
Semantic Segmentation of Urban Meshes Utilizing MeshCNN

Xiao Tan

Duration: 7 months
Completion: July 2021
Supervisor: M.Sc Laupheimer Dominik, Prof. Dr.-Ing. Norbert Haala 
Examiner: Prof. Dr.-Ing. Norbert Haala

1 Introduction

3D model semantic segmentation have been increasingly important in the com-
puter vision field thanks to the development of 3D acquisition sensors such as 
LIDARs and RGB-D cameras. The high demand for automatic analysis of 3D 
data is, therefore, increase rapidly. There have a lot of mature methods been 
proposed for 3D point cloud. Meanwhile, the 3D mesh semantic segmentation 
has been a tough task due to the special characters of 3D mesh. Fortunately, 
a novel method named MeshCNN has proposed a promising solution utilizing 
mesh data directly. The topology of mesh is taken into account as the most ex-
citing point. Within the scope of this master thesis, we proposed a framework 
utilizing MeshCNN that could handle the real-world urban 3D mesh dataset.

The input mesh data is generated from nadir images and been simplified. 
The theory of mesh convolution is presented. The mesh pooling is discussed and 
improved. The whole structure of the network is established with the encoder 
decoder architecture. The performance of the network is tested and evaluated.

2 Methodology

2.1 Mesh Convolution

To use the topologic information of the meshes, MeshCNN takes the edges as the 
convolution unit. Hence MeshCNN defines a convolution operator on the edges, 
where the topologic information is defined using the four incident neighbors. 
The incident neighbor is defined as 1-ring neighbor. The 1-ring neighbor of an 
edge is defined novelly by MeshCNN as the topology neighbor of an edge that 
together consists a face. Since convolution is defined as dot production between 
kernel k and the neighborhood, the edge convolution is defined the same way

1



for each feature type:

fout = f · k0 +
4∑

j=1

kj · f j (1)

where f j is the feature of the jth convolutional neighbor of target edge.
MeshCNN built an unwrapped matrix to rearrange every mesh to a matrix

consisted by an edge-neighborhood row vector. In short words the matrixed

mesh looks like:

e0 e1 e2 e3 e4

e1 e2 e0 e5 e6

· · ·

. The corresponding relations of edges

are shown in Figure 1.

Figure 1: The relations of the edges presented in matrix.

Further symmetric calculation is implemented to the features, making the
convolution invariant to the sorting orders.

2.2 Mesh Pooling-Unpooling

MeshCNN defines mesh pooling as a series of edge collapse operations. The
entry edge for the pooling operation is called the target edge. The collapses are
executed around it. For each target edge (e.g. edge ’a’ in see Figure 2), the
collapse operation detects if the ’adjacency shared’ edge (e.g. edge ’e’) exists.
If yes, the collapse operation will delete all the edges in the large triangle (e.g.
’b’, ’c’, ’e’)

The mesh unpooling, which shares the same purpose as image unpooling, is
the inverse of the pooling operation. The topologic information has to be stored
before pooling operations and used to recover the original shape of meshes. The
matrix that used for storing the pooling result is shown in Figure 3

In our thesis, we improve the performance of the unpooling method by re-
implement with sparse matrix and related functions. The improvement is shown
in Figure 4

2



Figure 2: This kind of face structure is where the collapse occurs. The inside
edges ’b’, ’c’, ’e’ are deleted to meet the pooling requirements.

Figure 3: In the first row, the left matrix shows the before-pooling adjacency
matrix. Every edge has no new adjacent edges. The right matrix shows the
result after pooling that e1 and e2 are collapsed to e0. The result matrix stores
the pooling result by the corresponding values. In the second row, the left sparse
matrix stores the same information as the before-pooling adjacency matrix. The
right sparse matrix stores the same after-pooling information. The larger the
original adjacency matrix is, the more memory we saved by utilizing the sparse
matrix.

3



Figure 4: This chart shows the comparison while dealing with 10k edges. The
GPU memory usage decrease from 7.3GB to 3.1GB while the totally performing
time for one traing ephoch doesn’t take much influence.

3 Result and Conclusion

The test result could be shown as Figure 5. We could see from Figure 5 that
the valid labels take only a certain percentage (39.4% on average for our data)
of the ground true labels. This is also the most important reason for slicing
the original dataset mentioned in Section ??. Under this situation, the test
accuracy for validation dataset still reaches 72.35% and 69.283% for the 2 layers
network and the 4 layers network accordingly.

Label Color(RGB)
Invalid(-1) Red(255,0,0)

Powerline(0) Black(0, 0, 0)
Low Vegetation(1) Cyan(0,255,255)

Impervious Surface(2) Orange(255,97,0)
Car(3) Yellow(255,255,0)

Fance(4) Carrot(237,145,33)
Roof(5) Pale white(250,235,215)

Facade(6) Gray(192,192,192)
Shrub(7) Aquamarine(127,255,0)
Tree(8) Green(0,255,0)

Table 1: The original label-color chart.

For quantitative evaluation, the confusion matrixes are calculated for both
training results of the test data set as Figure 6. As mentioned in Section ??,

4



Figure 5: These images shows the results from our net works. The first row
shows the result from two kinds of networks. The up-right image is trained
from 4 layers network. The up-left image is trained from 2 layers network. The
second row shows the ground truth images with or with not emphasis. The
down-right image are the ground truth image. The down-left image is used for
emphasizing the valid part of the ground true labels that take account in loss
functions. We could clearly tell that in the emphasized part the prediction and
the ground true labels are in high consistency. Although the percentage of GT
labels are not large, the test accuracies still reach 72.35% and 69.283% for these
two networks.

5



Figure 6: The left confusion matrix is calculated from 2 layers network while the
right confusion matrix is calculated from 4 layers network. Since the validation
dataset are also choosen randomly, not all of the classes are contained.

invalid labels are not considered during calculation. The training results from
the two networks are basically similar. The accuracy is 72.35% and 69.283%
respectively. The low vegetation class (1) has the largest error number by mis-
classified with the surfaces and other vegetations. The fence class (4) has the
largest error rate that can hardly tell from the other class. This may be caused
by the simplification since these small objects suffer more geometric information
loss.

6


