
  

 

I. INTRODUCTION 

This report summaries our approach and results using the 
provided datasets of the HILTI SLAM Challenge 2022. Our 
approach takes images of front stereo, left and right cameras, 
and IMU measurements as inputs to estimate the states of the 
sensor platform. We extended the open-sourced DROID-
SLAM framework [1] and carried out three key improvements 
as follows: 

- Explicit usage of fisheye camera model instead of 
pinhole model assumption to avoid the information 
loss due to fisheye-to-pinhole undistortion or stereo 
rectification. 

- Integration of IMU measurements with a successful 
IMU initialization and after that the joint bundle 
adjustment (BA) of IMU pre-integration factors and 
visual reprojection factors. 

- Support for multi-camera inputs with an adaptive 
implementation taking into account the respective 
extrinsic and intrinsic parameters of each camera. 

II. SYSTEM OVERVIEW 

     Our approach is based on DROID-SLAM [1], a versatile 
dense visual SLAM framework using the robust optical-flow 
estimates predicted by a pre-trained neural network as pixel 
correspondence references to optimize the reprojection errors. 
To better incorporate the fisheye images while not losing the 
wide-view information, we add the fisheye camera model to 
consider the distortion when projective transform the pixels 
between image planes. 
 

The provided datasets is collected in very challenging 
environments. When applying the basic framework directly in 
monocular or stereo mode, it can quickly fail to track the 
camera, since the front cameras are often just towards to a 
corner or a texture-less wall. Leveraging the other camera 
views and integrating the IMU measurements becomes 
necessary to tackle this issue. More specifically, the images of 
left and right cameras are used and fed into the pipeline. The 
up view camera is left out as this view brings little useful 
information. For each keyframe, not only the depth map of 
front camera but also the depth maps of left and right cameras 
are estimated. With that, the reprojection errors are computed 
for all three views. When there is no enough features in one 
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view, the features of other views can guide the optimization to 
converge.  

 
For IMU initialization, we add the scale as an additional 

optimization variable, since the evaluations on the sequences 
04-06 based on the given groundtruth show a scale correction 
would be beneficial. Theoretically this is not required with a 
known stereo baseline. Thus more investigation needs to be 
conducted in the future to verify whether the camera 
calibration or our stereo matching method needs to be further 
improved. 
 
     Furthermore, we answer the following questions as posted 
on the challenge website. 
 

- Q: Filter or optimization-based? 
- A: Our approach is optimization-based with a sliding 

optimization window of 25 keyframes at maximum. 
The local BA graph consists of visual reprojection 
factors and IMU preintegration factors. The linearized 
BA system is solved using the Pytorch library. 

 
- Q: Is the method causal? 
- A: Yes. Upon each new keyframe, the local window 

optimization is carried out, which takes only the 
present and past information. 
 

- Q: Is bundle adjustment (BA) used? What type of BA? 
- A: Yes. Our approach uses BA to minimize the 

reprojectoin errors and IMU pre-integration factor 
errors jointly. We construct a local BA system from 
the current sliding window and update the camera 
poses and depth maps of the keyframes inside the 
window. 
 

- Q: Is loop closing used? 
- A: No. The system only optimized a sliding window 

of maximally 25 keyframes at temporal order. 
Nevertheless, we expect an improvement using loop 
closure and global bundle adjustment. However due 
to time limit, this is left out for our future works. 

III. RESULTS 

Our experiments are carried out on an Intel i9 platform with 
a TITAN RTX GPU. The processing times for final submission 
are measured and listed in Table 1. To achieve a better score, 
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we select more time-consuming but more robust parameter set. 
The same parameter set is used for all sequences except the 
sequence “Exp21 outside building”, for which a stricter 
keyframe selection threshold is chosen, which we found 
empirically more suitable for outdoor scenes. Furthermore, due 
to the time pressure and for faster prototyping, we choose to 
develop the methods in Python at the moment. We expect a 
time boost when proper operations are converted into CUDA 
kernel.  

TABLE I.  PROCESSING TIMES OF ALL SEQUENCES 

Sequence Time[s] 

Exp01 construction ground level 1151 
Exp02 construction multilevel 3738 

Exp03 stairs 2613 
Exp07 long corridor 707 

Exp09 cupola 2597 
Exp11 lower gallery 763 

Exp15 attic to upper gallery 1567 
Exp21 outside building 626 

Exp_04 construction upper level 1 746 
Exp_05 construction upper level 2 669 
Exp_06 construction upper level 3 1410 

 
Figure 1-11 present the estimated trajectories and maps 

produced by our system. The map composes of the estimated 
depth maps of the keyframes. Note that our system has no loop 
closing and global optimization. Thus the drift error is 
accumulated inevitably. For example, it can be observed on 
the stairs of sequence “Exp03 Stairs”. 
 
 

 

 
Figure 1.  Seqence ‘Exp01 Construction Ground Level’ with the difficulty 

‘Easy’. Top and side view with start and end marked with red rectangle. 

 

 

  
Figure 2.  Seqence ‘Exp02 Construction Multilevel’ with the difficulty 

‘Medium’. Top and side view with start and end marked with red rectangle. 

 
 

     

               

 
Figure 3.  Seqence ‘Exp03 Stairs’ with the difficulty ‘Hard’. Top 

(unzoomed and zoomed to stairs) and side view with start and end marked 
with red rectangle. 

 

 
Figure 4.  Seqence ‘Exp07 Long Corridor’ with the difficulty ‘Medium’. 

Top view with start and end marked with red rectangle. 



  

 
Figure 5.  Seqence ‘Exp09 Cupola’ with the difficulty ‘Hard’. Side and 

oblique view with start and end marked with red rectangle. 

 
 

 
Figure 6.  Seqence ‘Exp11 Lower Gallery’ with the difficulty ‘Medium’. 

Top and side view with start and end marked with red rectangle. 

 

 

 

 

 

 

 



  

 
 

 
Figure 7.  Seqence ‘Exp15 Attic to Upper Gallery’ with the difficulty 

‘Hard’. Top and side view with start and end marked with red rectangle. 

 

 

 
Figure 8.  Seqence ‘Exp21 Outside Building’ with the difficulty ‘Easy’. 

Top and oplique view with start and end marked with red rectangle. 

 

 



  

 
Figure 9.  Seqence ‘Exp_04 Construction Upper Level 1’ with the difficulty 

‘Easy’. Top view with start and end marked with red rectangle. 

 
Figure 10.  Seqence ‘Exp_05 Construction Upper Level 2’ with the difficulty 

‘Easy’. Top view with start and end marked with red rectangle. 

 

 
Figure 11.  Seqence ‘Exp_06 Construction Upper Level 3’ with the difficulty 

‘Medium’. Top view with start and end marked with red rectangle. 

 

IV. CONCLUSION 

In this work, we extend the open-sourced DROID-SLAM 
framework. The original DROID-SLAM supports monocular, 
stereo and RGB-D video. To utilize multiple input sources in 
this challenge, we extend with IMU pre-integration into the 
BA calculation and adaptive support for multi-cameras as 
additional constraints into sliding-window. With more 
information, we have observed improvements of more 
complete and accurate trajectory estimation. Meanwhile, to 
avoid loss of information due to the fisheye distortion, we take 
the original fisheye images as input and make the transform 
operation adaptive the respective camera parameters. Further 
improvement on the APE shows that the usage of complete 
wide-view information benefits the final result. 
 In the future, loop closure and global bundle adjustment can 
help minimize drift errors. The IMU data may also be 
processed with deep learning methods, which is more robust 
to bias and noise. 
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