0.93
TinyNet16 476572 298 282 32 16 0.92
TinyNet17 479788 273 302 12 41 0.92
TinyNet18 463372 288 291 23 26 0.92
TinyNet19 463468 297 287 27 17 0.93
TinyNet20 466684 277 291 23 37 0.90
TinyNet21 466420 299 292 22 15 0.94
TinyNet22 515128 275 291 23 39 0.90
TinyNet23 515248 287 288 26 27 0.92
TinyNet24 463366 284 279 35 30 0.90
TinyRegNetX 1792482 283 301 13 31 0.93
TinyRegNetY 2086838 288 300 14 26 0.94
TinyRegNetX2 2609746 297 295 19 17 0.94
TinyRegNetY2 3040602 289 306 8 25 0.95

TP: True positive, TN: True negative, FP: False positive, FN: False negative,
ACC: Accuracy
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C Baseline test results machine learning

Name Params Input Channels TP TN FP FN ACC

ResNet18 11174402 C2 C12 255 309 5 59 0.90
ResNet18 11174402 C2 C2 237 312 2 77 0.87
ResNet18 11174402 GRD ML VH 206 311 3 108 0.82
ResNet18 11174402 GRD VH,VV 243 311 3 71 0.88
EfficientNet-B2 7703524 C2 C12 166 312 2 148 0.76
EfficientNet-B2 7703524 C2 C2 192 311 3 122 0.80
EfficientNet-B2 7703524 GRD ML VH 171 310 4 143 0.77
EfficientNet-B2 7703524 GRD VH 176 312 2 138 0.78
DenseNet121 6947650 GRD VH,VV 233 310 4 81 0.86
DenseNet121 6947650 C2 C2 217 309 5 97 0.84
DenseNet121 6947650 C2 C12 245 311 3 69 0.89
DenseNet121 6947650 GRD ML VH,VV 156 307 7 158 0.74
EfficientNet-B1 6515458 GRD VH 188 311 3 126 0.79
EfficientNet-B1 6515458 C2 C2 164 310 4 150 0.75
EfficientNet-B1 6515458 C2 C12 210 309 5 104 0.83
EfficientNet-B1 6515458 GRD ML VH 173 309 5 141 0.77
RegNetY 800MF 5648794 GRD ML VH 212 301 13 102 0.82
RegNetY 800MF 5648794 C2 C12 252 310 4 62 0.89
RegNetY 800MF 5648794 C2 C2 233 310 4 81 0.86
RegNetY 800MF 5648794 GRD VH 238 306 8 76 0.87
ShuffleNetV2 X2.0 5348878 C2 C2 211 307 7 103 0.82
ShuffleNetV2 X2.0 5348878 GRD VH,VV 224 311 3 90 0.85
ShuffleNetV2 X2.0 5348878 C2 C12 207 311 3 107 0.82
ShuffleNetV2 X2.0 5348878 GRD ML VH,VV 213 311 3 101 0.83
MobileNetV3-Large 4204418 GRD ML VH 188 306 8 126 0.79
MobileNetV3-Large 4204418 C2 C12 235 310 4 79 0.87
MobileNetV3-Large 4204418 C2 C2 214 311 3 100 0.84
MobileNetV3-Large 4204418 GRD VH 201 312 2 113 0.82
EfficientNet-B0 4009822 GRD VH 194 312 2 120 0.81
EfficientNet-B0 4009822 C2 C2 176 310 4 138 0.77
EfficientNet-B0 4009822 C2 C12 210 311 3 104 0.83
EfficientNet-B0 4009822 GRD ML VH 164 312 2 150 0.76
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Name Params Input Channels TP TN FP FN ACC

RegNetY 400MF 3903738 C2 C2 221 311 3 93 0.85
RegNetY 400MF 3903738 C2 C12 242 309 5 72 0.88
RegNetY 400MF 3903738 GRD VH 237 309 5 77 0.87
RegNetY 400MF 3903738 GRD ML VH 207 306 8 107 0.82
ShuffleNetV2 X1.5 2480458 C2 C2 210 307 7 104 0.82
ShuffleNetV2 X1.5 2480458 GRD ML VH,VV 190 311 3 124 0.80
ShuffleNetV2 X1.5 2480458 C2 C12 210 307 7 104 0.82
ShuffleNetV2 X1.5 2480458 GRD VH,VV 247 308 6 67 0.88
MobileNetV3-Small 1519730 GRD VH 175 313 1 139 0.78
MobileNetV3-Small 1519730 GRD ML VH 190 310 4 124 0.80
MobileNetV3-Small 1519730 C2 C12 200 309 5 114 0.81
MobileNetV3-Small 1519730 C2 C2 177 310 4 137 0.78
ShuffleNetV2 X1.0 1255438 C2 C12 224 308 6 90 0.85
ShuffleNetV2 X1.0 1255438 GRD VH,VV 233 308 6 81 0.86
ShuffleNetV2 X1.0 1255438 C2 C2 217 309 5 97 0.84
ShuffleNetV2 X1.0 1255438 GRD ML VH 173 312 2 141 0.77
ShuffleNetV2 X0.5 343626 GRD VH 166 313 1 148 0.76
ShuffleNetV2 X0.5 343626 C2 C12 214 311 3 100 0.84
ShuffleNetV2 X0.5 343626 GRD ML VH 138 312 2 176 0.72
ShuffleNetV2 X0.5 343626 C2 C2 213 310 4 101 0.83

TP: True positive, TN: True negative, FP: False positive, FN: False negative,
ACC: Accuracy, GRD: GRD TNR, C2: C11, C22 and C12 from the covariance
matrix
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D Baseline test results traditional algorithms

Name Size Input Channel TP TN FP FN ACC

CFAR 7 C2 large C11 253 294 20 61 0.87
CoDePol 11 GRD large VH,VV 236 251 63 78 0.78
CrossDePol 11 GRD VH,VV 238 286 28 76 0.83
MMSE PWF 7 C2 C2 279 284 30 35 0.90
NIS 5 GRD ML VH,VV 117 212 102 197 0.52
PMF 11 GRD ML VH,VV 199 277 37 115 0.76
PNF 3 C2 C2 255 294 20 59 0.87
PWF 11 C2 large C2 175 232 82 139 0.65

For each algorithm only the the top-performing configuration regarding FM3
score can be shown here. TP: True positive, TN: True negative, FP: False
positive, FN: False negative, ACC: Accuracy, GRD: GRD TNR, C2: C11, C22
and C12 from the covariance matrix, Size: Size of the target window
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