

I. INTRODUCTION

This report summaries our approach and results using the
provided datasets of the HILTI SLAM Challenge 2022. Our
approach takes images of front stereo, left and right cameras,
and IMU measurements as inputs to estimate the states of the
sensor platform. We extended the open-sourced DROID-
SLAM framework [1] and carried out three key improvements
as follows:

- Explicit usage of fisheye camera model instead of
pinhole model assumption to avoid the information
loss due to fisheye-to-pinhole undistortion or stereo
rectification.

- Integration of IMU measurements with a successful
IMU initialization and after that the joint bundle
adjustment (BA) of IMU pre-integration factors and
visual reprojection factors.

- Support for multi-camera inputs with an adaptive
implementation taking into account the respective
extrinsic and intrinsic parameters of each camera.

II. SYSTEM OVERVIEW

 Our approach is based on DROID-SLAM [1], a versatile
dense visual SLAM framework using the robust optical-flow
estimates predicted by a pre-trained neural network as pixel
correspondence references to optimize the reprojection errors.
To better incorporate the fisheye images while not losing the
wide-view information, we add the fisheye camera model to
consider the distortion when projective transform the pixels
between image planes.

The provided datasets is collected in very challenging
environments. When applying the basic framework directly in
monocular or stereo mode, it can quickly fail to track the
camera, since the front cameras are often just towards to a
corner or a texture-less wall. Leveraging the other camera
views and integrating the IMU measurements becomes
necessary to tackle this issue. More specifically, the images of
left and right cameras are used and fed into the pipeline. The
up view camera is left out as this view brings little useful
information. For each keyframe, not only the depth map of
front camera but also the depth maps of left and right cameras
are estimated. With that, the reprojection errors are computed
for all three views. When there is no enough features in one

1Wei Zhang is with the Institute for Photogrammetry, University of

Stuttgart, Germany (e-mail: wei.zhang@ifp.uni-stuttgart.de).
2Sen Wang is with CAMP, Technical University of Munich, Germany (e-

mail: sen.wang@tum.de)
*Corresponding author

view, the features of other views can guide the optimization to
converge.

For IMU initialization, we add the scale as an additional

optimization variable, since the evaluations on the sequences
04-06 based on the given groundtruth show a scale correction
would be beneficial. Theoretically this is not required with a
known stereo baseline. Thus more investigation needs to be
conducted in the future to verify whether the camera
calibration or our stereo matching method needs to be further
improved.

 Furthermore, we answer the following questions as posted
on the challenge website.

- Q: Filter or optimization-based?
- A: Our approach is optimization-based with a sliding

optimization window of 25 keyframes at maximum.
The local BA graph consists of visual reprojection
factors and IMU preintegration factors. The linearized
BA system is solved using the Pytorch library.

- Q: Is the method causal?
- A: Yes. Upon each new keyframe, the local window

optimization is carried out, which takes only the
present and past information.

- Q: Is bundle adjustment (BA) used? What type of BA?
- A: Yes. Our approach uses BA to minimize the

reprojectoin errors and IMU pre-integration factor
errors jointly. We construct a local BA system from
the current sliding window and update the camera
poses and depth maps of the keyframes inside the
window.

- Q: Is loop closing used?
- A: No. The system only optimized a sliding window

of maximally 25 keyframes at temporal order.
Nevertheless, we expect an improvement using loop
closure and global bundle adjustment. However due
to time limit, this is left out for our future works.

III. RESULTS

Our experiments are carried out on an Intel i9 platform with
a TITAN RTX GPU. The processing times for final submission
are measured and listed in Table 1. To achieve a better score,

Dense Multi-Fisheye-Camera VIO for HILTI SLAM Challenge 2022

Wei Zhang1* and Sen Wang2

we select more time-consuming but more robust parameter set.
The same parameter set is used for all sequences except the
sequence “Exp21 outside building”, for which a stricter
keyframe selection threshold is chosen, which we found
empirically more suitable for outdoor scenes. Furthermore, due
to the time pressure and for faster prototyping, we choose to
develop the methods in Python at the moment. We expect a
time boost when proper operations are converted into CUDA
kernel.

TABLE I. PROCESSING TIMES OF ALL SEQUENCES

Sequence Time[s]

Exp01 construction ground level 1151
Exp02 construction multilevel 3738

Exp03 stairs 2613
Exp07 long corridor 707

Exp09 cupola 2597
Exp11 lower gallery 763

Exp15 attic to upper gallery 1567
Exp21 outside building 626

Exp_04 construction upper level 1 746
Exp_05 construction upper level 2 669
Exp_06 construction upper level 3 1410

Figure 1-11 present the estimated trajectories and maps

produced by our system. The map composes of the estimated
depth maps of the keyframes. Note that our system has no loop
closing and global optimization. Thus the drift error is
accumulated inevitably. For example, it can be observed on
the stairs of sequence “Exp03 Stairs”.

Figure 1. Seqence ‘Exp01 Construction Ground Level’ with the difficulty

‘Easy’. Top and side view with start and end marked with red rectangle.

Figure 2. Seqence ‘Exp02 Construction Multilevel’ with the difficulty

‘Medium’. Top and side view with start and end marked with red rectangle.

Figure 3. Seqence ‘Exp03 Stairs’ with the difficulty ‘Hard’. Top

(unzoomed and zoomed to stairs) and side view with start and end marked
with red rectangle.

Figure 4. Seqence ‘Exp07 Long Corridor’ with the difficulty ‘Medium’.

Top view with start and end marked with red rectangle.

Figure 5. Seqence ‘Exp09 Cupola’ with the difficulty ‘Hard’. Side and

oblique view with start and end marked with red rectangle.

Figure 6. Seqence ‘Exp11 Lower Gallery’ with the difficulty ‘Medium’.

Top and side view with start and end marked with red rectangle.

Figure 7. Seqence ‘Exp15 Attic to Upper Gallery’ with the difficulty

‘Hard’. Top and side view with start and end marked with red rectangle.

Figure 8. Seqence ‘Exp21 Outside Building’ with the difficulty ‘Easy’.

Top and oplique view with start and end marked with red rectangle.

Figure 9. Seqence ‘Exp_04 Construction Upper Level 1’ with the difficulty

‘Easy’. Top view with start and end marked with red rectangle.

Figure 10. Seqence ‘Exp_05 Construction Upper Level 2’ with the difficulty

‘Easy’. Top view with start and end marked with red rectangle.

Figure 11. Seqence ‘Exp_06 Construction Upper Level 3’ with the difficulty

‘Medium’. Top view with start and end marked with red rectangle.

IV. CONCLUSION

In this work, we extend the open-sourced DROID-SLAM
framework. The original DROID-SLAM supports monocular,
stereo and RGB-D video. To utilize multiple input sources in
this challenge, we extend with IMU pre-integration into the
BA calculation and adaptive support for multi-cameras as
additional constraints into sliding-window. With more
information, we have observed improvements of more
complete and accurate trajectory estimation. Meanwhile, to
avoid loss of information due to the fisheye distortion, we take
the original fisheye images as input and make the transform
operation adaptive the respective camera parameters. Further
improvement on the APE shows that the usage of complete
wide-view information benefits the final result.
 In the future, loop closure and global bundle adjustment can
help minimize drift errors. The IMU data may also be
processed with deep learning methods, which is more robust
to bias and noise.

ACKNOWLEDGMENT

We thank the organizers of the Hilti SLAM challenge for
providing the great and challenging dataset. The challenge has
motivated us to work on new features to tackle practical
problems. We also thank Hongjie You for offering us the
compute platform to run the experiments.

REFERENCES
[1] Teed, Zachary, and Jia Deng. "Droid-slam: Deep visual slam for

monocular, stereo, and rgb-d cameras." Advances in Neural
Information Processing Systems 34 (2021).

