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Preface 
These notes on tensor algebra, linear algebra as well as multilinear algebra have 
been prepared as an easy reference for my students attending my lectures or 
university courses in 

Physical Geodesy and Geometric Geodesy 
Satellite Geodesy 

Differential Geometry and Map Projections. 

This is not a whole lot, and in this condensed form would occupy perhaps only a 
small booklet. My intention is allocating various topics from the algebra of ten-
sors, both linear and multilinear, as following: 

At first we want to transfer the idea that tensors as they appear in 
all sciences are not just matrices. They are subject to a certain al-
gebra. For instance, the 2-tensor as an element of the space of bi-
linear functions is represented in a bilinear basis. In this bilinear 
basis the 2-tensor has coordinates which are collected in a two-
dimensional array. Such a two-dimensional array is convention-
ally called “matrix” (with special reference to Asterix and Obelix), 
a notion introduced by A. Cayley. In contrast, the 3-tensor as an 
element of the space of trilinear functions is represented in a trilin-
ear basis. Again in this trilinear basis the 3-tensor has coordinates. 
Those coordinates of a 3-tensor are collected in a three-
dimensional array subject to array algebra. But the classical ma-
trix algebra fails to identify three-dimensional arrays of real num-
bers, complex numbers, quaternions (Hamiltonians) or octonians. 

As a reference accompanying various lecture series the text is rather advanced. 
Our aim, however, was not a most lively presentation of ideas involved, but 
rather a review with special emphasis on other textbooks. For any page of our 
booklet about ten textbooks are available on the special subject of that page. 
Instead we have focused on presenting various “useful” algebras. All related 
examples were given in those courses we quoted earlier.  

At first we believed to attach various parts of this booklet to other special courses 
we already referred to. But over the years those courses at various universities, 
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both on the undergraduate and graduate level, we learnt these lecture notes take 
away too much space and time. With these experiences we decided to present to 
you this “special” booklet.  

Perhaps you, the potential reader, become more interested if we open the door to 
the room of subjects treated under tensor algebra, linear algebra as well as multi-
linear algebra. Indeed with a historical reference to 

    ˆ ˆ ˆ-Musa al Khowarizimi  

 we outline “al jabr”, namely what Nicholas Bourbabi and his disciples called 
algebra. 

From the eleventh century on, European scholars began to 
visit Islamic mathematicians to learn about the new numerals. 
Abu Jafar Muhammad ibn ˆˆMusa  al - ˆKhowarzimi - Muha-
mmad, father of Jafar, son of ˆˆMusa,  the Khowârzimian (680-
750) – Khowârzimian is the old Persia - had written a treatise 
on Arabic numerals which survives in the form of a Latin 
translation dating from the twelfth century. A copy of this 
was found in 1857 in the library of Cambridge University. 
This book was the major vehicle by which the gobar Arabic 
place system entered European civilization. The Latin form 
of ˆKhowarzimi  gave us the word “algorithm”. Another book 
by him, ilm al-jabr wa'l-muqabalah (The science of reduction 
and equation) gave us algebra. 

To your surprise, perhaps, we begin with multilinear algebra. §1 introduces the 
p- contravariant, q-covariant tensor space or space of multilinear functions. Spe-
cial emphasis is on  

 ...⊗ ⊗  

which as “opera” identifies the tensor product. We immediately jump into the 
fundamental decomposition of the space of the multilinear functions into the 
subspaces of type 

● symmetric multilinear functions,  
● antisymmetric multilinear functions,  
● residual multilinear functions. 

 Various examples are given in Boxes. “Hand-in-hand” with this decomposition 
goes the introduction of 

the interior product    and      the exterior product 

                            ...∨ ∨                                     ...∧ ∧  
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 also called “wedge product” or “skew product”. We shortly refer to “array alge-
bra” and “matrix algebra” being related to the coordinates of multilinear func-
tions, the 2- contravariant, 0-covariant tensor, for instance. Special focus is on 
the Hodge dualizer or 

* 

the Hodge star operator within the algebra q
pA  of antisymmetric multilinear 

functions. We conquer the wonderful world of the basis and the associated co-
basis of antisymmetric multilinear functions. §2 brings us back to linear algebra. 
We enjoy opera “join” and opera “meet”, “Ass”, “Uni”, “Comm”, the ring with 
identity, anticommutativity, namely 

● division algebra  
● non-associative algebra  
● Lie algebra, Killing analysis  
● Witt operator algebra  
● Boole algebra  
● composition algebra 

Various composition algebras equipped with an additional structure, the topo-
logical structure of type scalar product, norm or metric are considered: 

• matrix algebra as division algebra  
   (Cayley inverse)  
• complex algebra as a division algebra as well as a composition    
   algebra   
   (Clifford algebra Cl (0;1) )  
• quaternion algebra as a division algebra as well as a composition  
   algebra  

                 (Clifford algebra Cl (0;2))  
•  the letter of W. R. Hamilton to his son  

                  (16th October 1843)  
• octonion algebra as a non-associative algebra as well as a  
   composition algebra  

                 (Clifford algebra with respect to ×H H ) 

§3 is an intermezzo to classify antisymmetric and symmetric tensor-valued func-
tions. Of special importance is the decomposition of an antisymmetric multilin-
ear functions into p -vectors, also called “blades” which takes up a lot of space. 
The treatment of orthogonal Clifford algebra Cl (p, q) in §4 is the highlight of 
our booklet. Here we refer to the Clifford product  

...∗ ∗∧ ∧  
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which is between the interior product (“dot product”, scalar product) and the 
exterior product (“cross product”, “wedge product”) generating Clifford num-
bers. In particular, we highlight the cyclic structure (“chess board”) as well as  
graded algebras (cyclic group). The related examples document the power of this 
great algebra in the applied sciences.  

From some point of view the various algebras presented here are rather old fash-
ioned. Indeed we did not include von Neumann algebras which play a key role in 
quantum statistics or non commutative algebras, also called super algebras, 
which are key elements of quantum mechanics, quantum gravity and quantum 
electrodynamics. Instead we give some references on von Neumann algebras like 
[References] and on non commutative algebras or super algebras like Constan-
tinescu, F. and de Groote, H. F. (1994), [References]  

In contrast, we want to promote Clifford algebra which is more or less unknown 
in the applied sciences different from mathematics. For a more detailed introduc-
tion into Clifford algebra and its fascinating chess board as well as Clifford 
analysis let us refer to [References]. Please, accept our advertisement for the 
yearly international conference on 

  Clifford Algebras and their applications in Mathematical Physics  
(http://clifford.physik.uni-konstanz.de/ fanser/CL) 

 to be held at various countries. The topics are 

 • Clifford algebra and analysis 
Dirac operators, wavelets, nonlinear transformations, harmonic analysis, Fourier 
analysis, singular integral operators, discrete potential theory, initial value prob-
lems, boundary value problems; 

• Geometry 
Differential geometry, geometric index theory, non commutative geometry,  
spectral triplets, reconstruction theorem, geometric integral transforms, spin     
structures and Dirac operator, K-theory, projective geometry and twistor, 
Seiberg-Witten theory, quaternionic geometry; 

 • Mathematical structures 
Hopf algebras and quantum groups, category theory, structured methods, quad-
ratic forms, Hermitean forms, Witt-groups, Clifford algebras over arbitrary 
fields, Lie algebras, spinor representations, exceptional Lie algebras, Super Lie 
algebras, Clifford algebras and their generalizations, infinite dimensional Clif-
ford algebras and Clifford bundles; 

 • Physics 
Perturbative renormalization and Hopf algebra antipodes, spectral triplets, ele-
mentary particle physics, q-deformations, noncommutative space-time, quantum 
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field theory using Hopf algebras, spin foams, quantum gravity, quaternionic 
quantum mechanics and quantum fields, Dirac equations in electronic physics, 
electrodynamics, non-associative structures, octonians, division algebras and 
their applications in physics; 

 • Applications in computer science, robotics, engineering 
quantum computers, error corrections, algorithms, robotics, space control, navi-
gation, cybernetics, image processing and engineering, neural networks. 



                                                                                                              vi 
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The key word “algebra” is derived from the name and the work of the 
ninth-century scientist Mohammed ibn ˆ ˆMusa  al Khowârzimian who 
was born in what is now Uzbekistan and worked in Bagdad at the court 
of Harun al-Rashid's son. “al-jabr” appears in the title of his book Kitab 
al-jabr wail muqabala where he discusses symbolic methods for the so-
lution of equations (F. Rosen: The algebra of Mohammed Ben Musa, 
London: Oriental Translation Fund 1831, K. Vogel: Mohammed Ibn 
Musa Alchwarizmi's Algorismus; Das fruehste Lehrbuch zum Rechnen 
mit indischen Ziffern, 1461, Otto Zeller Verlagsbuchhandlung, Aalen 
1963). Accordingly what is an algebra and how is it tied to the notion of 
a vector space, a tensor space, respectively ? By an algebra we mean a 
set S of elements and a finite set M of operations. Each operation (op-
era)k  is a single-valued function assigning to every finite ordered se-
quence 1( ,..., )nx x  of ( )n n k= elements of S  a value (opera)k 

1 1( ,..., )kx x x= in S . In particular for (opera)k 1 2( , )x x  the operation is 
called binary, for (opera)k 1 2 3( , , )x x x ternary, in general for (opera)k 

1( ,..., )nx x  n-array. For a given set of operation symbols (opera)1, (op-
era)2 , … , (opera)k  we define a word. In linear algebra the set M has 
basically two elements, namely two internal relations (opera)1 worded 
“addition” (including inverse addition: subtraction) and (opera)2 worded 
“multiplication” (including inverse multiplication: division). Here the 
elements of the set S  are vectors over the field of real numbers as 
long as we refer to linear algebra. In contrast, in multilinear algebra the 
elements of the set S  are tensors over the field of real numbers . 
Only later modules as generalizations of vectors of linear algebra are in-
troduced in which the “scalars” are allowed to be from an arbitrary ring 
rather than the field of real numbers. 



 

 
 
Chapter 1    
Tensor Algebra 
Let us assume that you as a potential reader are in some way familiar with the 
elementary notion of a three-dimensional vector space X  with elements called 
vectors 3∈x R , namely the intuitive space “we locally live in”. Such an elemen-
tary vector space X  is equipped with a metric to be referred to as three-
dimensional Euclidean. As a three-dimensional vector space we are going to give 
it a linear and multilinear algebraic structure. In the context of structure mathe-
matics based upon 

     (i)   order structure 
     (ii)  topological structure 
     (iii) algebraic structure  

an algebra is constituted if at least two relations are established, namely one 
internal and one external. We start with multilinear algebra, in particular with 
the multilinearity of the tensor product before we go back to linear algebra, in 
particular to Clifford algebra. 

1-1 Multilinear functions and the tensor space p
qT  

Let X  be a finite dimensional linear space, e. g. a vector space over the field R  
of real numbers, in addition denote by *X  its dual space such that 

*dim dimn = =X X . Complex, quaternion and octonian numbers ,C H  and O as 
well as rings will only be introduced later in the context. For ,p q +∈Z being an 
element of positive integer numbers we introduce  

*( , )p
qT X X  

as the p-contravariant, q-covariant-tensor space or space of multilinear functions 
** * dim dim: ... ... p qf ×× × × × →X X X R X X  

If we assume 1 *,..., p ∈x x X  and 1,..., p ∈x x X , then 

 1 *
1... ... ( , )p p

q q⊗ ⊗ ⊗ ⊗ ⊗ ∈x x x x T X X  

holds. Multilinearity is understood as linearity in each variable. “ ⊗ ” identifies 
the tensor product, the Cartesian product of elements 1

1( ,..., , ,..., )p
qx x x x  
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Example 1-1: Bilinearity of the tensor product 1 2⊗x x  

For every 1 2 , , and r∈ ∈ ∈x , x x yX X R  bilinearity implies 

 2 2 2( )+ ⊗ = ⊗ + ⊗x y x x x y x  (internal left- linearity) 

 1 1 1( )⊗ + = ⊗ + ⊗x x y x x x y  (internal right- linearity) 

 2 2( )r r⊗ = ⊗x x x x  (external left- linearity) 

 1 1( )r r⊗ = ⊗x y x y  (external right- linearity)          ♣ 

The generalization of bilinearity of 0
1 2 2⊗ ∈x x T  to multilinearity of 

  1
1... ...p p

p q⊗ ⊗ ⊗ ⊗ ⊗ ∈x x x x T  
is obvious. 

Definition 1-1 (multilinearity of tensor space p
qT ): 

For every 1 *
1,..., ,...,p

qand∈ ∈x x x xX X as well as *,∈u v X,  
, ∈x y X and r ∈R  multilinearity implies 

 
2

1
2 2

1 1

( ) ... ...
... ... ... ...

p
q

p p
q q

+ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ =
= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

u v x x x x
u x x x x v x x x x

 

(internal left – linearity) 

 
1

2
1 1

2 2

... ( ) ...
... ... ... ...

p
q

p p
q q

⊗ ⊗ ⊗ + ⊗ ⊗ =
= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

x x x y x x
x x x x x x x y x x

 

(internal right – linearity) 
2 2

1 1... ... ( ... ... )p p
q qr r⊗ ⊗ ⊗ ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗ ⊗ ⊗ ⊗u x x x x u x x x x  

(external left – linearity) 
 1 1

2 2... ... ( ... ... )p p
q qr r⊗ ⊗ ⊗ ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗ ⊗ ⊗ ⊗x x x x x x x x x x  

(external right – linearity). 

A possible way to visualize the different multilinear functions which span 
0 1 0 2 1 0
0 0 1 0 1 2{ , , , , , ,..., }p

qT T T T T T T is to construct a hierarchical diagram or a special 
tree as follows. 

 

 0
0{0} S∈T  

 1 1 0
0 1 1     ∈ ∈x xT T  

 1

1 2 2 1 1 0
0 1 1 2 2          ⊗ ∈ ⊗ ∈ ⊗ ∈x x x x x xT T T  

 1 2 3 3 1 2 2 1 1 0
0 1 1 1 2 2 1 2 3 3; ; ; ⊗ ⊗ ∈ ⊗ ⊗ ∈ ⊗ ⊗ ∈ ⊗ ⊗ ∈x x x x x x x x x x x xT T T T  

etc. 
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When we learnt first about the tensor symbolized by “ ⊗ ” as well as its multilin-
earity we were left with the problem of developing an intuitive understanding of 

1 2⊗x x , 1
1⊗x x  and higher order tensor products. Perhaps it is helpful to repre-

sent “the involved vectors” in a contravariant or in a covariant basis. For in-
stances, 1 1 2 3 1 2 3

1 2 3 1 1 2 3orx x x x x x= + + = + +x e e e x e e e  is a left representation 
of a three-dimensional vector in a 3-left basis 1 2 3{ , , }le e e  of contravariant type or 
in a 3-left basis 1 2 3{ , , }le e e  of covariant type. Think in terms of 1x  or 1x  as a 
three-dimensional position vector with right coordinates 1 2 3{ , , }x x x or 

1 2 3{ , , }x x x , respectively. Since the intuitive algebras of vectors is commutative 
we may also represent the three-dimensional vector in a in a 3-right basis 

1 2 3{ , , }re e e  of contravariant type or in a 3-right-basis 1 2 3{ , , }re e e  of covariant 
type such that 1 1 2 3

1 2 3x x x= + +x e e e  or 1 2 3
1 1 2 3x x x= + +x e e e  is a right repre-

sentation of a three-dimensional position vector which coincides with its left 
representation thanks to commutability. Further on, the tensor product ⊗x y  
enjoys the left and right representations 
 3 3

1 2 3 1 2 3
1 2 3 1 2 3

1 1
( ) ( ) i j

i i
i j

x x x y y y x y
= =

+ + ⊗ + + = ⊗∑∑e e e e e e e e  
and 3 3

1 2 3 1 2 3
1 2 3 1 2 3

1 1
( ) ( ) i j

i j
i j

x x x y y y x y
= =

+ + ⊗ + + = ⊗∑∑e e e e e e e e  
 
which coincides again since we assumed a commutative algebra of vectors. The 
product of coordinates ( ), , {1,2,3}i jx y i j ∈  is often called the dyadic product. 
Please do not miss the alternative covariant representation of the tensor product 

⊗x y  which we introduced so far in the contravariant basis, namely 
 3 3

1 2 3 1 2 3
1 2 3 1 2 3

1 1
( ) ( ) i j

i j
i j

x x x y y y x y
= =

+ + ⊗ + + = ⊗∑∑e e e e e e e e  

of left type and 
 
 

3 3
1 2 3 1 2 3

1 2 3 1 2 3
1 1

( ) ( ) i j
i j

i j

x x x y y y x y
= =

+ + ⊗ + + = ⊗∑∑e e e e e e e e  
 
of right type. In a similar way we produce 
 
 

3,3,3 3,3,3

, , 1 , , 1

i j k i j k
i j k i j k

i j k i j k

x y z x y z
= =

⊗ ⊗ = ⊗ ⊗ = ⊗ ⊗∑ ∑x y z e e e e e e  

of contravariant type and 

 
3,3,3 3,3,3

, , 1 , , 1

i j k i j k
i j k i j k

i j k i j k

x y z x y z
= =

⊗ ⊗ = ⊗ ⊗ = ⊗ ⊗∑ ∑x y z e e e e e e  

of covariant type. "Mixed covariant-contravariant" representations of the tensor 
product 1

1x y⊗  are 
 3 3 3 3

1
1

1 1 1 1

j i i j
i j j i

i j i j= = = =

⊗ = ⊗ = ⊗∑∑ ∑∑x y e e x y x y e e  
or 3 3 3 3

1
1

1 1 1 1
.i j j i

j i i j
i j i j= = = =

⊗ = ⊗ = ⊗∑∑ ∑∑x y e e x y x y e e  
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In addition, we have to explain the notion 1 *
1, :∈ ∈x xX X  While the vector 1x  

is an element of the vector space 1, xX  is an element of its dual space. What is a 
dual space? Indeed the dual space *X  is the space of linear functions over the 
elements of X . For instance, if the vector space X  is equipped with inner 
product, namely | , , {1,2,3}i j ijg i j< >= ∈e e , with respect to the base vectors  

1 2 3{ , , }e e e which span the vector space X , then 

 
3

1

j ij
i

i
g

=

= ∑e e  

transforms the covariant base vectors 1 2 3{ , , }e e e  into the contravariant base 
vectors 1 2 3 * 1 2 3{ , , }, span{ , , }=e e e e e eX , by means of 1[ ]ijg G−= , the inverse of 
the matrix 3 3[ ]ijg G ×= ∈R . Similarly the coordinates ijg  of the metric tensor g  
are used for “raising” or “lowering” the indices of the coordinates ,i

jx x , respec-
tively, for instance 

 
3 3

1 1

, .i ij j
j i ij

j j

x g x x g x
= =

= =∑ ∑  

In a finite dimensional vector space, the power of a linear space X and its dual 
*X  does not show up. In contrast, in an infinite dimensional vector space X  the 

dual space *X  is the space of linear functions which play an important role in 
functional analysis. While through the tensor product “ ⊗ ” which operated on 
vectors, e.g. ⊗x y , we constructed the p-contravariant, q-covariant tensor space 
or space of multilinear functions *( , )p

qT X X , e.g. 2 0 1
0 2 1, ,T T T , we shall generalize 

the representation of the elements of p
qT  by means of 

 
*

1

1

1

dim

... 0
,..., 1

... p

p

p

n
ii p

i i
i i

f f
=

=

= ⊗ ⊗ ∈∑ e e T
X

 

 
*

1

1

1

dim
... 0

,..., 1

... q

q

q

n
i i

i i q
i i

f f
=

=

= ⊗ ⊗ ∈∑ e e T
X

 

 
*

11

1 1

1 1

dim dim
,...,
,...,

,..., 1 ,..., 1

... ...p p

q q

p q

n n
i i ii p

j j j j q
i i i i

f f
= =

= =

= ⊗ ⊗ ⊗ ⊗ ⊗ ∈∑ ∑ e e e e T
X X

 

for instance 

 
3 3

2
0

, 1 , 1

i j i j
ij ij

i j i j

f f f
= =

= ⊗ = ⊗ ∈∑ ∑e e e e T  

 
3 3

0
2

, 1 , 1

ij ij
i j i j

i j i j

f f f
= =

= ⊗ = ⊗ ∈∑ ∑e e e e T  

 
3 3

1
1

, 1 , 1

i i i i
j j j j

i j i j

f f f
= =

= ⊗ = ⊗ ∈∑ ∑e e e e T  
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We have to emphasize that the tensor coordinates 1 1

1 1

,..., ,...,
,..., ,...,, ,q p

p p

i i i i
i i j jf f f  are no 

longer of dyadic or product type. For instance, for 

(2,0)-tensor: trilinear functions: 

 2
0

, 1 , 1

n n
i j i j

ij ij
i j i j

f f f
= =

= ⊗ = ⊗ ∈∑ ∑e e e e T  

 ij i jf f f≠  

(2,1)-tensor: trilinear functions: 

 2
1

, , 1 , , 1

n n
i j k k i j

k ij ij k
i j k i j k

f f f
= =

= ⊗ ⊗ = ⊗ ⊗ ∈∑ ∑e e e e e e T  

 k k
ij i jf f f f≠  

(3,1)-tensor: ternary functions: 

 3
1

, , , 1 , , , 1

n n
i j k l l i j k

l ijk ijk l
i j k l i j k l

f f f
= =

= ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗ ∈∑ ∑e e e e e e e e T  

 l l
ijk i j kf f f f f≠  

holds. Table 1-1 is a list of ( , )p q -tensors as they appear in various sciences. Of 
special importance is the decomposition of multilinear functions as elements of 
the space p

qT  into their symmetric, antisymmetric and residual constituents we 
are going to outline. 

Table 1-1: Various examples of tensor spaces p
qT  ( p q+ : rank  

                   of tensor) (2,0) tensor, tensor space 2
0T  

Metric tensor 
Gauss curvature tensor 
Ricci curvature tensor 

differential 
geometry 

gravity gradient tensor gravitation 
Faraday tensor, Maxwell tensor 

tensor of dielectric constant 
tensor of permeability 

 
electromagnetic 

strain tensor, stress tensor continuum mechanics 
 

energy momentum tensor 
mechanics 

electromagnetism 
electrostatics 

2nd order multipole 
tensor 

gravitostatics 
magnetostatics 
electrostatics 

variance-covariance 
matrix 

mathematical 
statistics 
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       Table 1-2: Various examples of tensor spaces p
qT   

        ( p q+ : rank of tensor) (2,1) tensor, tensor space 2
1T  

 

Cartan torsion tensor differential  
geometry 

3rd order multipole 
tensor 

gravitostatics 
magnetostatics 
electrostatics 

skewness tensor 
3rd momentum tensor 

of probability distribution 

mathematical 
statistics 

tensor of piezoelectric 
constant 

coupling of stress 
and electrostatic field 

                   Table 1-3: Various examples of tensor spaces p
qT  (p+q :  

                    rank of tensor) (3,1)tensor, (2,2) tensor, tensor space 3
1T , 2

2T  
 

Reimann curvature tensor differential  
geometry 

4th order multipole 
tensor 

gravitostatics 
magnetostatics 
electrostatics 

Hooke tensor 

stress-strain relation 
constitutive equation 
continuum mechanics 

elasticity, viscosity 
kurtosis tensor 

4th moment tensor of 
a probability distribution 

mathematical 
statistics 

Scholia 

A beautiful introduction into multilinear superalgebra based upon left and right 
super modules with left and right tensor coordinates –not coinciding- is given by 
F. Constantinescu and H. F. de Groote (1984). Applications in “supersymmetric 
physics” are highlighted: Supersymmetry is a symmetry between bosons, ele-
mentary particles with integer spin, and fermions, elementary particles with half-
integral spin. 

1-2 Decomposition of multilinear functions into symmetric multilinear 
functions, antisymmetric multi-linear functions and residual multilin-
ear functions: p p p p

q q q q= ⊗ ⊗T S A R   
p

qT  as the space of multilinear functions follows the decomposition p
q =T  

p p p
q q q⊗ ⊗S A R  into the subspace p

qS  of symmetric multilinear functions, the 
subspace p

qA  of antisymmetric multilinear functions and the subspace p
qR  of 

residual multilinear functions: 
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Box 1.2i: Antisymmetry of the symbols 
1... pi if  

ij jif f= −  
, ,ijk ikj jki jik kij kjif f f f f f= − = − = −  

, , ,ijkl ijlk jkli jkil klij klji kijk likjf f f f f f f f= − = − = − = −  

Box 1.2ii: Symmetry of the symbols 
1... pi if  

ij jif f=  
, ,ijk ikj jki jik kij kjif f f f f f= = =  

, , ,ijkl ijlk jkli jkil klij klji kijk likjf f f f f f f f= = = =  

Box 1.2iii: The interior product of bases of , dim dim * 3p n = = =S X X  

                         1 1:
1!

ieS  

                         2 1: ( ) : ,
2!

i j j i i j i j j i⊗ + ⊗ = ∨ ∨ = + ∨e e e e e e e e e eS  

 

3 1: (
3!

) :
:

i j k i k j j k i

j i k k i j k j i

i j k

⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ +

+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ =
= ∨ ∨

e e e e e e e e e

e e e e e e e e e
e e e

S
 

 i j k i k j k i j k j i j k i j i k∨ ∨ = ∨ ∨ = ∨ ∨ = ∨ ∨ = ∨ ∨ = ∨ ∨e e e e e e e e e e e e e e e e e e  

Box 1.2iv: The exterior product of bases of , dim dim * 3p n = = =A X X  
1 1:

1!
ieA  

( )2 1: : ,
2!

i j j i i j i j j i⊗ − ⊗ = ∧ ∧ = − ∧e e e e e e e e e eA  

(
)

3 1:
3!

:

i j k i k j j k i

j i k k i j k j i

i j k

⊗ ⊗ − ⊗ ⊗ + ⊗ ⊗ −

− ⊗ ⊗ + ⊗ ⊗ − ⊗ ⊗ =
= ∧ ∧

e e e e e e e e e

e e e e e e e e e
e e e

A

i j k i k j k i j k j i

j k i j i k
∧ ∧ = − ∧ ∧ = + ∧ ∧ = − ∧ ∧ =

= + ∧ ∧ = − ∧ ∧
e e e e e e e e e e e e

e e e e e e  

Box 1.2v: pS , symmetric multilinear functions 
dim

1 1
0

1
i

n
i

i
f f

∗=

=
Σ e

X
T S⊃ = { }  

( ) ( ) ( ) ( )

dim dim
2 2
0

, 1

1 1{ | : ( )}
2! 2!

n n
i j i j

ij ij ij ij ji
i j i j

f f f f f f
∗ ∗= =

= ≤

∨ = ∨ = +Σ Σe e e e
X X

T S⊃ = { }
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( ) ( )

dim
3 3
0

, , 1

1 } { | :
3!

n n
i j k i j k

ijk ijk ijk
i j k i j

f f f f
∗=

= < <κ

∨ ∨ = ∨ ∨ =Σ Σe e e e e e
X

T S⊃ = {

1: ( )}
3! ijk ikj jki jik kij kjif f f f f f= + + + + +  

1 2

1 2
1 2

dim

0 ...
, ,..., 1

1 ... }
!

p

p
p

n
ii ip p

i i i
i i i

f f
p

∗=

=

∨ ∨ ∨ =Σ e e e
X

T S⊃ = {  

  ( )
1 2

1 2
1 2

dim

...
...

{ ... |p

p
p

n
ii i

i i i
i i i

f
∗=

≤ ≤ ≤

= ∨ ∨ ∨Σ e e e
X

 

      
( ... ) 1 1 1 1, 1 2 2 11 2 ... ... ... ...

1| : ( ... )}
!i i i p p p p p pp i i i i i i i i i i i if f f f f

p − −
= + + + +  

Lemma 1-1: 

( ) ( )1 2 1dim , in particular if , then dimp pn p pn pp p
+ + −= = =S S  

Box 1.2vi: pA , antisymmetric multilinear functions 

 
dim

1 1
0

1
}

n
i

i
i

f f
∗=

=
Σ e

X
T A⊃ = {  

( ) ( ) ( ) ( )

dim
2 2
0

, 1

dim

1
2!

1{ | : ( )}
2!

n
i j

ij
i j

n
i j

ij ij ij ji
i j

f f

f f f f

∗

∗

=

=

=

≤

∧ =

= ∧ = +

Σ

Σ

e e

e e

X

X

T A⊃ = { }

 
dim

3
0

, , 1

1 }
3!

n
i j k

ijk
i j k

f f
∗=

=

∧ ∧ =Σ e e e
X

T A⊃ = {  

      ( ) ( ){ | :
n

i j k
ijk ijk

i j
f f

< <κ

= ∧ ∧ =Σ e e e  

     1: )}
3! ijk ikj jki jik kij kji= − − −(ƒ ƒ +ƒ ƒ +ƒ ƒ  

             1 2

1 2
1 2

dim

0 ...
, ,..., 1

1 ... }
!

p

p
p

n
ii ip p

i i i
i i i

f f
p

∗=

=

∧ ∧ ∧ =Σ e e e
X

T A⊃ = {  

      1 2

1 2
1 2

dim

( ... )
...

{ ... | :p

p
p

n
ii i

i i i
i i i

f f
∗=

< < <

= ∧ ∧ ∧ =Σ e e e
X

 

                          
1 1 1 1, 1 2 2 1... ... ... ...

1: ( ... )}
! p p p p p pi i i i i i i i i i i if f f f

p − −
= − + + − . 

          Lemma 1-2: 

 ( )( ) ( )dim !/ ! ! = , in particular if , then dim 1p pnn p n p n pp= − = =A A . 
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Box.1.2vii: qA  antisymmetric multilinear functions, exterior product 

(i) For every 1 1,..., ,...,i q− ∈x x x X  as well as and ,r s ∈ R  multilinearity 
implies 

( )1 1 1... ...i i qr s− +∧ ∧ ∧ + ∧ ∧ ∧ =x x x y x x  

( )1 1 1... ...i i qr − += ∧ ∧ ∧ ∧ ∧ ∧ +x x x x x  

( )1 1 1... ...i i qs − ++ ∧ ∧ ∧ ∧ ∧ ∧x x y x x . 

(ii) For every permutation σ of {1,2,..., }q  we have 

( )
1 2 1 2... ...q qsignσ σ σ σ∧ ∧ = ∧ ∧ ∧x x x x x x  

(iii) Let ( ) ( ),q sB∈ ∈A A X A X  ; then  

( )1 qsB B∧ = − ∧A A  

(iv) For every ,0q q n≤ ≤ , the tensor space qA of antisymmetric multi-
linear functions has dimension 

 ( )dim !/( !( )!)q
n n q n qq= = −A . 

As detailed examples we like to decompose 1
0T , 0

1T , 2
0T , 0

2T in 2R and 3R , respec-
tively, into symmetric and antisymmetric constituents. 

Example 1-2: p p p p
q q q q= ⊗ ⊗T S A R  decomposition of multilinear func-
tions into symmetric and antisymmetric constituents. 

As a first example of the decomposition of multilinear functions (tensor space) 
into symmetric and antisymmetric constituents we consider a linear space X  
(vector space) of dimension dim 2n= =X . Its dual space ∗X , dim ∗ =X  
dim 2n= =X , is spanned by orthonormal contravariant base vectors 1 2{ , }e e . 
Choose q=0, p=1 and p=2. 

{ }1 2,span= e eX                 versus                { }1 2,span∗ = e eX  

 
2

1 1 1 1 2
0 1 2

1

{ }i
i

i

f f f f
=

= = ∈ = = + ∈∑e e eT A S X  

 2 2 2
0 = ⊕T A S  

2
2 1 1 1 2 2 1 2 2
0 11 12 21 22

, 1

1 1 2 2 1 2 2 1 1 2 2 1
11 22 12 12

1 2 2 1 1 2 2 1
21 21

1 1 2 2 1 2 1 2
11 22 12 21 1

{ }

1 1( ) ( )
2 2

1 1( ) ( )
2 2

( ) / 2 (

i j
ij

i j

f f f f f f

f f f f

f f

f f f f f

=

∋ = ⊗ = ⊗ + ⊗ + ⊗ + ⊗ =

= ⊗ + ⊗ + ⊗ − ⊗ + ⊗ + ⊗ −

− ⊗ − ⊗ + ⊗ + ⊗ =

= ∨ + ∨ + ∧ − + ∧

∑ e e e e e e e e e e

e e e e e e e e e e e e

e e e e e e e e

e e e e e e e e

T

2 21) / 2f+

 

2 2dim 3, dim 1= =S A . 
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As a second example of the decomposition of multilinear functions (tensor 
space) into symmetric and antisymmetric constituents we consider a linear space 
X  (vector space) of dimension dim 3n= =X , spanned by orthonormal con-
travariant base vectors 1 2 3{ , , }e e e . Choose p = 0, q = 1 and 2. 

1 2 3= span{ , , }e e eX  

 
3

0 1 2 3
1 1 1 1 1 1 1

1
{ }i

i
f f f f f

=

= = ∋ = = + + ∈∑e e e eT A S X  (0.1) 

 0
2 2 2= ⊕T A S  

 

3 3 3 3
0 1 2 3
2 1 2 3

, 1 1 1 1

11 21 31 12 22
1 1 2 1 3 1 1 2 2 2

32 13 23 33
3 2 1 3 2 3 3 3

{ } { }ij i i i
i j i i i

i j i i i

f f f f f

f f f f f

f f f f

= = = =

∋ = ⊗ = ⊗ + ⊗ + ⊗ =

= ⊗ + ⊗ + ⊗ + ⊗ + ⊗ +

+ ⊗ + ⊗ + ⊗ + ⊗ =

∑ ∑ ∑ ∑e e e e e e e e

e e e e e e e e e e

e e e e e e e e

T

 

 

12 12 21
1 2 2 1 1 2 2 1 1 2 2 1

12 23 23
1 2 2 1 2 3 3 2 2 3 3 2

32 32 31
2 3 3 2 2 3 3 2 3 1 1 3

31
3 1 1 3 3

1 1 1( ) ( ) ( )
2 2 2
1 1 1( ) ( ) ( )
2 2 2
1 1 1( ) ( ) ( )
2 2 2
1 1( ) (
2 2

f f f

f f f

f f f

f

+ ⊗ − ⊗ + ⊗ + ⊗ − ⊗ − ⊗ +

+ ⊗ + ⊗ + ⊗ − ⊗ + ⊗ + ⊗ −

− ⊗ − ⊗ + ⊗ + ⊗ + ⊗ − ⊗ +

+ ⊗ + ⊗ − ⊗

e e e e e e e e e e e e

e e e e e e e e e e e e

e e e e e e e e e e e e

e e e e e 13 31
1 1 3 3 1 1 3

1) ( ) .
2

f f− ⊗ + ⊗ + ⊗e e e e e e e

 

Since the subspaces ¸  and p p p
q q qS A R  are independents,  p p p

q q q⊕ ⊕S A R denotes 

the direct sum of subspace ¸  and p p p
q q qS A R . Unfortunately p

qT  as the space of 
multilinear functions cannot be completely decomposed in the space of symmet-
ric multilinear functions: for instance, the dimension identities apply 

pdim pn=T , p 1dim ( )n p
p

+ −=S , pdim ( )n
p=A  with respect of a vector space 

X  of dimension dim n=X , such that p p p pdim dim dim dim= − − =R T S A  
1( ) ( )p pnn p

p pn n+ += − − < , in general. There is one exception, namely the (2,0) 

or (1,1) or (0,2) tensor space where the dimension of the subspace 2 1
0 1,R R , 0

2R  

of residual multilinear functions is zero. An example is 2dim =R  
2 2 21

2( ) ( ) ( 1) / 2 ( 1) 0n n
pn n n n n n+= − − = − + − − = . 
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1-3  Matrix algebra, array algebra, matrix norm and inner product 

Symmetry and antisymmetry of the symbols 
1... pi if  can be visualized by the trees 

of Box 1.2i and Box 1.2ii. With respect to the symbols of the interior product 
“V” and the exterior “ Λ ” (“wedge product”) we are able to redefine symmetric 
antisymmetric functions according to Box1.2iii-vi. Note the isomorphism of ten-
sor algebra p

qT  and  array algebra, namely of 

(i) [ ] n
if ∈ R         (one-dimensional array, “column vector”, [ ]dim 1if n= × ) 

(ii) n n[ ]ijf ×∈ R      (two-dimensional array, column-row array, “matrix”, 
                                     dim[ ]ijf n n= × ) 

(iii) [ ] n n n
ijkf × ×∈ R  (three-dimensional array, “indexed-matrix”, 

                                      dim[ ]ijkf n n n= × × ) 

etc. For the base space 3∈ ⊂x Ω R  to be three-dimensional Euclidian we had 
answered the question how to measure the length of a vector („norm“) and the 
angle between two vectors („inner product“). The same question will finally been 
raised for tensors p p

q qt ∈T . The answer is constructively based on the vectoriza-
tion of the arrays [ ]ijf , [ ]ijkf , ... 

1...[ ]
pi if  by taking advantage of the symmetry-

antisymmetry structure of the arrays and later on applying the Euclidean norm 
and the Euclidean inner product to the vectorized array. 

For a 2-contravariant, 0-covariant tensor we shall outline the procedure.  

(i) Firstly let F=[fij] be the quadratic matrix of dimension dim F n n= × , an 
element of  2

0T . Accordingly vec F is the vector 

 

1

2

1n

n

i

i

i

i

f
f

vec
f
f

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

F , 2dim vec 1n= ×F  

which is generated by stacking the elements of the matrix F columnwise 
in a vector. The Euclidean norm and the Euclidean  inner product of 
vecF, vecG, respectively is  

||vecF||2  :=(vecF)T (vecF) = trFTF, 

<vecF|vecG > :=(vecF)T vecG = trFTG. 

(ii) Secondly let F= [fij]= [fji] be the symmetric matrix of dimension dimF= 
n × n, an element of 2S . Accordingly vechF  (read „vector half“) is the 
n(n+1)/2x1 vector which is generated by stacking the elements on an un-
der the main diagonal of the matrix F columnwise in a vector: 
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 ( )

11

1

22

2

.

vech : ,dim vech 1 / 2.

.

n

T
ij ji

n

nn

f
f
ff f n n
f

f

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤= = = ⇒ = = +⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

F F F F  

vechF = Hvech F,  dimH= 2( 1) / 2n n n+ × .   

The Euclidean norm and the Euclidean inner product of vechF, vechG, 
respectively is 

 
[ ] [ ]

[ ] [ ]

⎤= = =
⇒⎥

= = = ⎥⎦

T
ij ji

T
ij ji

f f

g g

F F

G G
 

||vech F||2 :=(vech F)T(vech F) 

<vech F|vech G >:=(vech F)Tvech G 

(iii) Thirdly let F= [fij]= - [fji] be the antisymmetric matrix of dimension 
dimF = n × n, an element of 2A . Accordingly veckF (read “vector skew“) 
is the n(n-1)/2x 1 vector which is generated by stacking the elements un-
der the main diagonal of the matrix F columnwise in a vector: 

 ( )

21

1

32

2

1

.

[ ] [ ] veck : ,dim veck 1 / 2.

.
−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= = − = − ⇒ = = −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

n

T
ij ji

n

n n

f

f
ff f n n
f

f

F F F F  

          veck F = K vec F,  dim K= 2( 1) / 2n n n+ × . 

The Euclidean norm and the Euclidean inner product of veck F, veck G, 
respectively is 

 
T

ij ji

T
ij ji

f f

g g

⎤⎡ ⎤ ⎡ ⎤= = − = −⎣ ⎦ ⎣ ⎦ ⎥ ⇒
⎥⎡ ⎤ ⎡ ⎤= = − = −⎣ ⎦ ⎣ ⎦ ⎦

F F

G G
 

||veck F||2 :=(veck F)T(veck F) 

<veck F|veck G> :=(veck F)Tveck G 
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Example 1-3: Norm and inner product of a 2-contravariant, 0-
covariant tensor 

     (i) := , dim = 3x3
⎡ ⎤
⎢ ⎥ ⇒
⎢ ⎥
⎣ ⎦

a d g
b e h
c f k

A A  

 [ ]vec = , , , , , , , , , dim vec = 9 1×Ta b c d e f g h kA A  

 ( ) ( )2 2 2vec vec vec tr ...= = = + +T T a kA A A A A  

     (ii) := , dim = 3 3
⎡ ⎤
⎢ ⎥ = × ⇒
⎢ ⎥
⎣ ⎦

T
a d g
b e h
c f k

A A A  

 [ ]vech = , , , , , ,dim vech = 6x1Ta b c d e fA A  

vech = vechA H A  

 

1 0 0 0 0 0 0 0 0
0 1/ 2 0 1/ 2 0 0 0 0 0
0 0 1/ 2 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1/ 2 0 1/ 2 0
0 0 0 0 0 0 0 0 1

: ,dim 6x9

⎡ ⎤
⎢ ⎥
⎢ ⎥∀ = =⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H H  

( ) ( )2 2 2 2 2 2 2vech vech vechT a b c d e f= = + + + + +A A A  

(H.V. Henderson and S.A. Searle, 1978, p.68-69) 

     (iii) 

0
0: , dim 3 30

0

− − −⎡ ⎤
⎢ ⎥− −= = − = × ⇒⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

T

a b c
a d e
b d f
c e f

A A A  

[ ]veck = , , , , , ,dim veck = 6 1Ta b c d e f ×A A  

veck = veckA K A  

 

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

1: ,
2

−
−

−
−

−
−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∀ =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

K  

dim = 6 16×K  

 2 2 2 2 2 2 2veck a b c d e f= + + + + +A  ♣ 
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1-4 The Hodge star operator, self duality 

The most important operator of the algebra of antisymmetric multilinear func-
tions is the „Hodge star operator“ which we shall present finally. In addition, we 
shall bring to you the surprising special feature of skew algebra called „self-
duality“. 

The algebra p
qA  of antisymmetric multilinear functions has been based on the 

exterior product “∧“ (“wedge product“). There has been created a duality opera-
tor called the Hodge star operator ∗ which is a linear map of  p n p−→A A  where 

dim dimn ∗= =X X  denotes the dimension of the base space 3dim=X R . The 
basic idea of such a map of antisymmetric multilinear functions pf ∈ A  into 
antisymmetric linear functions n pf −∗ ∈ A  originates according to Box 1.2vii from 
the following situation: The multilinear base of  pA  is spanned by 

1 1 2 1 2{1, , ,... ... }pii i i i i∧ ∧ ∧e e e e e e  

once we focus on p=0,1,2,....n, respectively. Obviously for any dimension num-
ber n and p-contravariant, q-covariant index of the skew tensor space p

qA  there is 
an associated cobasis, namely 

{ }
{ }

1

1

: 1,
1, 0,1:

: 1,

i

i

basis
n p

associated cobasis

⎧⎪= = ⎨
⎪⎩

e

e
 

{ }
{ }

1 1 2

1 2 2

: 1, ,
2, 0,1,2 :

: , ,1

i i i

i i i

basis
n p

associated cobasis

⎧ ∧⎪= = ⎨
∧⎪⎩

e e e

e e e
 

{ }
{ }

3 31 2 1 2

3 3 31 2 2

: 1, , ,
3, 0,1,2,3 :

: , , ,1

i ii i i i

i i ii i i

basis
n p

associated cobasis

⎧ ∧ ∧ ∧⎪= = ⎨
∧ ∧ ∧⎪⎩

e e e e e e

e e e e e e
 

in general , for arbitrary n ∈N , p=0,1,...,n-1,n  

Basis: 
1 1{1, ,..., ... }∧ ∧ nii ie e e  

Associated cobasis: 
1 1 11 2 2{ ... , ... ,..., , ,1}− − −∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧n n n n n n ni i i i i i ii i ie e e e e e e e e e  

as long as we concentrate on p-contravariant pA  only. A similar set-up of basis-
associated cobasis for q-covariant qA  and mixed p

qA  can be made. The linear 
map p n p−→A A , the Hodge star operator 

 1 11

1

...
...

1( ... ) : ...
( )!

+

+
∗ ∧ ∧ = ∧ ∧

−
p pn n

p n

i i ii ii
i in p

e e e e e  
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maps by means of the permutation symbol 

1

1

...
...

1      {1,2,..., 1, }
: 1      {1,2,..., 1, } 

0                                                       

p

p n

i i
i i

for an even permutation of n n
for an odd permutation of n n

otherwise
ε

+

+ −⎡
⎢= − −⎢
⎢⎣

 

-sometimes called Eddington’s epsilons – on orthonormal („unimodular“) base 
of pA  onto an orthonormal („unimodular“) base of n p−A . 

For asymmetric multilinear functions also called antisymmetric tensor-valued 
functions represented in an orthonormal („unimodular“) base the Hodge star 
operator is the following linear map 

*

1

1

1

dim

0 ...
,..., 1

1{ ... }
!

=

=

⊃ ∋ = ∧ ∧∑T p

p

p

n
iip p

i i
i i

f f
p

e e
X

A  

*

1 1

1 1

1 1

dim dim
...*

0 ... ...
,..., ,...,

1 1{ ... }
( )! !

+

+

+

= =
−⊃ ∋ ∗ = ∧ ∧

− ∑ ∑T p p n

p n p

p n p

n n
i i i ip n p
i i i i

i i i i

f f
n p p

ε e e
X X

A . 

As soon as the base space 3∈ ⊂ Rx Ω  is not covered by Cartesian coordinates, 
rather by curvilinear coordinates, its coordinates base 

1 2 3 1 2 3{ , , } { , , }b b b dy dy dy=  versus 1 2 3
1 2 3{ , , } { , , }b b b

y y y
∂ ∂ ∂

=
∂ ∂ ∂

 

of contravariant versus covariant type is covariant type is neither orthogonal nor 
normalized. It is for this reason that finally we present *f, the Hodge star opera-
tor of an antisymmetric multilinear function f, also called the dual of  f, in a gen-
eral coordinate base. 

Definition 1-2 (Hodge star operator, the dual of an antisymmetric 
multilinear function) 

If an antisymmetric (p, 0) multilinear function is an element of the skew 
algebra pA  with respect, to a general base 1{ ... }pii ∧ ∧b b  is given  

*

1

1

1

dim

...
,..., 1

1{ ... }
!

p

p

p

n
ii

i i
i i

f f
p

=

=

= ∧ ∧∑ b b
X

 

then the Hodge star operator, the dual of f, can be uniquely represented 
by  

(i) 

    
* * *

1 1 1

1 1 1

1 1 1

dim dim dim

... ... ...
,..., ,..., ,...,

1 1* { ... ... }
( )! !

p p p p

p p n p

p n p p

n n n
i i i ji j

i i i i i i
i i i i j j

f g g g f
n p p

ε+

+

+

= = =

= ∧ ∧
− ∑ ∑ ∑ b b

X X X
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(ii) 
* *

1 1

1 1

1 1

dim dim
...

... ...
,..., ,...,

1 1* { ... }
( )! !

p pn

p p n

p n p

n n
i i ii

i i i i
i i i i

f g f
n p p

ε+

+

+

= =

= ∧ ∧
− ∑ ∑ b b

X X
 

(iii) 
*

1

1 1 1

1

dim
...

... ... ...
,...,

(* ) { }p

n p p n p

p

n
i i

k k i i k k
i i

f g fε
− −

=

= ∑
X

 

as an element of the skew algebra n p−A  in the general associated cobasis 
1{ ... }nip+ ∧ ∧b b  with respect to the base space n∈ ⊃x X R  on dimension 

*dim dimn = =X X  and 1[ ] adj / det , | |kl
klg g g−= = =G G G . 

If we extend the algebra pA  of antisymmetric multilinear functions by 
1 n*1 ... n= ∧ ∧ ∈e e A  and 1 0* ... 1n∧ ∧ = ∈ =e e A R , respectively, let us collect 

some properties of *f, the dual of f.  

Proposition 1-3 (Hodge star operator, the dual of an antisymmetric 
multilinear function): 

Let the linearly ordered base 1{ ,..., }ne e be orthonormal (“unimodular“). 
Then the Hodge star operator of an antisymmetric multilinear function f, 
the dual of f, with respect to 1{ ,..., }ne e  satisfies the following: 

(i) *maps antisymmetric p-contravariant tensor-valued functions to anti-
symmetric (n-p)-contravariant tensor-valued functions: * : −→p n pA A  

(ii) 
1 0

n

*1 ... =:     1 ,  
* 1                          1 ,1

⎧ = ∧ ∧ ∈ ∈⎪
⎨

= ∈ ∈⎪⎩

n

p

for every
for every

e e E E
E

A A
A A

 

(iii) **f=(-1)p(n-p)f for every ∈ pf A  

(iv 2 1 ...∧ ∗ = ∧ ∧ nf f f e e  with respect to the norm 
...1

...1
1

1

dim
2

,..., 1

1|| ||
!

=

=

= ∑ i ip
i ip

p

n

i i
f f f

p

X
 

Example 1-4: Hodge star operator *dim dim 3n = = =X X , 
1 2 3span = { , , }̧ p n p∗ −→e e eX A A  

    1 2 33, 0 :   1= = ∗ = ∧ ∧n p e e e  

31 1 2

1 3

1 2 3 3 2 2 3

2 3 1 1 3 3 1

3 1 2 2 1 1 2

1 ( )
2

1 13, 1:    ( )
2 2

1 ( )
2

⎡∗ = ∧ − ∧ = ∧⎢
⎢

= = ∗ = ∧ ∗ = ∧ − ∧ = ∧⎢
⎢
⎢∗ = ∧ − ∧ = ∧
⎢⎣

ii i i
i in p ε

e e e e e e e

e e e e e e e e e e

e e e e e e e

 

   1 2 1 2

3

1 2 3

2 3 1

3 1 2
3, 2 :    

⎡∗ ∧ =
⎢= = ∗ ∧ = ∗ ∧ =
⎢∗ ∧ =⎣

i i i i
in p

e e e
e e e e e e

e e e
 

  31 23, 3 :    1ii in p= = ∗ ∧ ∧ =e e e . 
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Example 1-5: Hodge star operator of an antisymmetric tensor-
valued function, *dim dim 3n = = =X X , p n p−→A A  

Throughout we apply the summation convention over repeated indices. 

{
1

1

1 2 3
                                                         "0  "3, 0 :                         "3  "

                                

3, 1:

−= = ∗ = ∧ ∧ −

=

= =

i
i

f differential formn p f fdx dx dx differential form

f dx f

n p 31 2
2 3 1

1 2

1 2

2 3 3 1 1 2
1 2 3

            "1  "
1
2

"2  "

1                                "2  "
2

3, 2 :

⎧ −
⎪⎪∗ = ∧ =⎨
⎪

= ∧ + ∧ + ∧ −⎪⎩

= ∧ −

= = ∗

i i
ii i

i

i i
i i

differential form

f dx dx f

f dx dx f dx dx f dx dx differential form

f dx dx f differential form

n p f

ε

31 2
3 1 2

31 2

1 2 3

1 2 3

1 2 3

1 2 3
23 31 12

123

1
2

                      "1  "

1                      "3  "
63, 3 : 1       
6

⎧
⎪
⎪
⎨ = ∧ =
⎪
⎪ = + + −⎩

= ∧ ∧ −
= =

∗ = =

i
ii i

i i

ii i
i i i

i i i
i i i

dx f

f dx f dx f dx differential form

f dx dx dx f differential form
n p

f f f

ε

ε                       "0  "

⎧
⎪
⎨
⎪ −
⎩

differential form

 

♣ 

Example 1-6: Hodge star operator, *dim dim 3n = = =X X , “ × ”prod-
uct (cross product) 

By means of the Hodge star operator we are able to interpret the “ × ” 
product (“cross product”) in three-dimensional vector space. If the vec-
tors , ∈x y X , dim 3=X , presented in the orthonormal (“unimodular”) 
base 1 2 3{ , , }e e e  the following equivalence between ∗ ∧x y  and ×x y  
holds:  

 

{ }
1 2 2 2

1 2

2 3 3 2 3 1 1 3
2 3 3 1

1 2 2 2
1 2

2 3 3 2
2 3

, (  )
, ,    i, j 1, 2,3

( )

     ( ) ( )

*( ) ( ) *( )( )

     *( )( ) *(

⎤= =
⇒⎥

∈ ∈ ∈ ⎥⎦
∧ = ∧ = ∧ − +

+ ∧ − + ∧ − ⇒

⇒ ∧ = ∗ ∧ = ∧ − +

+ ∧ − +

i i
i i

i j
i j

i j
i i

x y summation convention

x y x y x y

x y x y x y x y

x y x y x y

x y x y

x e y e
x y

x y e e e e

e e e e

x y e e e e

e e

X Y

3 1 1 3
3 1)( )

     

∧ − =

= k i j
ij k

x y x y

x yε

e e

e
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1 2 2 2 2 3 3 2 3 1 1 3

3 1 2

2 3 3 2 3 1 1 3 1 2 2 2
1 2 3

    *( ) ( ) ( ) ( )

                   = ( ) ( ) ( )

y=
= *( )

:

∧ = − + − + − =

− + − + −

⎤× ×
⎥ ⇒ × ∧

× = ⎥⎦

i j
i j

k
i j ij k

x y x y x y x y x y x y

x y x y x y x y x y x y

x y

ε

x y e e e

e e e

x e e
x y x y

e e e

 

By mean of the examples 1-5, 1-6 and 1-7 we like to make you familiar with (i) 
the Hodge star operator of an antisymmetric tensor-valued function over 3R , (ii) 
its equivalence to the “ × ” product (“cross product”) and (iii) self-duality in a 
four-dimensional space. Such a self-duality plays a key role in differential ge-
ometry and physics as being emphasized by M.F.Atiyah, N.J. Hitchin and J.M. 
Singer:  

Example 1-7: Hodge star operator, *dim dim 4n = = =X X ,       
                       4∈X R , Minkowski space, self-duality 

(Atiyah, M.F.,Hitchin, N.J. and Singer, J. M.:  
Self duality in four–dimensional Riemannian geometry.  
Proc. Royal Soc. London  A362 (1978) 425-461) 

Historical Aside 

Thus we have constructed an anticommutative algebra by implementing 
the “exterior product” ” ∧ ”, also called “wedge product”, initiated by H. 
Grassmann in “Ausdehnungslehre” (second version published in 1882). 
See also his collected works, H. Grassmann (1911). In addition the work 
by G. Peano (Calcolo geometrico secondo, l`Ausdehnungslehre di 
Grassmann, Fratelli Bocca Editori, Torino 1888) should be mentioned 
here. This historical development may be documented by the work of H. 
G. Forder (1960). A modern version of the “wedge product” is given by 
G. Berman (1961). In particular we mention the contribution by M. 
Barnabei et al (1985) were by avoiding the notion of the dual *X  of a 
linear space X  and based upon operations like union, intersection, and 
complement-i.e. known in Boolean algebra-have developed a double al-
gebra with exterior products of type one (“wedge product”, “the join”) 
and of type two (“the meet”), namely “to restore H. Grassmann’s original 
ideas to full geometrical power”. The star operator “*” has been intro-
duced by W. V. D. Hodge, being implemented into algebra in the  work 
W. V. D. Hodge (1941) and W. V. D. Hodge and D. Pedoe (1978, p. 232-
309). Here the start operation has been called “dual Grassmann coordi-
nates”; in addition “intersections and joins” have been introduced. 



 

 

 

 

 

Chapter 2    
Linear Algebra 
Multilinear algebra is built on linear algebra we are going into now. At first we 
give a careful definition of linear algebra which secondly we deepen by the 
diagrams “Ass”, “Uni” and “Comm”. The subalgebra “ring with identity” which 
is of central importance for solving polynomial equations by means of Groebner 
bases, the Buchberger algorithm and the multipolynomial resultant method is 
our third subject. Section four introduces the motion of division algebra and the 
non-associative algebra. Fifthly, we confront you with Lie algebra (“God is a lie 
Group”); in particular with Witt algebra. Section six compares Lie algebra and 
Killing analysis. Here we add some notes on the difficulties of a composition 
algebra in section seven. Finally in section eight matrix algebra is presented 
again, but this time as a division algebra. As examples of a division algebra as 
well as composition algebra we introduce complex algebra (Clifford algebra 
C (0,1) ) in section nine and quaternion algebra in section ten (Clifford algebra 
C (0,2) ) which is followed by an interesting letter of W. R. Hamilton (16 Octo-
ber 1943) to his son reproduced in section eleven. Octonian algebra (Clifford 
algebra with respect to ×H H ) in section twelve is an example for a “non asso-
ciative” algebra as well as a composition algebra. Of course, we have reserved 
“section thirteen” for the fundamental Hurwitz theorem of composition algebra 
and the fundamental Frobenius theorem of division algebra. 

2-1 Definition of a Linear algebra 
Up to now we have succeeded to introduce the base space X  of vectors  

3=∈x X R  equipped with a metric and specialized to be three dimensional 
Euclidean. We have extended the base space to a tensor space, namely from 
vector-valued functions to tensor valued.  

Definition 2-1 (linear algebra over the field of real numbers, linearity of vector 
space X ): 
Let R  be the field of real numbers. A linear algebra over R  or R -algebra 
consists of a set X  of objects, two internal relations (either “additive” or 
“multiplicative”) and one external relation 
 1(opera) : :α= × →X X X  

 2(opera) : : or =β= × → × →R X X X R X   
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 3(opera) : γ= : × →X X X .  

1 With respect to the internal relation α  (“join”) X  as a linear space is a vec-
tor space over R , an Abelian group written “additively” or “multiplicatively”: 

, , ∈x y z X  
 additively written 

Abelian group 
 multiplicatively written 

Abelian group 
 

( 1 )G +  
( , ) :a ∗ = +x y x y  

( ) ( )+ + = + +x y z x y z  
 

( 1 )G  
( , ) :α =x y x y  

( ) ( )=x y z x y z  
 (additive associativity)  (multiplicative associativity) 

( 2 )G +  0+ =x x  ( 2 )G  =x 1 x  
 (additive identity, neutral 

element) 
 (multiplicative identity, 

 neutral element ) 
( 3 )G +  (- ) 0+ =x x  ( 3 )G  -1 =x x 1  

 (additive inverse)  (multiplicative inverse) 

( 4 )G +  + = +x y y x  ( 4 )G  =x y y x  
 (additive commutativity,  

      Abelian axiom) 
 
 

(multiplicative commu-
tativity, Abelian axiom). 

The triplet of axioms {( 1 ), ( 2 ), ( 3 )}G G G+ + +  or {( 1 ),( 2 ), ( 3 )}G G G  consti-
tutes the set of group axioms. 

2 With respect to the external relation β the following compatibility conditions 
are satisfied: 

, , ,
( , ) :

r s
r rβ
∈ ∈

= ×
x y

x x
X 

 

( 1 )D +  ( ) ( )r r× + = + ×x y x y  
r r r r= × + × = × + ×x y x y  

(1st additive distributivity) 

( 1 )D  ( ) ( )r r× = ×x y x y  
( ) ( )r r= × =x y x y  

(1st multiplicative  distributivity) 
 

( 2 )D +  
( ) ( )r s r s+ × = × + =x x  
r s r s= × + × = × + ×x x x x  

(2nd additive distributivity) 

 
( 2 )D  

( )r s x r s× = × =x  
( ) ( )r s r s= × × = × ×x x  

(2nd multiplicative  distributivity) 

( 3)D  1 1× = × =x x x  

(left and right identity) 

3 With respect to the internal relation γ  (“meet”) the following compatibility 
conditions are satisfied: 

, , ,
( , ) :

( 1 )  ( ) ( )

r

G
γ

∈ ∈
= ∗

∗ ∗ ∗ = ∗ ∗

x y z
x y x y

x y z x y z

X R 
 

(associativity w.r.t. internal multiplication) 
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( 1* )   ( )
               ( )
D + ∗ + = ∗ + ∗

+ ∗ = ∗ + ∗
x y z x y x z
x y z x z y z

 

(left and right additive distributivity w.r.t. internal multiplication) 
( 1* )  ( ) ( )
               ( ) ( )
D ∗ = ∗

∗ = ∗
x y z x y z
x y z x y z

 

(left and right multiplicative distributivity w.r.t. internal multiplication) 
( 2* )             ( * ) ( )
                          ( * ) ( )
D r r

r r
× × = × ∗

× = ∗
x y x y

x y x y
 

(left and right distributivity of internal and external multiplication) 

2-2 The diagrams “Ass”, “Uni” and “Comm” 
Conventionally, a linear algebra is minimally constituted by the triplet ( , , )α βX  
where X  as a linear space is a vector space equipped with the linear maps 

:α × →X X X  and :β × →R X X  satisfying the axioms (Ass) and (Uni) ac-
cording to the following diagrams: 

(Ass): 

The square 

× ×X X X                 ×X X  

 

 

    ×X X                       X  
commutes. 

(Uni): 

The diagram 

 ×R X                ×X X                 ×X R  

 

 

X  
commutes. 

Axiom (Ass) expresses the requirement that the multiplication α is associative 
whereas Axiom (Uni) means that the element β(1) of X  is a left as well as a right 
unit for α. The algebra ( , , )α βX  is commutative if in addition it satisfies the 
axiom 

idα ×
id α×

α

α

idβ × id β×
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  (Comm): 

    The triangle 

×X X      ×X X  

 

 

        X  

commutes where ,τX X  is the flip switching the factors: , ( )τ =x y y xX X .        ♣ 
Indeed we have expressed a set of axioms both explicitly as well as in a dia-
grammatic approach which minimally constitute a linear algebra ( , , )α βX . In 
addition, beside the first internal relation α called “join” we have experienced a 
second internal relation γ called “meet” which had to be made compatible with 
the other relations α and β, respectively. Actually, the diagram for the axiom 
(Dis) is left as an exercise. 

Obviously we have experienced the words “addition” and “multiplication” for 
various binary operations. Note that in the linear algebra isomorphic to the vector 
space as its geometric counterpart we have not specified the inner multiplication 

( , )∈µ x y X . In a three-dimensional vector space of Euclidean type 

( , ) : ( )γ = ∗ ∧ = ×x y x y x y , 
namely the star * of the exterior product ∧x y  or the “cross product” ×x y , for 

3∈x R , 3∈y R  is an example. Sometimes  

[ ]( , ) : ,γ =x y x y  

is written by rectangular brackets. 

Historical Aside 

Following a proposal of L. Kronecker (”Über die algebraisch auflösbaren 
Gleichungen (I. Abhandlung) Monatsberichte der Akademie der Wissen-
schaften 1853, Werke 4 (1929) 1-11) the axiom of commutativity ( 4+)G  or 
(G4 )  is called after N. H. Abel (Memoire sur un classe particuliere 
d’ecuations résolable algébraique, Crelle’s J. reine angewandte Mathematik 4 
(1828) 131-156 Oeuvres vol. 1, pages 478-514, vol. 2, pages 217-243, 329-
331 edited by S. Lie and L. Sylow, Christiana 1881) who dealt with a particu-
lar class of equations of all degrees which are solvable by radicals, e.g. the 
cyclotomic equation 1 0nx − = . N. H. Abel has proven the following general 
theorem: If the roots of an equation are such that all roots can be expressed as 
rational functions of one of them, say x, and if any two of the roots, say 1r x  
and 2r x  where 1r  and 2r  are rational functions are connected in such a way 
that 2 1 1 2   r r x r r x= , then the equation can be solved by radicals. Refer 

2 1 1 2   r r x r r x=  to ( 1 ).G ⋅  

α α

,τX X
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2-3 Ringed spaces: the subalgebra “ring with identity” 
In ( 2 )G  the neutral element 1 as well as in ( 3 )G  the inverse element has been 

multiplied from the right. Similarly left multiplication ( 2 )G  by the neutral 
element 1 as well as ( 3 )G  by the inverse element are defined. Indeed it can be 
shown that there exist exactly one neutral element which is both left-neutral and 

right-neutral as well as exactly one inverse element which is both left-inverse 
and right-inverse. A subalgebra is called a “ring with identity” if the following 

seven conditions hold: 

 
A ring with identity ( 3 )G ∗  is a division ring if every nonzero element of the ring 
has a multiplicative inverse. A commutative ring is a ring with commutative 
multiplication ( 4 )G ∗ . Modules are generalizations of the vector spaces of linear 
algebra in which the “scalars” are allowed to be from an arbitrary ring, rather 
than a field of real numbers. They will be discussed as soon as we introduce 
superalgebras.  

Now we take reference to   

    Lemma 2-2 (anticommutativity)  

0      , . 
" "       " "  .

for all for all
is used in the notation accordingly

= ∈ ⇔ = − ∈
∧

x x x x y y x x yX X
 

:Proof: 
" "⇒  

( ) ( ) ( ) ( ) 0
+ = + + + =

= + + + = + + =
x y y x x x x y y x y y

x x y y x y x y x y  

" "⇐  0= ⇒ = − ⇒ =x y x x x x x x  
Lateron we refer to the following algebras. 
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2-4 Definition of a division algebra and non-associative algebra 
Indeed we always have to invert a mapping to get something useful from identi-
ties. Division algebra is the proper algebraic tool to solve such problems. 

   Definition 2-3: (division algebra): 

A R -algebra is called division algebra over R , if all non-null elements of 
{ }: \ 0′ =X X  form additionally a group with respect to inner multiplication 

:µ = x y  namely  
 { }, , \ 0∈x y z X  

 
( 1 )G  

( ) ( )=x y z x y z  
(associativity of inner multiplica-

tion) 
( 2 )G  1 =x x  

(identity of inner multiplication) 
( 3 )G  1 1− =x x  

(inverse of inner multiplication) 

There are subalgebras which are classified as “non associative”. Thus it may be 
better to have a precise definition of “non-associative algebra” at hand. 

Definition 2-4: (non-associative algebra): 

A weakening of a R -algebra is the non-associative algebra over R , if the 
axioms 1, 2 and 3 of a linear algebra (Definition 2-1) hold with the exception 
of  ( 1 )G that is the associativity of inner multiplication is cancelled. 

2-5 Lie algebra, Witt algebra 
“Perhaps God is a Lie group” 

Many physicists believe that all modern physics is based on the operator algebra 
called “Lie algebra”. Indeed more than 1000 textbooks are written on the sub-
ject. Indeed we can give it here a very short note, namely to be able lateron to 
compare Lie algebra and Killing analysis. 

Definition 2-5 (Lie algebra): 

A non associative algebra is called Lie algebra over R , if the following opera-
tions with respect to inner multiplication :µ = x y  hold: 

(L1) 0=x x  
(L2) ( ) ( ) ( ) 0+ + =x y z y z x z x y  

(Jacobi identity) 

The examples of Lie algebra are numerous. As a special Lie algebra we present 
the Witt algebra which is applied to Laurent polynomials. 
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Example 2-1: Witt algebra on the ring of Laurent polynomials (Chen, Li, 
 Math. Phys 167 (1995) 443 - 469): 

The Witt algebra W is the complex Lie algebra of polynomials fields on the 
unit circle 1S . An element of W is a linear combination of the elements of 
the form ( / )inΦ ∂ ∂Φe , where Φ  is a real parameter, and the Lie bracket of W 
is given by 

( ), ( )in in i m ni n mΦ Φ +∂ ∂ ∂⎡ ⎤ = −⎢ ⎥∂Φ ∂Φ ∂Φ⎣ ⎦
e e e  

2-6 Lie algebra versus Killing analysis 
Finally we switch to a comparison of Lie algebra and Killing analysis. 

2-6:  Lie algebra versus Killing analysis 
 

 

 

 

 
Consider an n-dimensional pseudo-Riemann manifold { , ( , )},n

vg r s n r sµ = +M , 
equipped with the pseudo-Riemann metric ( )g g d dλ µ γ

µγ= ∨x x x  represented by 
a local chart { , ( , )}nx r sα

αβδ∈ R  with pseudo-Euclidean topology. An active 
transformation called  ”act” 

: ( )x x f xα α α β′ ′→ =Τ  

is a transformation of a point np ∈M  to another point np′∈M  (“point trans-
formation”) with respect to a fixed chart. 

Example 2-2: 2 ( 2, 2, 0)rS n r s= = = , “act” 

Move from one point 2
rp S∈  to another point 2

rp S′∈  along a great circle 
(geodesic) in the chart 1 2{ , }x x  or {spherical longitude, spherical latitude}. 
Solution of an initial value problem of the differential equations of the geo-
desic (“geodesic flow”) leads to act 1 2 1 2{ , }( ) { , }( )x x p x x p′− > . 

Alternative a passive transformation abbreviated by ”pass” 

: ( )x x f xα α α β′ ′→ =Τ  

also called “cha-cha-cha” or change from one chart to another chart is a trans-
formation of one fixed point np ∈M  from the local chart {xα} to another local 
chart {x }α′ . We refer to such a transformation x xα α′→  as a “Push forward” 
and x xα α′ →  as a  “pull back” operations. 

 
Figure K2i: 

Oblique parallel projection of the sphere 
2
rS , coordinate lines 1 const=x  (“meridi-

ans”) versus 2 const=x  (“parallel circles”) 
 

Figure K2ii: 
Mercator projection of the sphere 2

rS , coor-
dinate lines 1 const=x  (“meridians”) ver-
sus 2 const=x  (“parallel circles”) 
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Example 2-3: 2 ( 2, 2, 0)rS n r s= = =  “pass” 

A transformation of the local chart 1 2{ , }x x  of {spherical longitude, spheri-
cal latitude} into the alternative chart 1 2{ , }x x′ ′  of Mercator coordinates 
(isometric coordinates, conformal coordinates) is given pointwise by 

1
1 1

22 2 1ln tan[ ( )]
4 2

xx x
r

xx x
π

′

′

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥→ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

. 

This passive transformation is a conformeomorphism since it preserves the 
scalar product 

1 2 1 2( , ) ( , )g g
x x x x′ ′
∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂

 

For an illustration of such mappings let us refer you to Figure 2-1 and Figure 2-
2. A more detailed example is 

Example 2-4: (pseudo-orthogonal group O(1,1)): 

Consider the pseudo-orthogonal group O(1,1) which is a one-parameter 
group  known as the Lorentz boost 

cosh sinh
( )

sinh cosh
 
 

ε ε
ε

ε ε
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
A . 

Correspondingly the transformation group is given by  

dim dim 2 1
f ( , ) ( )  subject to 

dim 2 2
ε ε

′ = = ×⎡′ = = ⎢ = ×⎣

x x
x x A x

A
 

or explicitly 

1 1 2

2 1 2

x cosh sinh
f ( , ) : =

-x sinh cosh
x x
x x

ε ε
ε

ε ε
′

′

−⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

x  

such that the “Killing vector of symmetry” is 

2

1
( ) ( 0)

xdf
xd

ε
ε

−⎡ ⎤
= = = ⎢ ⎥−⎣ ⎦

ξ x  

By the exponential map we may write the Lie series 

2
2 3

1 1 1 1 1 ( )
2!

Zx e x x Zx Z x oε εε ε′ = = + + +  
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2
2 3

2 2 2 2 2 ( )
2!

Zx e x x Zx Z x oε εε ε′ = = + + +  

introducing the infinitesimal generator 

2 1
1 2

Z x x
x x
∂ ∂

= − −
∂ ∂

 

which reproduces O(1,1)  according to 
2 3

1 2 1 2 1 1 1 2
2 3

2 1 2 1 2 2 2 1

,   ( ) ,     etc.

,   ( ) ,    etc.

Zx x Z x Z x x Z x Zx x

Zx x Z x Z x x Z x Zx x

= − = − = = = −

= − = − = = = −
 

2 3
4

1 1 2 1 2

2 3
4

2 2 1 2 1

( )
2! 3!

( )
2! 3!

x x x x x o

x x x x x o

ε εε ε

ε εε ε

′

′

= − + − +

= − + − +

 

which are series expansions of 

 1 1 2

2 1 2

x x cosh sinh ,
x x sinh cosh .

x
x

ε ε
ε ε

′

′

= −
= − +

 

Notice the following definitions on symmetry transformation of type global 
versus local. In particular, we introduce the Lie derivate and Lie differential 
which leads us to the celebrated Killing vector of symmetry. Killing analysis is 
found on Theorem K which illustrated by Example 2-6: The symmetry transfor-
mation of the Minkowski space 3,1E , namely the inhomogeneous Lorentz group, 
also called Poincaré group 4

10 ( )P R  leads us to Corollary K. 

 Definition 2-6  (global symmetry transformation): 

The transformation 
: ( )f′→ =Τ x x x . 

is called a global symmetry transformation (symmetry transformation in the 
large) of a geometric object obj if the geometric object does not deform under 
the transformation, in particular 

( ) ( ) for all:  ,n np p p p′ ′= ∈ ∈obj obj M M  

 Definition 2-7  (local symmetry transformation): 

 The infinitesimal transformation 
: lim( ( ))

ε
ε

→
′→ = +Τ x x x ξ x  

is called a local symmetry transformation (symmetry transformation close to the 
identity) of a geometric object obj if the geometric object does not deform under 
the infinitesimal transformation, in particular 
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0

( ( )) ( ): lim 0e
ε ε→

+ −
∂ = =

obj x ξ x obj xobjL  

versus 

0
: lim ( ( ( )) ( )) 0d

ε
ε

→
= + − =obj obj x ξ x obj xL  

∂L  versus dL  are called the Lie derivate and the Lie differential, respectively. 
The vector 

{ , ( , )}n r sαβδ∈ξ R  

denotes the “killing vector ξ  of symmetry”. 

Example 2-6: (Killing analysis, 3,1 ( 4, 3, 1)n r s= = =E  Minkowski space, 
inhomogeneous Lorentz group, Poincaré group): 

,

4

1 0 0 0
0 1 0 0

: , 0
0 0 1 0
0 0 0 1

{ , }.

g g

x

µν µν µν λ

α
αβ

δ

δ

∗ ∗
−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= = =
⎢ ⎥
⎢ ⎥−⎣ ⎦

∈ R

 

The Killing equations (K2i) are specialized into 
  

0ρ ρ
ρκ λ λρ κδ δ ξ δ δ ξ− −+ =   (Ex K3.1) 

or equivalently 
       

0  for all  

                           (no summation over µ,υ) 

0            for all  

                          (no summation over µ) 

υ µ
µ υ

µ
µ

ξ ξ µ υ

ξ µ

⎡∂ +∂ = ≠
⎢
⎢
⎢
∂ =⎢

⎢
⎣

                  (Ex K3.2) 

1st step : differentiate the first equation  

0  for all  ,  (  )no summationυ µ
λ µ λ µξ ξ λ, µ γ∂ ∂ +∂ ∂ =  (Ex.K3.3) 

2nd step : integrability condition 

                                          µ µ
λυ υλ=ξ ξ . (Ex K3.4) 

Once we combine both the steps we are led to 
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2

0 
x x

λ

µ υ
ξ∂

=
∂ ∂

 (Ex K3.5) 

with the general solution 

                              x a versusλ λ µ λ
µξ δω ξ δ= + = Ω +x a       (Ex K3.6) 

 

 
x

λ
λ
µµ

ξ δω∂
=

∂
 

 
versus grad δ=ξ Ω  

2
0 

x x

λ

µ υ
ξ∂

=
∂ ∂

 
 

versus grad grad 0.⊗ =ξ  

(Ex K3.1) and (Ex K3.2) imply 
0 for all  

0 for all  (    )no summation over repeated indices

υ µ
µ υ

µ
µ

δω δω µ υ

δω µ 

⎤+ = ≠
⎥ ⇔
⎥= ⎦

 

Tδ δ= −Ω Ω  

Obviously the matrix δΩ  is antisymmetric. Finally we collect the results in 

Corollary K : 3,1E , inhomogeneous Lorentz group, Poincaré group 4
10 ( )P R  

The infinitesimal transformation which leaves the metric g of a Minkowski 
space undeformed is the infinitesimal inhomogeneous Lorentz group of trans-
formations (Poincaré group) with six (pseudo-)rotational parameters and 
four translational parameters (in toto 10r =  parameters)  

:δ δ′= − = +x x x Ωx a  

which can be transformed globally into 
1   Tsubject to or δ δ− − −′ = + = =x Λx a Λ I Λ I ΛΛ Ω . 

♣ 
Theorem K: (local symmetry transformation of the metric: isometry, Killing 

equations) 

In order that a local symmetry transformation of the metric g (local isometry) 
exists, it is necessary and sufficient that the Lie derivative of g vanishes, in par-
ticular 

0g∂ =L  .                                         (K2) 

The zero identity of the Lie derivative of the metric is represented alternatively 
by the Killing equations 

0K = ⇔ξ  (K2) 

⇔  (i) 0 g g g orµ ρ ρ
µ λκ ρκ λ λρ κξ ξ ξ∂ + ∂ + ∂ =  (K2i) 
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⇔  (ii) ( | )2 0 g g orµ ρ
µ λκ ρ κ λξ ξ∂ + ∂ =            (K2ii) 

⇔  (iii) ( ; )2 0µ γξ =           (K2iii) 

As differential equations for the Killing vector ξ  they are subject to the inte-
grability conditions 
(iv) 

                    
2 2

x x x x

µ µ

α β β α
ξ ξ∂ ∂

=
∂ ∂ ∂ ∂

                 or (K3i) 

(v)                    ; ; Rσ
α β γ σ γαβξ ξ= −                      or (K3ii) 

(vi) ; ; ( ) 0R R R R Rρ σ ρ ρ ρ ρ σ ρ σ
νµλκ ρ ρ σ νµλ κ ν µ νµκ λκλµ λκνξ ξ δ δ δ δ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅− − − + =

 
(K3iii) 

where kR ρ
λ ν
⋅⋅⋅  are the covariant and contravariant coordinates of the Riemann 

curvature tensor “Riemann (3,1)”  
Proof  : 

1st step   g g′→  by “pass” [ ( )]x x xµ µ α α β
αδ εξ′ ′= +  

(transformation close the identity)  ⇒ ( )dx x dxµ µ α α β µ
α µ µδ δ ε ξ′ ′ ⎡ ⎤= + ∂⎣ ⎦  

(infinitesimal transformation close to the identity or “cha-cha-cha” or “pullback” 

  2nd step   Choose the metric as the geometric object obj under consideration: 
2

2

( )

( ) ( ( )) [ ( ) ( ) ( )]

ds g x dx dx

g x g x x g x g x o

λ µ ν
µ ν

λ α α β β κ µ κ
µ ν µ ν αβ µ αβµεξ δ εξ ε

′ ′ ′
′ ′

′
′ ′ ′ ′ ′

⎤′ =
⎥ ⇒

= + = + ∂ + ⎥⎦
2 2[ { ( )}]ds g g g g o dx dxλ α β µ ν

µν λ µν αν µ µβ νε ξ ξ ξ ε′ = + ∂ + ∂ + ∂ +  
3rd step 

2 2

2
0

  

g g ds ds
d g g g

g g ds of above
λ α β

λ µν αν µ µβ νξ ξ ξ
⎤′ ′= =⎤

⇒ ⇒ + ∂ + ∂ =⎥⎥′→ ′⎦ ⎥⎦
 

       end  

The statements (ii) and (iii) follow directly from the symmetric permutation 
( ) ( ) / 2ab ab ba= +  as well as from the definition of the covariant derivative 
written by a semicolon and the Ricci Lemma ; 0gµν λ = . For geodetic use we 

present to you the Killing analysis of the sphere 2
rS  in Example 2-7 and of the 

ellipsoid of revolution 2
,a b E in Example 2-8. Finally we refer to related papers 

on the conformal group C  and its related Killing analysis which is basic for 
conformal mapping (conformal = morphism) and conformal field theory. 

Four remarks have to be made with respect to the definition of a symmetry trans-
formation which is based upon zero deformation of a geometric object under the 
action or the passivity of a symmetry transformation. Firstly, we have to reflect 
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the notion of  “symmetry”. Here the intuition is taking reference to the idea that a 
geometric object does not change under a transformation if there is some symme-
try. Secondly, the notion of deformation is known in topology. Alternative no-
tions for the statement that a geometric object dos not deform under the action or 
the passivity of a symmetry transformation are the following: A geometric object 
is equivariant or covariant with respect to a symmetry transformation or form 
invariant. Thirdly, the symmetry transformations are more precisely called 

transformation groups 

Following the axioms (G1), (G2), (G3) of a non-Abelian group of Appendix A. 
That is the group axioms apply without the axiom of commutativity (G4), in gen-
eral. Let us denote the algebraic binary operation “ ” applied to the transforma-
tions fI and fII respectively. If fI as well as fII are elements of a group, then by 
composition of functions fI  fII is an element of the group, a relation we identify 
as the axiom of closure. In addition, if  fI, fII, fIII are elements of the group, than 
the group axioms hold. 

1

( 1 )   ( ) ( )     ( )
( 2 )                                   ( )

( 3 )         ( )

I II III I II III

I II II I II I

G f f f f f f associativity
G id f f id f identity

G f f f f id f f inverse−

=
= =

= = ⇒ =

 

Fourthly the transformations groups are considered as differential manifolds rM  
of dimension r. The charts which cover the differential manifolds rM  are based 
on r coordinates which are called the parameters of the transformation group. 
For instance, if the transformation group is a proper rotation in a two-
dimensional Euclidean space, namely an element of SO2, then the proper rota-
tion matrix generates the one-dimensional manifold of type S1, a circle. The one 
parameter is the rotation angle. In this sense, a local symmetry transformation is 
called  

r-parametric, local Lie transformation group. 

2-7  Definition of a composition algebra 
Various algebras are generated by adding an additional structure to the minimal 
set of axioms of a linear algebra blocked by 1, 2 and 3. A special example is 
given by  

Definition 2-8 (composition algebra): 

A non-associative algebra with 1 as identity of inner multiplication is called 
composition algebra over R , if there exists a regular quadratic form 

:Q X → R  which is compatible with the corresponding operations that is the 
following operation hold:  

(K1) :Q X → R  is a regular quadratic form, 
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2

, , ,    

( ) ( )    ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( 1) [ ( ) ( )]
( ) 0 0   ( )

r

Q r r Q quadraticform
Q Q Q Q Q Q Q z
Q r r Q r r Q Q
Q regularity

∈ ∈

× = ×
+ + = + + + + + − − −
× + − × + = − × × −

= ⇔ =

x y z

x x
x y z x y x z y z x y

x y x y x y
x x

R R

 

(K2) ( ) ( ( )   ( )Q Q Q multiplicativityΛ = ×x y x y  

( ) 1Q =1  

The quadratic form introduced by Definition 2-8 leads to the topological notion 
of scalar products, norm and metric we already used:  

Lemma 2-9 (scalar product, norm, metric): 

In a composition algebra with a positive-definite quadratic form a scalar 
product (“inner product”) is defined by the bilinear form | :< ⋅ ⋅ > × *X X  
→ R  with 

1| : [ ( ) ( ) ( )];
2

Q Q Q< > = + − −x y x y x y  

a norm is defined by || ||:⋅ →X R  with  

[ ]1/ 2|| ||: ( )Q= +x x  

and metric is defined by the bilinear form 
1/ 2( , ) : [ ( )]Qρ = + −x y x y . 

Thus to the algebraic structure a topological structure is added, if in addition  

(K3) Q( ) 0≥x  

for all X∈x  holds. 

Proof: 

(i) scalar product 

| : X X< ⋅ ⋅ > × → R  is a scalar product since 

           (1)   1| [ ( ) ( ) ( )]
2

Q Q Q< >= + − − =x y x y x y  

                  1 [ ( ) ( ) ( )] |    ( )
2

Q Q Q symmetry= + − − =< >y x y x y x  

           (2)   1| [ ( ) ( ) ( )]
2

Q Q Q< + >= + + − + − =x y z x y z x y z  
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1 [ ( ) ( ) ( )]
2
1 [ ( ) ( ) ( )]
2

Q Q Q

Q Q Q

= + − − +

+ + − − =

x z x z

y z y z
 

                       | |    ( )additivity=< > + < >x z y z  

(3)  1| [ ( ) ( ) ( )]
2

r Q r Q r Q< = + − − =x y x y x y  

                                 1 [ ( ) ( ) ( )] |   
2

r Q Q Q r= + − − = < >x y x y x y (homogeneity) 

(4)   1| [ ( ) ( ) ( )]
2

Q Q Q< >= + − − =x x x x x x  

                                     1 [ (2 ) 2 ( )] ( ) 0   ( )
2

Q Q Q positivity= − = ≥x x x  

(ii) norm 

|| ||:⋅ →X R  is a norm since 

(N1)           [ ]1/ 2|| ||: ( ) 0Q= + ≥x x    (positivity) 

and 

                   || || 0= ⇔ =x x 0  

(N2)           [ ]
1/ 21/ 2 2|| || ( ) ( ) | | || ||r Q r r Q r⎡ ⎤= + = + = ×⎣ ⎦x x x x   (homogeneity) 

(N3)           [ ] [ ]1/ 2 1/ 2|| || ( ) ( ) ( ) 2 |Q Q Q+ = + + = + + + < > =x y x y x y x y  

                                  2 2 1/ 2[|| || || || 2 || || || || || || || || .= + + + ⋅ ≤ +x y x y x y  

 (Cauchy-Schwarz’ inequality) ”triangle inequality” 

(iii) metric 

:ρ × →X X R is a metric since 

(M1)      1/ 2( , ) [ ( )] || || 0Qρ = + − = − ≥x y x y x y  (positivity) 

and 

          ( , )ρ = ⇔ − = ⇔ =x y 0 x y 0 x y  

(M2)  ( , ) || || | 1 | || || ( , )yρ ρ= − = − ⋅ − =x x y y x y x    (symmetry) 

(M3)  ( , ) || || || ( ) ( ) ||ρ = − = − + − ≤x y x y x z z y     

                      || || || || ( , ) ( , )ρ ρ≤ − + − = +x z z x x z z y  (triangle inequality)         ♣ 
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2-8   Matrix algebra  as a division algebra 
While matrix algebra has been presented so far more intuitively with respect to 
linear algebra  we shall deviate this section exclusively to matrix algebra as a divi-
sion algebra over the field of real numbers. 

Example 2-8: Matrix algebra as a division algebra 

[ ] n m
ija ×= ∈A R  

1 , , , ( , ) :nm α∈ = +A B C A B A BR  

   

( 1 )      ( ) ( )
( 2 )             0
( 3 )               0
( 4 )               

G
G
G
G

+ + + = + +
+ + =
+ − =
+ + = +

A B C A B C
A A
A A
A B B A

 

 2 , ,   , ,   ( , ) :nm r s r rβ∈ ∈ = ×A B A AR R  
( 1 )      ( )
( 2 )      ( )
( 3 )      1

D r r r
D r s r s
D

+ × + = × + ×
+ + × = × + ×
+ × =

A B A B
A A A

A A
     

3  “multiplication of matrices” 

(i) “Cayley-product” (just “the matrix product”) 

           

1

[ ] ,   dim
: [ ] ,

[ ] ,   dim

dim        : .

n
ij nm

ijm
ij

ij ik k
k

a n
c

b m

n m c a b

×

×

=

⎤= ∈ = ×
⎥ ⇒ = ⋅ = ∈

= ∈ = × ⎥⎦

= × =∑

A A
C A B

B B

C

R
R

R
 

The product was introduced by A. Cayley: A memoir on the theory of ma-
trices, Phil. Trans. Roy. Soc. London 148 (1857) 17-37; see also his Col-
lected Works, Vol. 2, 475-496. A historical perspective is given in R. W. 
Feldmann: Matrix theory I: Arthur Cayley-founder of matrix theory, 
Mathematics Teacher 57 (1962) 482-484. 

(ii) “Kronecker-Zehfuß-product”  
[ ] ,   dim

: [ ] ,
[ ] ,   dim

dim ,       : [ ].

n m
ij kn m

ijk
ij

ij

a n m
c

b k

kn m b

×
×

×

⎤= ∈ = ×
⎥ ⇒ = ⊗ = ∈

= ∈ = × ⎥⎦
= × ⊗ =

A A
C B A

B B

C B A A

R
R

R  

The product was early referenced to L. Kronecker by C. C. MacDuffee: The 
theory of matrices (1933), reprint Chelsea Publ., New York 1946.  
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The other reference is J. G. Zehfuss: Über eine gewisse Determinante, Z. 
Mat. Phys. 3 (1858) 296-301. See also H. V. Hendersson, F. Pukelsheim and 
S. R. Searle: On the history of the Kronecker product, Linear and Multilinear 
Algebra 14 (1983) 133-120 and R. A. Horn and C. R. Johnson: Topics in ma-
trix analysis, chapter four, Cambridge University Press, Cambridge 1991. In 
order to discriminate the tensor product ⊗A B  of two tensors A and B from 
its matrix representation, J. Dauxois et al. (1994) propose the notation 

( ) KM ⊗⊗ =A B A B for the matrix representation of the tensor product where 
“ K

⊗ ”emphasizes the Kronecker-Zehfuss product. 

(iii) “Khatri-Rao-product” (two rectangular matrices of identical column 
number) 

1

[ ,..., ] ,   dim

[ ,..., ] ,   dim

: : [ ,..., ]
dim  .      

n m
i m

k m
i m

kn m
i m m

n m

k m

kn m

×

×

×

⎤= ∈ = ×
⇒⎥

= ∈ = × ⎥⎦

⇒ = = ⊗ ⊗ ∈
= ×

A a a A

B b b B

C B A b a b a
C

R

R

R  

Their product was introduced by C. G. Khatri and C. R. Rao: Solutions to 
some fundamental equations and their applications to characterization of 
probability distributions, Sankya A30 (1968) 167-180. 

(iv) “Hadamard product” (two rectangular matrices of the same dimension, 
element-wise product) 

,    dim
:

,    dim

n m
ij n m

ijm m
ij

g n m
k

h n m

×
×

×

⎤⎡ ⎤= ∈ = ×⎣ ⎦ ⎥ ⎡ ⎤⇒ = ∗ = ∈⎣ ⎦⎥⎡ ⎤= ∈ = ×⎣ ⎦ ⎦

G G
K G H

H H

R
R

R
 

dim ,   :   (  ).ij ij ijn m k g h no summation= × =K  

The product was introduced by J. Hadamard: Theoreme sur les series en-
tieres, Acta Math. 22 (1899) 1-28. See also Th. Moutard: Notes sur les 
equations derivees partielles, J. de l’Ecole Polytechnique 64 (1894) 55-
69, as well as  J. Hadamard: Lecons sur la propagardion des ondes et les 
equations de l’hydrodynamique, Paris 1893, reprint Chelsea Publ., New 
York 1949 and I. Schur: Bemerkungen zur Theorie der verschrankten Bi-
linearformen mit unendlich vielen Veraenderlichen, J. Reine und Angew. 
Math. 140 (1911) 1-28 and  R. A. Horn and C. R. Johnson: Topics in ma-
trix analysis, chapter five, Cambridge University Press, Cambridge 1991.  

In general the existence of the  Cayley product  ⋅A B  does not imply the 
existence of the  Cayley product ⋅B A . If both products exist, they are not 
equal in general. Two quadratic matrices A  and B  satisfying 
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⋅ = ⋅A B B A  are called commutative. A numerical example of the various 
products is the following: 

(i)  

2×3 3×2

2×2

2 3
1 2 3

, 4 5
4 5 6

6 7

28 34
 ("integer numbers").

64 79

⎡ ⎤
⎡ ⎤ ⎢ ⎥= ∈ = ∈ ⇒⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤
⇒ ⋅ = ∈⎢ ⎥

⎣ ⎦

A B

A B

Ζ Ζ

Ζ

 

 

(ii) 

2×3 3×2

6×6

1 2
1 2 3

, 3 4
4 5 6

5 6

1 2 3 2 4 6
4 5 6 8 10 12

1 2
3 6 8 4 8 12

[ 3 4 ]         
12 15 18 16 20 24

5 6
5 10 15 6 12 18
20 25 30 24 30 36

ijb
⎡ ⎤

⎡ ⎤ ⎢ ⎥ ⎡ ⎤= ∈ = ∈ ⇒ ⊗ = ⋅ =⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥= ⊗ = ∈⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

A B B A A

A

Ζ Ζ

Ζ

 

(iii)  

2×3 2×3

6×3

1 2 3
1 2 3

, 4 5 6
4 5 6

7 8 9

1 2 3
1 2 3

[ 4 , 5 , 6 ]
4 5 6

7 8 9

1 4 9
4 10 18
4 10 18

 ("integer numbers")
16 25 36
7 16 27
23 40 54

⎡ ⎤
⎡ ⎤ ⎢ ⎥= ∈ = ∈ ⇒⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⇒ = ⊗ ⊗ ⊗ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ∈⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A B

B A

Ζ Ζ

Ζ

 

(iv)  

2×3 2×3

2×3

1 2 3 2 3 4
,

4 5 6 5 6 7

2 6 12
  

20 30 42ij ijg h

⎡ ⎤ ⎡ ⎤
= ∈ = ∈ ⇒⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤⇒ ∗ = = ∈⎢ ⎥⎣ ⎦ ⎣ ⎦

G H

G H

Ζ Ζ

Ζ
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( 1 ) ( ) ( )
(i1) ( 1 ) ( ) , ( )

( 2 ) ( ) ( ) , ( )T T T

G
D

D r r

⋅ ⋅ ⋅ = ⋅ ⋅
⋅ + ⋅ + = ⋅ + ⋅ + ⋅ = +

⋅× × ⋅ = × ⋅ ⋅ =

A B C A B C
A B C A B A C A B C AC BC

A B A B A B B A

 

 

( ) ( )

( ) ( )

( 1 ) ( ) ( )
( 1 ) ( ) )

( 1) ( 1 ) ( )
( 2 ) ( ) ( )

( ) ( )

( )T T T

G
D

ii D r
D r r

⊗ ⊗ ⊗ = ⊗ ⊗ = ⊗ ⊗
⊗ + + ⊗ = ⊗ + ⊗
⊗ + ⊗ + = ⊗ + ⊗
⊗ × × ⊗ = × ⊗

⊗ ⋅ ⊗ = ⋅ ⊗ ⋅

⊗ = ⊗

A B C A B C A B C
A B C A C B C
A B C A B A C

A B A B
A B C D A C B D

A B B A

 

( ) ( )

( 1 ) ( ) ( )
( 1 ) ( )

(iii1) ( 1 ) ( )
( 2 ) ( ) ( )

( ) ( )

G
D l
D r
D r r

= =
+ + = +
+ + = +
× × = × ⊗

⋅ ⋅ = ⊗ ⋅

A B C A B C A B C
A B C A C B C

A B C A B A C
A B A B

A C B D A B C D

 

( )
( )
( ) ( ) ( ) ( ) ( )1 1 1 2 2 2 1 2 1 2 1 2

( 4 )
(iv1) ( 1 ) ( )

( 1 )
T

G
G
D

∗ ∗ = ∗
∗ ∗ ∗ = ∗ ∗ = ∗ ∗
∗ + ∗ = ∗ + ∗

⋅ ⋅ ∗ ⋅ ⋅ = ⋅ ⋅ ⊗ ⋅

A B B A
A B C A B C A B C

A B C A C B C

A B C A B C A A B B C C

 

4  Based on quadratic, non–singular matrices ,  ,  n n×∈A B C R , dim =A  
dim dim n n= = ×B C  the following division-algebra with respect to the 
Cayley-product is set-up. 

[ ]ija=A , [ ]ijb=B , [ ]ijc=C  

( 1 ) ( ) ( )G ⋅ ⋅ ⋅ = ⋅ ⋅A B C A B C  

( 2 )G ⋅ ⋅ =A I A  
1( 3 )G −⋅ ⋅ =A A I  

The non-singular matrix 1 , dim n n− = = ×A B B  the inverse matrix of A 
also called the Cayley-inverse, fulfils both equivalent conditions 

n n⋅ = ⇔ ⋅ =A B I B A I . 

The Cayley-inverse is left-and right-identical. A constructive represen-
tation of the Cayley-inverse is 

1

det
adj− =

AA
A
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with respect to the adjoint matrix adjA . adj A is generated as following: 
When from A the elements of its ith row and jth column are removed, the 
determinant of the remaining (n-1)-quadratic matrix is called a first minor 
of A and denoted by |Mij|. The signed minor (-1)i+j|M|=:αij is called the 
cofactor of aij. Then by definition adjA=[αij]T. A numerical example is 

11 21 31
3 3

12 22 32

13 23 33

1 2 3
2 3 2 ,
3 3 4

adj
α α α
α α α
α α α

×

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= ∈ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

A Z A  

α11=6, α12=-2, α13=-3, α21=1, α22=-5, α23=3, α31=-5, α32=4, α33=-1 

1

6 1 5
2 5 4 ,det 7
3 3 1

6 1 5
1/ det 2 5 4
7

3 3 1

T

ijadj

adj

α

−

−⎡ ⎤
⎢ ⎥⎡ ⎤= = − − = −⎣ ⎦ ⎢ ⎥
⎢ ⎥− −⎣ ⎦

−⎡ ⎤
⎢ ⎥= = − − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

A A

A A A

 

2-9 Complex algebra as a division algebra as well as a composition            
algebra, Clifford algebra C (0,1)  

Example 2-4: Complex algebra as a division algebra as well as a composition 
algebra, Clifford algebra, C (0,1)  

The “complex algebra” C  due to C. F. Gauss is a division algebra over R  as 
well as a composition algebra. 

{ }
{ }

0 1 0 1 2
0 1

1

 subject to ,

1,

e e x x

span

∈

= + ∈

=

x

x x x

e

C
R

C

 

 1  2, , ∈x y z R  

( , ) :α = +x y x y  

The axioms (G1+), (G2+), (G3+), (G4+) of an Abelian group apply. 

 2  2, , , ,r s∈ ∈x y z R R  
( , ) :r rβ = ×x x . 

The axioms (D1+), (D2+), (D3) of additive distributivity apply. 

 3  One way to explicitly describe a multiplicative group with finitely many 
elements is to give a table listing the multiplications just representing the 
map :γ × →C C C  

multiplication diagram, Cayley diagram 
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 1 1e  
1 1 1e  
1e  1e  -1 

Note that in the multiplication table each entry of a group appears exactly 
once in each row and column. The multiplication has to be read from the left 
to right  that is the entry at the intersection of the row headed by 1e  and the 
column headed by 1e  is the product  1e * 1e . Such a table is called a Cayley 
diagram of the multiplicative group. Here note in addition the associativity of 
the internal multiplication given in the table. Such a “ complex algebra” C  is 
not a lie algebra since neither 0∗ =x x  (L1) nor ( )∗ ∗ +x y z  
( )∗ ∗ +y z x ( ) 0∗ ∗ =z x y (Jacobi identity) (L2) hold. Just by means of the 
multiplication table compute 

0 2 1 2 0 1
1=1{( ) -( ) }+2 0∗ ≠x x x x e x x . 

4 Begin with the choice  
1 0 1

10 2 1 2

1 ( )
( ) ( )

− = −
+

x 1x e x
x x

 

in order to end up with 
0 1

1 0 1 1
1 0 2 1 2

( )* ( ) 1
( ) ( )

− −
= + ∗ =

+
1x e xx x 1x e x
x x

 

accordingly (G1 ), (G2 ), (G3 )∗ ∗ ∗  of a division algebra apply. 

 5  Begin with the choice 
0 1 0 2 1 2

1( ) (1 ) : ( ) ( )Q Q= + = +x x e x x x  

In order to prove (K1), (K2) and (K3). We only focus on (K2i): 

( ){ }

{ } { }

0 0 1 1 1 0 0 1
1

0 2 0 2 1 2 1 2 1 2 0 2 0 2 1 2

0 2 1 2 0 2 1 2

0 2 0

( ) ( ) ( )    (multiplicativity)

( )     1 ( )

                  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

                  ( ) ( )

Q Q Q

Q Q x y x y e x y x y

x y x y x y x y

Q Q x x y y

x y

∗ = ×

∗ = − + + =

= + + +

× = + × + =

=

x y x y

x y

x y
2 1 2 1 2 1 2 0 2 0 2 1 2( ) ( ) ( ) ( ) ( ) ( )x y x y x y+ + +

 

( ) ( ) ( )    (q.e.d.)Q Q Q∗ = ×x y x y  

How can be dream about such a complex algebra C  ? C. F. Gauss (Theoria 
residorum biquadraticum, commentatio secunda, Göttingische gelehrte An-
zeigen 1831, Werke vol. II (pages 169-178, Göttingen (1887) had been moti-
vated in his number theory to introduce complex numbers with : 1i = −  as 
the “imaginary unit”. Identify 01x  with the “real part” and 1 1

1 i=e x x  with 
the “imaginary part” of x  and we are left with the standard theory of       
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complex numbers. 1−x  is based upon the complex conjugate 0 1
1-1x e x  of x 

being divided by the norm of x. There is a remarkable isomorphism between 
complex numbers and complex algebra. The proper algebraic interpretation 
of complex numbers is in terms of Clifford algebra C (0,1) . Ob-
serve 1 1g( , ) 1= −e e  which interprets the binary operation of the base vector 
which spans the vector part of a complex number. Now translate the multi-
plication table into the language of the Clifford product namely 

1 11 1 1, 1∗ ∗∧ = ∧ =e e  

1 1 1 11 , 1∗ ∗∧ = ∧ = −e e e e  

in order to convince yourself that the Clifford algebra C (0,1)  is algebrai-
cally isomorphic to the space of complex numbers.                                       ♣ 

How can we relate complex numbers to Clifford algebra 1C ? Observe  
1 1g( , ) 1= −e e  which interprets the binary operation of the base vector which 

spans the vector part of a complex number. While the scalar part of complex 
number is an element of 0A ,  its vector part can be considered to be an ele-
ment of 1A . The direct sum 

0 1⊕A A  

of spaces 0 1,A A  is algebraically isomorphic to the space of complex num-
bers, being an element of the Clifford algebra 1C .                                      ♣ 

2-10 Quaternion algebra as a division algebra as well as composition        
algebra, Clifford algebra C (0,2)  

Example 2-5: Quaternion algebra as a division algebra as well as composi-
tion algebra, Clifford algebra C (0,2)  

The “quaternion algebra” H  due to W. R. Hamilton (1843) is a division al-
gebra over R  as well as a composition algebra:  

{ }
{ }

0 1 2 3 0 1 2 3 4
1 2 3

1 2 3

      , , ,

span 1, , ,

x x x x subject to x x x x

∈

= + + + ∈

=

x

x 1 e e e

e e e

H
R

H

 

1                 4, , ∈x y z R  

( , ) :α = +x y x y . 

The axioms (G1+), (G2+), (G3+), (G4+) of an Abelian additive group apply. 

2           4, , ,r s∈ ∈x y R R  

( , ) :r rβ = ×y x . 

The axioms (D1+), (D2+), (D3) of additive distributivity apply. 
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3 One way to explicitly describe a multiplicative group with finitely many 
elements is to give a table listing the multiplications just representing the 
map :γ × →H H H . 

multiplication table, Cayley diagram 
 

 1 1e  2e  3e  
1 1 1e  2e  3e  

1e  1e  -1 3e  - 2e  
2e  2e  3e  -1 e1 

3e  3e  2e  - 1e  -1 . 

Note that in the multiplication table each entry of a group appears exactly 
once in each row and column. He multiplication has to be read from left to 
right that is, the entry at the intersection of the row headed by 1e  and the col-
umn headed by 2e  is the product 1 2∗e e . Such a table is called a Cayley dia-
gram of the multiplicative group.  

Here note in addition associativity of the internal multiplication given by the 
table, e. g.  1 2 3 1 1 3 3 3( ) 1 ( )∗ ∗ = ∗ = − = ∗ ∗e e e e e e e e  or 

3
0 0 0 0

1 , ,

* 1( ) ( )k k k k k i j
k ij

k i j k

x y x y x y x y x yε
=

= − + + +∑ ∑x y e  

such that ( ) ( ).∗ ∗ = ∗ ∗x y z x y z  Such a “Hamilton algebra” H  is  not a lie 
algebra since neither 0∗ =x x  (L1) nor ( ) +( ) +( ) ) 0∗ ∗ ∗ ∗ ∗ ∗ =x y z y z x z x y  
(L2) (Jacobi identity) hold. Just by means of the multiplication table compute 

0 2 1 2 2 2 3 2 0 1 0 2 0 3
1 2 3* 1{( ) ( ) ( ) ( ) } 2 2 2 0x x x x x x x x x x= − − − + + + ≠x x e e e  

 4  Begin with the choice 
1 0 1 2 3

1 2 30 2 1 2 2 2 3 2

1 (1 )
( ) ( ) ( ) ( )

x x x x
x x x x

− = − − −
+ + +

x e e e  

in order to end up with  
0 1 2 3

1 0 1 2 3 1 2 3
1 2 3 0 2 1 2 2 2 3 2

1* (1 ) 1
( ) ( ) ( ) ( )

x x x xx x x x
x x x x

− − − +
= + + + ∗ =

+ + +
e e ex x e e e . 

Accordingly (G1*),(G2*), (G3*) of a division algebra apply. 

 5 Begin with the choice 
0 1 2 3 0 2 1 2 2 2 3 2

1 2 3( ) (1 ) : ( ) ( ) ( ) ( )Q Q x x x x x x x x= + + + = + + +x e e e  

in order to prove (K1), (K2) and (K3).  

The laborious proofs are left as an exercise. 
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How can one dream about such a “quaternion algebra” H  ? W. R. Hamilton 
(16 Oct 1843) invented quaternion numbers as outlined in a letter (1865) to 
his sun A. H. Hamilton for the following reason: 

“If I may be allowed to speak of myself in connection with the sub-
ject, I might do so in away with would bring you in, by referring to 
an antiquaternionic time, when you were a mere child, but had 
caught from me the conception of a Vector, as represented by a Trip-
let; and indeed I happen to be able to put the finger of memory upon 
the year an month – October, 1843 – when having recently returned 
from visits to Corp and Parsonstown, connected with a Meeting of 
the British Association, the desire to discover the laws of the multi-
plication referred to regained with me a certain strength and earnest-
ness, with had for years been dormant, but was then on the point of 
being gratified, and was occasionally talked of with you. Every 
morning in the early part of the above cited month, on my coming 
down to breakfast, your (then) little brother William Edwin, and 
yourself, used to ask me, “well, Papa, can you multiply triplets”? 
Were to a was always obliged to reply, with a sad shake of the head: 
“no, I can only add and subtract then”. 

But on the 16th day of the same month –with happened to be a Mon-
day, and a Council day of the Royal Irish Academy – I was walking 
in to attend and preside, and your mother was working with me, 
along the Royal Canal, to which she had perhaps driven; and al-
though she talked with me now and then, yet an under-current of 
thought was going in my mind, which gave at last a result, were of  
it is not to much to say that I felt at once the importance. An electric 
circuit seemed to closed; and the spark flashed fort. The herald (as I 
fore saw, immediately) of many long years to come of definitely di-
rected thought and work, by myself if spared, and at all evens on the 
parts of others, if should even be allowed to live long enough dis-
tinctly to communicate the discovery. Nor could I resist the impulse 
– as philosophical as it may have been – to cut with a knife on a 
stone of Brougham Bridge, as we passed it, the fundamental formula 
with the symbols, i, j, k  namely  

2 2 2 -1= = = =i j k ijk  
which contains the Solution of the problem, but of course, as an in-
scription, has long since moldered away. A more durable notice re-
mains, however, on the Council Books of the Academy for that day 
(Oct 16th, 1843), which records the fact, that I then asked for and ob-
tained based to read a Paper on Quaternion, ad the First General 
Meeting of the Session: which reading took place accordingly, on 
Monday the 13th of the November following.” 
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Obviously the vector part 1 2 3 1 2 3
1 2 3  x x x x x x+ + = + +e e e i j k  of a quaternion 

number replaces the imaginary part of a parted of a  complex number, the 
scalar part 1x0 the real part. The quaternion conjugate 

3

1

1 : *k
k

k

x x
=

− =∑e x  

Substitutes the complex conjugate of the complex number, leading to the qua-
ternion inverse 

1 *
( )Q

− =
xx

x
. 

The proper algebraic interpretation of quaternion numbers is in terms of Clif-
ford algebra C (0,2) . If dim 2n = =X  is the dimension of the linear space 
X  which we base the Clifford algebra on, its bases elements are 

1 2 1 2{1, , , }
∗
∧e e e e  

subject to  

1 2 2 1 0,
∗ ∗
∧ + ∧ =e e e e  

1 1 1 2 2 2 2 2( , )1 -1, ( , ) -1,g g
∗ ∗
∧ = = ∧ = =e e e e e e e e  

2
2 2 1 2 1 2 2 1 1 1 2 2( ) ( ) ( ) - ( ) -1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∧ = ∧ ∧ ∧ = ∧ ∧ ∧ = + ∧ =e e e e e e e e e e e e  

2 2 1 2 1 1 2( ) - ( )
∗ ∗ ∗ ∗
∧ ∧ = ∧ ∧ =e e e e e e e  

2 2 2 1 2 2 1( ) ( ) -
∗ ∗ ∗ ∗
∧ ∧ = ∧ ∧ =e e e e e e e  

and 

13 2:
∗

= ∧e e e  
by classical notation. Obviously 

0 1 2 3
1 2 1 21 C (0,2)x x x x

∗
= + + + ∧ ∈x e e e e  

is  an element of Clifford  algebra C (0,2) . 

There is an algebraic isomorphism between the quaternion algebra H  of 
vectors  and the  quaternion algebra of the matrices, namely either 4 4( )×M R  
of 4 4×  real matrices or 2 2( )×M C  of 2 2×  complex matrices. 

Firstly we define the 4 4×  real matrix basis E and decompose it into the four 
constituents 0 1 2 3, , ,  of 4 4×Σ Σ Σ Σ  of real Pauli matrices which form a 
multiplicative group of the multiplication table of Hamilton type  
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1 2 3

1 3 2 4 4
0 1 1 2 2 3 3

2 3 1

3 2 1

1
1

1
1

1

×

⎡ ⎤
⎢ ⎥− −⎢ ⎥= = + + + ∈
⎢ ⎥− −
⎢ ⎥− −⎢ ⎥⎣ ⎦

e e e
e e e

E Σ e Σ e Σ e Σ
e e e
e e e

R  

0 1

1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0

, ,
0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Σ Σ  

2 3

0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0

,
1 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

Σ Σ  

multiplication table, Cayley diagram  
  

 0Σ  1Σ  2Σ  3Σ  
0Σ  0Σ  1Σ  2Σ  3Σ  
1Σ  1Σ  - 0Σ  3Σ  - 2Σ  
2Σ  2Σ  - 3Σ  - 0Σ  1Σ  
3Σ  3Σ  2Σ  - 1Σ  - 0Σ  

or 
{ }

{ }
0 0 0 0 0

0

,            for all 1,2,3

                     for all , , 1,2,3
i i i

i j ij ijk k

i

i j kδ ε

= = = ∈

= − + ∈

Σ Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ
 

Let ( )4 4, , , Hamilton×∈A B C M R  continued by means of 

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

:

a a a a
a a a a
a a a a
a a a a

⎡ ⎤
⎢ ⎥− −⎢ ⎥ =
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

A  

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

:

b b b b
b b b b
b b b b
b b b b

⎡ ⎤
⎢ ⎥− −⎢ ⎥ =
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

B  

such that the Cayley-product 
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( )
1 2 3 4

2 1 4 3 4 4

3 4 1 2

4 3 2 1

1 1 1 2 2 3 3 4 4

2 1 2 2 1 3 4 4 3

3 1 3 2 4 3 1 4 2

4 1 4 2 3 3 2 4 1

: ,

c c c c
c c c c

Hamilton
c c c c
c c c c

c a b a b a b a b
c a b a b a b a b
c a b a b a b a b
c a b a b a b a b

×

⎡ ⎤
⎢ ⎥− −⎢ ⎥= = ∈
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

= − − −
= + + −
= − + +
= + − +

AB C M R

 

fulfilling the axioms ( ) ( ) ( )1 , 2 , 3G G G  of a non-Abelian multiplicative 
group, namely 

( )
( )
( ) -1

1   ( ) = ( )   ( )

2   =                   ( ) 

3   =                ( ),

G associativity

G identity

G inverse

AB C A BC

AI A

AA I

 

but ( )4G  does not apply, in particular 
2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4det , det

(det ) (det )(det ).
a a a a b b b b= + + + = + + +

=
A B

AB A B
 

Secondly, we define the 2 2×  complex matrix basis E  and decompose it into 
the four constituents 0 1 2 3, , ,Σ Σ Σ Σ  of  2 2×  complex Pauli matrices which 
form a multiplicative group of the multiplication table of Hamilton type 

1 2 3 0 1 2 3 2 2
1 2 3

2 3 1

1
: 1

1
i i

i i
×+ +⎡ ⎤

= = + + + ∈⎢ ⎥− + −⎣ ⎦

e e e
E Σ e Σ e Σ e Σ

e e e
C  

0 1

2 3

1 0 0
: , : ,

0 1 0

0 1 0
: , :

1 0 0

i
i

i
i

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

Σ Σ

Σ Σ
 

multiplication table, Cayley diagram    
 

 0Σ  1Σ  2Σ  3Σ  
0Σ  0Σ  1Σ  2Σ  3Σ  
1Σ  1Σ  - 0Σ  3Σ  - 2Σ  
2Σ  2Σ  - 3Σ  - 0Σ  1Σ  
3Σ  

3Σ  2Σ  - 1Σ  0Σ  

Note that 2 2E ×∈C  is “Hermitean”. Let 2 2, , ( , )Hamilton×∈A B C M C  consti-
tuted by means of  
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1 2 3 4

3 4 1 2
:

a ia a ia
a ia a ia

+ +⎡ ⎤
=⎢ ⎥− + −⎣ ⎦

A  

1 2 3 4

3 4 2
:

1
b ib b ib
b ib b ib

+ +⎡ ⎤
=⎢ ⎥− + −⎣ ⎦

B  

such that the Cayley-product 

1 2 3 4 2 2

3 4 1 2
: ( , )

c ic c ic
Hamilton

c ic c ic
×+ +⎡ ⎤

= = ∈⎢ ⎥− + −⎣ ⎦
AB C M C  

det( ) det( )det( )= =AB A B  
2 2 2 2 2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4 1 2 3 4( )( )a a a a b b b b c c c c= + + + + + + = + + +  

1 2 1 2 1 2 3 4 3 4

1 1 2 2 3 3 4 4 1 2 2 1 3 4 4 3

( )( ) ( )( )
( )

c ic a ia b ib a ia b ib
a b a b a b a b i a b a b a b a b

+ = + + + + − + =
= − − − + + + −

 

3 4 1 2 3 4 3 4 1 2

1 3 2 4 3 1 4 2 1 4 2 3 3 2 4 1

( )( ) ( )( )
( )

c ic a ia b ib a ia b ib
a b a b a b a b i a b a b a b a b

+ = + + + + − =
= − + + + + − +

 

fulfilling the axioms ( 1 ), ( 2 ), ( 3 )G G G  of a non-Abelian multiplicative 
group. The spinor 

1 1

2 3 2

1
:

i s
s

i s
+⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦

e
e e

 

as a vector of length zero relates to the 2 2×  complex matrix basis by 

                                                   1 2

2 1

s s

s s∗ ∗

⎡ ⎤
= ⎢ ⎥

−⎣ ⎦
E .  ♣                 

Example 2-6: Octonian algebra as a non-associative algebra as well as a 
composition algebra, Clifford algebra with respect to ×H H  

The octonian algebra O  also called “the algebra of octaves” due to J. T. 
Graves (1843) and A. Cayley (1845) is a composition algebra over R  as well 
as a non-associative algebra: 

∈x O   
 0 1 2 3 4 5 6 7

1 2 3 4 5 6 71x x x x x x x x= + + + + + + +x e e e e e e e  
subject to  

{ }1 2 6 7 8, ,..., ,x x x x ∈R  

{ }1 2 3 4 5 6 71, , , , , , ,span = e e e e e e eO  

1  8, , ∈x y z R  
( , ) :α = +x y x y  
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 The axioms ( 1 ), ( 2 ), ( 3 ), ( 4 )G G G G+ + + +  of an Abelian additive group    
apply. 

2   
8, ,      ,

( , ) :
r s

r rβ
∈ ∈

= ×
x y

x x
R R  

 The axioms ( 1 ), ( 2 ), ( 3)D D D+ +  of  additive distributivity apply. 

3  One way to explicitly describe a multiplicative group with finitely many 
elements  is to give a table listing the multiplications just representing 
the map :γ × →O O O . 

multiplication table, Cayley diagram 
 

 1  e1  e2   e3 e 4   e 5   e 6 e 7 
1 1  e 1  e 2   e 3   e 4  e 5  e 6 e 7 
e 1 e 1 -1  e 3 - e 2   e 5 - e 4 - e 7 e 6 
e 2 e 2 - e 3 -1  e 1 - e 6   e 7 - e 4 - e 5 
e 3 e 3  e 2 - e 1 -1  e 7 - e 6  e 5 - e 4 
e 4 e 4 - e 5 - e 6 - e 7 -1 - e 1 - e 2 - e 3 
e 5 e 5  e 4 - e 7  e 6 - e 1 -1 - e 3 e 2 
e 6 e 6  e 7  e 4 - e 5 - e 2  e 3 -1 - e 1 
e 7 e 7 - e 6  e 5  e 4 - e 3 - e 2  e 1 -1 

Note that in the multiplication table each entry of a group appears exactly 
once in each row and column. The multiplication has to be read from left 
to right that is, the entry at the intersection of the row headed by e5 is the 
product 3 5∗e e . Such a table is called a Cayley diagram of the multi-
plicative group. 
Note the non-associativity of the internal multiplication given by the ta-
ble, e.g. 2 3 4 2 3 4( ) ( )∗ ∗ ≠ ∗ ∗e e e e e e , namely by means of 3 4∗ =e e  

7 2 3 4 2 7 5, ( )∗ ∗ = ∗ = −e e e e e e e   versus 2 3 1,∗ =e e e  2 3 4( )∗ ∗e e e  

1 4 5= ∗ = +e e e . Such an “octonian algebra” O  is not a  Lie algebra since 
neither 0 ( 1)∗ =x x L  nor ( ) ( ) ( ) 0 ( 2)∗ ∗ + ∗ ∗ + ∗ ∗ =x y z y z x z x y L  
(Jacobi identity) hold. Just by means of the multiplication table compute  

2 3 4 3 4 2 4 2 3 5( ) ( ) ( ) 0∗ ∗ + ∗ ∗ + ∗ ∗ = ≠e e e e e e e e e e  

4  does not apply.  

5  Begin with the choice    
( ) 0 1 6 7 0 2 1 2 6 2 7 2

1 6 7(1 ... ) ( ) ( ) ... ( ) ( )Q Q x e x e x e x x x x x= + + + + = + + + +x  
in order to prove (K1), (K2), (K3). The laborious proofs are left as an exer-
cise. 

The proper algebraic interpretation of octonian numbers is in terms of Clif-
ford algebra, namely with respect to the eight dimensional set 2:× =H H H  
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where H  is the usual skew field of Hamilton’s quaternions, algebraically 
isomorphic to C (0,2) . Indeed it would have temptation to base “octonian 
algebra” O  on  C (0,3) , dim 3C (0,3) 2 8= = , but its generic elements 

1 2 3 1 2 2 3 3 1 1 2 3{1, , , , , , , }
∗ ∗ ∗ ∗ ∗
∧ ∧ ∧ ∧ ∧e e e e e e e e e e e e  

are not representing the octonian multiplication table e.g. 
2

1 2 3 1 2 3 1 2 3( ) ( , )g
∗ ∗ ∗ ∗ ∗ ∗
∧ ∧ = ∧ ∧ ∧ ∧ =e e e e e e e e e  

1 2 3 1 2 3( ) ( )
∗ ∗ ∗ ∗ ∗

= ∧ ∧ ∧ ∧ ∧ =e e e e e e  

1 2 1 3 2 3 1 2 1 2 3 3( )
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

= − ∧ ∧ ∧ ∧ ∧ = ∧ ∧ ∧ ∧ ∧ =e e e e e e e e e e e e  

1 2 1 2 1 2 2 1( )
∗ ∗ ∗ ∗ ∗ ∗

= − ∧ ∧ ∧ = − ∧ ∧ ∧ =e e e e e e e e  

2 1( ) 1
∗

= − ∧ = +e e  
In contrast, let us introduce the pair 

{ }: ( , ) | ,= ∈ ∈ ∈x a b a bX H H  

1             

2 2 2, ,
( , ) :

( , ).
α

′ ′′∈ ∈ ∈
′ ′= +

′ ′ ′+ = + +

x x x
x x x x

x x a a b b

H H H
 

The axioms ( 1 ), ( 2 ), ( 3 ), ( 4 )D D D D+ + + + of an Abelian additive group apply. 

2     

2, , ,
( , ) :

( , ).

r r
r r

r r r
β
′ ′∈ ∈

= ×
× = × ×

x x
x x

x a b

H R
 

The axioms ( 1 ), ( 2 ), ( 3)D D D+ +  of additive distributivity apply. 

3   

2 2,
( , ) :

: ( , )
γ

′∈ × = ∈ × =
′ ′= ∗

′ ′ ′ ′ ′∗ = − +

x x
x x x x

x x aa b b b a ba

H H H H H H
 

,a b  denote the conjugate of ,∈ ∈a bH H , respectively. If ( , ), ( , )′ ′a b a b  
are represented by 

3 3 3 3
0 0

1 1 1 1

(1 , 1 ), (1 , 1 )i j i j
i j i j

i j i j

α α β β α α β β′ ′
′ ′= = = =

′ ′ ′ ′+ + + +∑ ∑ ∑ ∑e e e e  

respectively, where 

1 2 1 2 3

1 2 1 2 3 5 6 7

{1, , , }

{1 , , , } {1 , , , }

span
or

span

∗

∗

′ ′ ′ ′ ′

= ∧ =

′ ′= ∧ = =

e e e e e

e e e e e e e e

H

H
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the “octonian product”  ′∗x x  results in 
′∗ =x x  

3
0 0 0 0

1

(1[ ( )]k k k k

k

α α β β α α β β
=

′ ′ ′ ′− − − +∑  

3
0 0

, , 1

[ ( )],k k k i j j i
k ij

i j k

e eα β α β α α β β
=

′ ′+ + + −∑  

3
0 0 0 0

1

1[ ( )]k k k k

k

α β α β α β α β
=

′ ′ ′ ′− − − +∑  

3
0 0

, , 1

[ ( )])k k k j i j i
k ij

i j k

e eα β α β α β α β
=

′ ′ ′ ′+ + + −∑ . 

the axioms ( 1* ), ( 2* )D D+ ×  of distributivity apply. The pair (1,0) is the 
neutral element. 

4 Begin with the choice of 
        (1st)      2: ( , )  of   - the transpose= − ∈x a b x H                                      

                            (2nd)    ( )  or * ( + , 0)Q∗ = =x x x x x aa bb    

 (3rd)     1   if  0
( )Q

− = ≠
xx x
x

 

in order to end up with 
1 1−∗ =x x . 

A historical perspective of octonian numbers is given by B. L. van Waerden: 
Hamilton’s discovery of quaternions, Mathematical Magazine 49 (1976) 227-
234. Reference is made to J. T. Graves: Transactions of the Irish Academy 21 
(1848) 338- and A. Cayley: Collected Mathematical Papers, vol. 1, page 127 
and vol.11, pages 368-371.                                                               ♣ 

The exceptional role of the examples 1-10, 1-11 and 1-12 on complex, quater-
nion and octonian algebra illustrating Clifford algebra C (0,1), C (0,2)  as well 
as Clifford algebra with respect to 2H  is established by the following theorems: 

Theorem 2-1 (“Hurwitz’ theorem of composition algebras “): 

 A complete list of composition algebras over R  consists of 

(i) the real numbers R , 

(ii) the complex numbers C  , 

(iii) the quaternions H  , 

(iv) the octonians O  . 
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Theorem 2-2 (“Frobenius’ theorem of division algebras “): 

The only finite-dimensional division algebra over R  are 

(α) the real numbers R , 

(β) the complex numbers C , 

(γ) the quaternions H . 

Historical Aside 

For details consult the historical texts A. Hurwitz: “Über die Composition der 
quadratischen Formen von beliebig vielen Variablen, Nachrichten Ges. Wiss. 
Göttingen (1898) 309-316, G. Frobenius: “Über lineare Substitutionen und 
bilineare Formen, Crelle’s J. Reine angewandte Math. 84” (1878) 1 - 63 as 
well as U. Haslet: on the theory of associative division algebras, Trans. 
American Math. Soc. 18 (1917) 167-176. A more recent reference is N. Ja-
cobson (1974, pages 425 and 430). 



 

 

 
 
 
Chapter 3  
The algebra of antisymmetric and symmetric 
tensor-valued functions 
 
While we already introduced the decompositions of multilinear functions into 
symmetric, antisymmetric and residual multilinear functions, we shall treat the 
algebra of antisymmetric and symmetric tensor-valued functions in more detail, 
here. The algebra of antisymmetric multilinear functions, also called Grassmann 
algebra, exterior algebra, is built on (i) the four axioms (G1+), (G2+), (G3+), 
(G4+), internal relations of type additions, (ii) the three axioms (D1x+), (D2+x), 
(D3+), external relations of type multiplication, namely distributivity, and (iii) 
the five axioms (G1∧), (D1∧+), (D2∧+), (D3∧x), (G4∧), internal relations of 
type exterior product, namely associativity, distributivity and anticommutativity. 
By means of Corollary 3-1 we give the dimension of space of antisymmetric 
multilinear functions as well as the dimensions of the direct sum of the spaces of 
antisymmetric multilinear functions. Corollary 3-2 states the induced metric of 
an antisymmetric multilinear function. Example 3-1 is an extensive review of 
generating the normal form of an antisymmetric multilinear function, namely the 
decomposition into p-vectors, also called product sum decompositions. Alterna-
tively the name “blades” is used. Finally the algebra of symmetric multilinear 
functions, also called interior algebra, is constructed by (i) the four axioms 
(G1+), (G2+), (G3+), (G4+), internal relations of type addition, (ii) the three 
axioms (D1+), (D2+), (D3+), external relations of type multiplication, namely 
distributivity, and (iii) the five axioms (G1∧), (D1∧+), (D2∧+), (D3∧x), (G4∧), 
internal relations of type interior product, namely associativity, distributivity and 
commutativity. The dimension of the space of symmetric multilinear functions as 
well as the dimension of the direct sum of the spaces of symmetric multilinear 
functions is summarized in Corollary 3-3. 

3-1 Exterior Algebra, Grassmann Algebra 

So prepared we shall structure The algebra of antisymmetric and symmetric ten-
sor-valued functions. Let us begin with exterior algebra. 

Definition 3-1:  (Grassmann algebra, antisymmetric algebra, exterior 
algebra, algebra of antisymmetric multilinear functions): 
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In terms of a general coordinate base * 1{ ,... }nspan= b bX  let 
t, ,p rα β γ∈ ∈ ∈A A A  be antisymmetric multilinear functions            

on a linear space X , namely 
*

1

1

1

dim

,...,
,..., 1

1 ... ( )
!

p

p

p

n
ii p

i i
i ip

α α
=

∗

=

= ∧ ∧ ∈∑ b b A
X

X  

*

1

1

1

dim

,...,
,..., 1

1 ... ( )
r!

r

r

r

n
j j b

j j
j j

β β
=

∗

=

= ∧ ∧ ∈∑ b b A
X

X  

*

1

1

1

dim

,...,
,..., 1

1 ... ( )  
t!

t

t

t

n
kk t

k k
k k

γ γ
=

∗

=

= ∧ ∧ ∈∑ b b A
X

X  

An antisymmetric multilinear algebra over R  (also called Grassmann 
algebra or exterior algebra) as a graded R -algebra consists of an pA , 
two internal relations (addition and inner multiplication) 

: ,p p p+ × → ∧A A A : p p p r+× →A A A   and one external relation (ex-
ternal multiplication) : p p× →x A AR  where the following properties 
hold. 

first: addition 
, , pα β γ ∈ A , “+” (internal relation of type addition) 

( 1 )   ( ) ( )     (   )
( 2 )   0                             (   )
( 3 )   0                            (   )
( 4 )        

G associativity of addition
G identity of addition
G inverse of addition
G

α β γ α β γ
α α
α α
α β β α

+ + + = + +
+ + =
+ − =
+ + = +                (   )commutativity of addition

 

second: multiplication 
, pα β ∈ A , ,r s ∈R , “ × ” (external relation of type multiplication) 

           

( 1 )   ( )
                                ( )       (1  )
( 2 )   ( )
                               ( )         (2  

D r r r
r r r st distributivity

D r s r s
r s r s nd distributivity

α β α β
α β α β

α α α
α α α

× + × + = × + × =
= × + × = + ×

+ × × × = × + × =
= × + × = × + )

( 3)         1 1D α α α× = × =

 

third: exterior product 
, , ,  " "p r tα β γ∈ ∈ ∈ ∧A A A  (internal relation of type exterior product) 

*

11

1 1

1 1

dim

... ...
,.., , ,...,

0                                                                                         0
1 ... ...    
! !

p p p r

p

p p p r

n
i i ii

i i i i
i i i i

if p r

b b b b if p r n
p r β β

α β α β+ +

+

+ +

=
+ >⎧

⎪∧ = ⎨ ∧ ∧ ∧ ∧ ∧ + ≤
⎪⎩

∑
X  

( 1 )     ( ) ( )G α β γ α β γ∧ ∧ ∧ = ∧ ∧  
 (associativity of internal multiplication of type exterior product)  
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( 1 )  ( )      , ,p rD ifα β γ α β α β α β γ∧ + ∧ + = ∧ + ∧ ∈ ∈A A  

                (additive distribuity w.r.t. internal multiplication 
 of type exterior product)  

r( 2 )   ( )  =      if , , pD α β γ α γ β γ α β γ∧ + + ∧ ∧ + ∧ ∈ ∈A A  

                 (additive distribuity w. r. t. internal multiplication 
 of type exterior product)  

( 3 )   r ( )=(r )  G α β α β∧× × ∧ × ∧  

                 (distributivy of internal multiplication of type 
exterior product and external multiplication)  

( 4 )   ( 1)                  
              (graded anticommutativity of exterior multiplication)

prG β α α β∧ ∧ = − ∧  

Corollary 3-1:  (dim , dim ) :p w p
p ρ=⊕A A  

     ( )*dim dimp p n
p= ∧ =A X  

           *
0 0dim dim 2n p n p n

p p= =⊕ = ⊕ ∧ =A X  ♣ 

The elements of the space which is generated by the direct sum of the spaces of 
antisymmetric multilinear functions, namely  

0 1{ .... }n⊕ ⊕ ⊕A A A  

are {scalars, vectors/differential one forms, (2,0) antisymmetric tensors / differ-
ential two forms, (3,0) antisymmetric tensors/ differential three forms, ...., (n, 0) 
antisymmetric tensors/ differential n-form}. 

 

* *

1 1 2

1 1 2

1 1 2

* *

31 2 1

1 2 3 1

1 2 3 1

dim dim

0
1 , 1

dim dim

, , 1 , , 1

1 11
1! 2!

1 1
3! !

n

n

n

n n
i i i

i i i
i i i

n n
i ii i i

i i i i i
i i i i i

f f f

f f
n

= =

= =

= =

= =

⋅ + + ∧ +

+ ∧ ∧ + + ∧ ∧

∑ ∑

∑ ∑

e e e

e e e e e

X X

X X
 

or 

 

* *

1 1 2

1 1 2

1 1 2

* *

31 2 1

1 2 3 1

1 2 3 1

dim dim

0
1 , 1

dim dim

, , 1 , , 1

1 11
1! 2!

1 1
3! !

n

n

n

n n
i i i

i i i
i i i

n n
i ii i i

i i i i i
i i i i i

f f dx f dx dx

f dx dx dx f dx dx
n

= =

= =

= =

= =

⋅ + + ∧ +

+ ∧ ∧ + + ∧ ∧

∑ ∑

∑ ∑

X X

X X
 

are examples of zero rank Clifford numbers (W. K. Clifford: Application of 
Grassmann’s extensive algebra, American J. Math. 1 (1878) 350-358, in particu-
lar page 353). More details are given later under Clifford algebra. Here we ex-
tend Grassmann algebra by 
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      Corollary 3-2  (induced metric of an antisymmetric multilinear function): 

       Let g be a metric on an n-dimensional Euclidean space { , }n n
ijg=E R ,  

let , pα β ∈A  be (p, 0) tensor-valued functions, 

 1 1: n ngµ = ∧ ∧ = ∧ ∧e e b b  

its volume element with respect to an orthonormal base 1{ , , }ne e  
or 1{ , , }nb b  of neither orthogonal, nor normalized type. Then 
there is an induced metric defined by 

 
*

1 1

1 1

1 1

dim

, , , , ,

1( , )
!

p p

p p

p p

n
i ji j

i i j j
i i j j

g g g
p

α β α β
=

= ∑
X

 

such that 
 ( , )gα β α β µ∧∗ =  

holds. 

3-2 The normal form of an antisymmetric multilinear function, 
product sum decomposition 

When we present as early as by definition 1-1 the axioms of multilinear 
functions which constitute multilinear algebra or tensor algebra p

gT  over 
the field of real numbers we did not specify the linear map : p

gg →T X , 
dim n=X , namely the inverse of the map : p

gf →X T . For instance, 
given 1 2 2

12f∧ ∈e e A , 2dim 1=A , dim 2=X , as an element of the space 
of antisymmetric bilinear functions, find the product representation 

1 2∧x x of bivectors with respect to the vectors x1, x2, respectively. Or 
given the linear map :α × →X X X  called “join” which was subject to 
the group axioms, find the inverse map :∆ → ×X X X . The answer to the 
problem 

“find the normal form of antisymmetric bilinear function 

 

* *dim dim

1 , 1

1 2 1 2 2 *

1
2!

( )

n n
i j i j

ij ij
ij i j

r r

f f
= =

= =

−

∧ + ∧ =

= ∧ + + ∧ ∈ =

∑ ∑e e e e

x x x x Λ

X X

A X
 

decomposed into the product sum or r/2 bivectors where r is the 
rank of the antisymmetric bilinear form” 

will be given constructively. The general problem of the decomposition of 
an antisymmetric multilinear function as an element of *( )p p= ΛA X , 

*dimn = X , into the product sum of p-vectors is afterwards obvious. 

Case: ( )2 2 * 2
2 ( ), 2, dim 2, dim 1np n p∈ = = = = = =ΛA X X Af  
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The simplest case of an antisymmetric bilinear function 
2 2 *

2 ( )∈ = ΛA Xf  in dim 2n = =X  dimensions decomposed into a 
bivector is solved by the change of basis 

 1 1 2 2
12: : f= =x e x e  

 such that 

 
*dim

1 2 1 2
12

1

n
i j

ij
ij

f f
=

=

∧ = ∧ = ∧∑ e e e e x x
X

. ♣ 

 Case: ( )2 2 * 2
2 ( ), 2, dim 3, dim 3np n p∈ = = = = = =ΛA X X Af  

The next case of an antisymmetric bilinear function 2 2 *
2 ( )∈ = ΛA Xf  in 

dim 3n = =X  dimensions decomposed into a bivector is solved by the 
change of basis 

 1 2

1 2

1 2

3 3
1 1 3 1 2 2 3 2

23 12 12 13
1 1

: / , :
n n

k k
k k

k k

f f a f f a
= =

= =

= − = = − =∑ ∑x e e e x e e e  

in case of 12 0f ≠  such 

 
*dim

1 2 1 3 2 3 1 2
12 13 23

1

n
i j

ij
i j

f f f f
=

= <

∧ = ∧ + ∧ + ∧ = ∧∑ e e e e e e e e x x
X

. 

From the matrix representation of the change of basis 

 

1 2
1 1

1 2 1 2 3 1 2
2 2
1 2
3 3

[ , ] [ , , ]
a a
a a
a a

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x x e e e or , dim ( ) 2= =x eA AR  

we read the rank dim ( ) 2r = =AR  (the dimension of the column space of 
the matrix A) of the antisymmetric bilinear function 2 ( 3)n =f . We rec-
ognize r/2 = 1, that is one factor which leads to the canonical form of 

2 ( 3)n =f . 

 Case: ( )2 2 * 2
2 ( ), 2, dim 4, dim 6np n p∈ = = = = = =ΛA X X Af  

While the decomposition of 2 ( 2)n =f  and 2 ( 3)n =f  into one bivector 
was trivial, the first interesting case 2 ( 4)n =f  appears now. The reduc-
tion scheme of product sums begins with the first step: We aim at gener-
ating a first antisymmetric bilinear function which excludes 1 2{ , }e e  from 
the rest. 

 1st step (remove e1, e2) 
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4
1 2 1 3 1 4

12 13 14
1

2 3 2 4 3 4
23 24 34

n
i j

ij
i j

f f f f

f f f

=

= <

∧ = ∧ + ∧ + ∧

+ ∧ + ∧ + ∧

∑ e e e e e e e e

e e e e e e
 

 12 0f ≠  

 1

1

1

4
1 1 3 4 1

23 12 24 12
1

: / /
n

k
k

k

f f f f a
=

=

= − − = ∑x e e e e  

 2

2

2

4
2 2 3 2

12 13
1

:
n

k
k

k

f f a
=

=

= + = ∑x e e e  

 

1 2 1 3 4 2 3
23 12 24 12 12 13

1 2 1 3 1 4 2 3 2 4
12 13 14 23 24

3 4
13 24 14 23 12

( / / ) ( )

( ) /

f f f f f f

f f f f f

f f f f f

∧ = − − ∧ + =

= ∧ + ∧ + ∧ + ∧ + ∧ +

+ ∧ −

x x e e e e e

e e e e e e e e e e

e e

 

 
4

1 2 3 4
23 13 24 14 23 12

1

[ ( ) / ]
n

i j
ij

i j

f f f f f f f
=

= <

∧ = ∧ + ∧ − −∑ e e x x e e . 

Indeed we have achieved by the first chance of basis an antisymmetric re-
sidual bilinear function which is independent of 1 2{ , }e e . The second step 
aims at the same generic scheme. 

 2nd step (remove e3, e4) 

 3 4

3 4

3 4

4 4
3 3 3 4 4 4

34 14 23 13 24 12
1 1

: , : [ ( ) / ]
n n

k k
k k

k k

a f f f f f f a
= =

= =

= = = + − =∑ ∑x e e x e e  

 such that 

 
4

1 2 3 4

1

n
i j

ij
i j

f
=

= <

∧ = ∧ + ∧∑ e e x x x x  

From the matrix representation of the change of basis 

 

1 2 3 4
1 1 1 1
1 2 3 4

1 2 3 4 1 2 3 4 2 2 2 2
1 2 3 4
3 3 3 3
1 2 3 4
4 4 4 4

[ , , , ] [ , , , ]

a a a a
a a a a
a a a a
a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

x x x x e e e e   

 or , dim ( ) 2= =x eA AR  

 subject to 
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 112

23 12 13

34 14 23 13 24 12

1 0 0 0
0 0 0
/ 1 0

0 0 0 ( ) /

f
f f f

f f f f f f

−

⎡ ⎤
⎢ ⎥

= =⎢ ⎥−⎢ ⎥
+ −⎢ ⎥⎣ ⎦

A B  

 
4 4 4

1 , , , , 1 1, ,

1
2!

n n n
i j k i j k

ij k ij k
i j i j k l k

f b b f s
= = =

= =

∧ = ∧ = ∧∑ ∑ ∑e e x x x x  

 subject to 

 BFB* = S 

 
0 1 0 0
1 0 0 0: [ ] 0 0 0 1

0 0 1 0
kls

⎡ ⎤
−⎢ ⎥= = ⎢ ⎥

⎢ ⎥−⎣ ⎦

S  (“skew”) 

we read the rank dim ( ) 4r = =AR  (the dimension of the column space of 
the matrix A) of the antisymmetric bilinear function 2 ( 4)n =f . We rec-
ognize r / 2 = 2, that is two factor which leads to the canonical form of 

2 ( 4)n =f . 

 Case: ( )2 2 * 2
2 ( ), 2, dim , dim np n p∈ = = = =ΛA X X Af  

Let us begin with the first step of the reduction scheme of product sums by 
generating a first antisymmetric bilinear function which excludes 1 2{ , }e e  
from the rest.  

1st step ( remove e1, e2) 

 

*dim
1 2 1 3 1

12 13 1
1

2 3 2 4 2
23 24 2

3 4 3 5 3
34 35 3
1

1

n
i j n

ij n
i j

n
n

n
n

n n
n n

f f f f

f f f

f f f

f

=

= <

−
−

∧ = ∧ + ∧ + + ∧ +

+ ∧ + ∧ + + ∧ +

+ ∧ + ∧ + + ∧ +

+ + ∧

∑ e e e e e e e e

e e e e e e

e e e e e e

e e

X

 

12 0f ≠  

 1

1

1

1 1 3 1
23 12 2 12

1

: / /
n

kn
n k

k

f f f f a
=

= − − − = ∑x e e e e , 

 2

2

2

2 2 3 2
12 13 1

1

:
n

kn
n k

k

f f f a
=

= + + + = ∑x e e e e , 
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1 2 1 2 1 3 1
12 13 1

3 2 3 4 3
23 23 14 12 23 1 12

2 3
24 2 13 12

1
2 1 1 12

/ /

/

/

n
n

n
n

n n
n

n n
n n

f f f

f f f f f f f

f f f f

f f f−
−

∧ = ∧ + ∧ + + ∧ −

− ∧ − ∧ − − ∧

− ∧ − ∧ − −

− ∧

x x e e e e e e

e e e e e e

e e e e

e e

 

 

*dim
1 2 3 4

34 23 14 24 13 12
1

3
3 23 1 2 13 12

1
1 2 1 1 2 1 1 12

[ ( ) / ]

[ ( ) / ]

[ ( ) / ]

n
i j

ij
i j

n
n n n

n n
n n n n n n

f f f f f f f

f f f f f f

f f f f f f

=

= <

−
− − −

∧ = ∧ + ∧ + − +

+ + ∧ + − + +

+ ∧ + −

∑ e e x x e e

e e

e e

X

 

 

*dim
1 2 3 4

34
1

3 1
3 1

n
i j

ij
i j

n n n
n n n

f f

f f

=

= <

−
−

′∧ = ∧ + ∧ + +

′ ′+ ∧ + + ∧

∑ e e x x e e

e e e e

X

 

 subject to 

 
34 34 23 14 24 13 12

3 3 23 1 2 13 12

1 1 2 1 1 2 1 1 12

: ( ) / ,
: ( ) / , ,

: ( ) / .
n n n n

n n n n n n n n

f f f f f f f
f f f f f f f
f f f f f f f− − − −

′ = + −
′ = + −
′ = + −

 

The second step of the function scheme of product sums generates a sec-
ond antisymmetric bilinear function which exclude 3 4{ , }e e  from the rest. 

 
 2nd step (remove e3, e4) 

 34 0f ′ ≠  

 3

3

3

3 3 5 3
45 34 4 34

1

: / /
n

kn
n k

k

f f f f a
=

′ ′ ′ ′= − − − = ∑x e e e e  

 4

4

4

4 4 5 4
23 35 3

1

:
n

kn
n k

k

f f f a
=

′ ′ ′= + + + = ∑x e e e e  

 

3 4 3 4 3 5 3
34 35 3

5 4 5 6 5
45 45 36 34 45 3 34

1
4 1 3 34

/ /

/ .

n
n

n
n

n n
n n

f f f

f f f f f f f

f f f−
−

′ ′∧ = ∧ + ∧ + + ∧ −

′ ′ ′ ′ ′ ′ ′− ∧ − ∧ − − ∧ − −

′ ′ ′− ∧

x x e e e e e e

e e e e e e

e e

 

 

*dim
1 2 3 4

1

5 6
56 45 36 46 35 34

5
5 45 3 4 35 34

1
1 4 1 3 4 3 1 34

[ ( ) / ]

[ ( ) / ]

[ ( ) / ] .

n
i j

ij
i j

n
n n n

n n
n n n n n n

f

f f f f f f

f f f f f f

f f f f f f

=

= <

−
− − −

∧ = ∧ + ∧ +

′ ′ ′ ′ ′ ′+ ∧ + − + +

′ ′ ′ ′ ′ ′+ ∧ + − + +

′ ′ ′ ′ ′ ′+ ∧ + −

∑ e e x x x x

e e

e e

e e

X
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For a given *dimn = X  the reduction machinery stops when we have a-
chieved the final aim of the complete reduction 

 

*dim

1

1 2 3 4 3 2 1 2 *( ).

n
i j

ij
i j

r r r r

f
=

= <

− − −

∧ =

= ∧ + ∧ + + ∧ + ∧ ∈ =

∑ e e

x x x x x x x x Λ

X

A X
 

The rank dim ( )r = AR  will decide upon the number r / 2 of factors in the 
product sum decomposition of the antisymmetric bilinear function. In its 
normal form the antisymmetric matrix [ ] : n n

ijf ×= ∈F R  has been trans-
formed into the block antisymmetric (“skew”) matrix [ ] : r r

kls ×= ∈S R : 

 

0 1
1 0

0 1
: [ ] 1 0

0 1
1 0

r r
kls ×

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥= = ∈−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

S R  

 

The reference to symplectic geometry is obvious. 

The genesis of the normal form of the antisymmetric multilinear function 

 

*

1

1

1

dim

1

1 ( 1) *( )

p

p

p

n
ii

i i
i i

p r p r p p

f
=

< < <

− +

∧ ∧ =

= ∧ ∧ + + ∧ ∧ ∈ =

∑ e e

x x x x Λ

X

A X

 

namely its decomposition into the product sum of p-vectors follows simi-
lar patterns as being outlined for the antisymmetric bilinear function 

2 2 *
2 ( )∈ = ΛA Xf , *dim n=X . 

  ♣ 

Historical Aside 

For a historical perspective for the generation of a product sum de-
composition of an antisymmetric bilinear function into bivectors we 
refer to J. Zund: The theory of bivectors, Tensor New Series 22 (1971) 
179-185. Note that 1 2 3 4 1, , r r−∧ ∧ ∧x x x x x x are called blades. For 
other details we refer to A. Crumeyrolle (1990 p. 30-31) and M. Mar-
cus (1975, Part II, p. 1-10). 

  ♣ 
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3-3     Interior Algebra 

Now we continue with interior algebra. 

Definition 3-2 (symmetric algebra, interior algebra, algebra of symmetric 
multilinear functions): 

In terms of general coordinate base 1 *{ , , } spann =b b X  let pf ∈R , 
rg ∈R , th ∈R  be symmetric multilinear functions on a linear space X, 

namely 

 1

1

1

dim
*

, , 1

1 , , ( )
!

p

p

p

n
ii p

i i
i i

f f
p

=

=

= ∨ ∨ ∈∑ b b
X

XR , 

 1

1

1

dim
*

, , 1

1 , , ( )
!

r

r

r

n
j j r

j j
j j

g g
r

=

=

= ∨ ∨ ∈∑ b b
X

XR , 

 1

1

1

dim
*

, , 1

1 , , ( )
!

t

t

t

n
kk t

k k
k k

h h
t

=

=

= ∨ ∨ ∈∑ b b
X

XR . 

A symmetric multilinear algebra over R (also called interior algebra) 
as a R-algebra consists of a p, two international relations (addition and 
inner multiplication) +: p p p× →R R R , : p r p r×∨ × →R R R , and one 
external relation (external multiplication) : p p× × →R R R  where the 
following properties hold 

first: addition 

 f, g, h ∈R p, “+” (internal relation of type addition) 

 (G1+) ( ) ( )f g h f g h+ + = + +  (associativity of type addition) 

 (G2+)          0f f+ =             (identity of addition) 

 (G3+)         0f f− =             (inverse of addition) 

 (G4+)         f g g f+ = +           (commutativity of addition)  

second: multiplication 

f, g ∈R p, r, s ∈R “×” (external relation of type multiplication) 

 (D1+) ( )r f g r f r g× + = × + ×  (1st distributivity) 

 (D2+) ( )r s f r f s f+ × = × + ×  (2nd distributivity) 

 (D3+)          1 f f× =   
third: exterior product 
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f ∈ R p, g ∈R r, h ∈ R t, “ ∨ ” (internal relation of type exterior product) 

     
*

11

1 1

1 1

dim

, , , , ,

1
! !

p p p r

p p p r

p p p r

n X
i i ii

i i i i
i i i i

f g f g
p r

+ +

+ +

+ +

=

∨ = ∨ ∨ ∨ ∨ ∨∑ b b b b  

 (G1 ∨ ) ( ) ( )f g h f g h∨ ∨ = ∨ ∨   
(associativity of internal multiplication of type interior product)  

 (D1 ∨ +) ( ) , , ,p rf g h f g f h if f g h∨ + = ∨ + ∨ ∈ ∈S S  
(additive distributivity w. r. t. internal multiplications of type interior 
product) 

 (D2 ∨ +) ( ) , , ,p rf g h f h g h if f g h+ ∨ = ∨ + ∨ ∈ ∈S S  
(additive distributivity w. r. t. internal multiplications of type interior 
product) 

 (D3 ∨ × ) ( ) ( )r f g r f g× ∨ = × ∨   

(distributivity of internal multiplication of type interior product and ex-
ternal multiplication) 

 (G4 ∨ ) g h h g∨ = ∨ .  
(commutativity of internal multiplication of type interior product) 

Corollary 3-3: 

( )1dim p n p
p

+ −=S  
*dim

0 0
0

1dim dim ( 1) ( 1)
!

n
n p n p
p p

p

n n n p
p

=

= =
=

⊕ = ⊕ ∨ = + + −∑
X

S S . 

Scholia 

References to multilinear algebra, in particular to the Hodge star dualizer, are P. 
Bamberg and S. Sterberg (19  ), M. Barnabei et al (1985), G. Berman (1961), A. 
Crumeyrolle (1990), W. H. Greub (1967), E. Lamberch (1993) and M. Marcus 
(1975). 

 

 

 

 

 

 

 



 

 

 

 

Chapter 4 

Clifford algebra 
 
We already took advantage of the notion of Clifford algebra. Here we finally 
confront you with the definition of “orthogonal Clifford algebra ( ,  )C p q ”. But 
on our way to Clifford algebra we have to generalize at first the notion of a ba-
sis, in particular its bilinear form. 

Theorem 4-1 (bilinear form): 

Suppose that the bracket |< ⋅ ⋅ >  or *( , ) :g ⋅ ⋅ × →X X R  is a bilinear 
form a finite dimensional linear space X, e.g. a vector space, over 
the field R of real numbers, in addition X* its dual space such that n 
= dim X*= dim X. There exists a basis 1{ , , }ne e  such that 

(i)  | 0i i< > =e e  or ( , ) 0i jg =e e  for i j≠  

(ii)  
1 1 1 1

2 2 2 2

3 3 3 3

1

2

3

| 1 ( , ) 1 1 ,

| 1 ( , ) 1 1 ,

| 0 ( , ) 0 1

i i i i

i i i i

i i i i

or g for i p

or g for p i p q r

or g for r i n

⎡< > = + = + ≤ <
⎢
< > = − = − + ≤ < + =⎢

⎢< > = = + ≤ <⎢⎣

e e e e

e e e e

e e e e

 

holds. 

The numbers r and p are determined exclusively by the bilinear form. r is called 
the rank, r – p = q  is called the  index and the ordered pair (p, q) the signature. 
The theorem assures that any two spaces of the same dimension with bilinear 
forms of the same signature are isometrically isomorphic. A scalar product (“in-
ner product”) in this context is a non degenerate bilinear form, i.e., a form with 
rank equal to the dimension of X . When dealing with low dimensional spaces as 
we do, we will often indicate the signature with a series of plus and minus signs 
and zeroes where appropriate. For example, the signature of 4

1R  my be written 
(+++-) instead of (3, 1). If the bilinear form is non degenerate,  a basis with the 
properties listed in  Theorem A16 is called an orthonormal basis (“unimodular”) 
for  X with respect to the bilinear form. 
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Definition 4-1 (orthogonal Clifford algebra ( ,  )C p q ): 

The orthogonal Clifford algebra ( ,  )C p q  is the algebra of polynomials gener-
ated by the direct sum of the space of multilinear functions 

 *
0 ( )mn

m
∗

=⊕ ∧ X  

on a linear space X, respectively its dual X* over the field of real numbers n
pR  

of dimension 
*

0dim ( ) 2mn n
m

∗
=⊕ ∧ =X  

and signature (p, q), namely 

 

* *

1 1 2

1 1 2

1 1 2
* *

31 2 1

1 2 3 1

1 2 3 1

dim dim

0
1 , 1

dim dim

, , 1 , , 1

n

n

n

n n
i i i

i i i
i i i

n n
i ii i i

i i i i i
i i i i i

f f f

f f

= =
∗

= =
= =

∗ ∗ ∗ ∗

= =

+ + ∧ +

+ ∧ ∧ + + ∧ ∧

∑ ∑

∑ ∑

1 e e e

e e e e e

X X

X X  

subject to the Clifford product, also called the Clifford dualizer, 

(i)   i j j i
∗ ∗∧ = − ∧e e e e   for i j≠  

(ii)   
1 1 1 1

2 2 2 2

3 3 3 3

1

2

3

( , ) 1 1
( , ) 1 1
( , ) 0 1 ,

i i i i

i i i i

i i i i

g for i p
g for p i p q r
g for r i n

∗

∗

∗

⎡ ∧ = = + ≤ <⎢
∧ = = − + ≤ < + =⎢

⎢ ∧ = = + ≤ <⎢⎣

e e e e
e e e e
e e e e

 

 or 

 1 2 ( , )j j i i j ijg δ∗ ∗∧ + ∧ =e e e e e e   
 subject to 

  
1 1

2 2

3 3

1

2

3

( , ) 1 1
( , ) 1 1
( , ) 0 1 ,

i i

i i

i i

g for i p
g for p i p q r
g for r i n

⎡ = + ≤ <
⎢ = − + ≤ < + =
⎢ = + ≤ <⎣

e e
e e
e e

 

1 being the neutral element. If 0k k
∗∧ =e e  or ( , ) 0k kg =e e  holds uniformly the 

orthogonal Clifford algebra ( ,  )C p q  reduces to the polynomial algebra of 
antisymmetric multilinear functions 

 
* *

0 0
* *

0 0

( ) ( )
dim dim ( ) dim( ) 2 .

n m n m
m m

n m n m n
m m

= =

= =

⊕ = ⊕ =
⊕ = ⊕ = =

A Λ Λ
A Λ

X X
X X

 

represented by  

 

* *

1 1 2

1 1 2

1 1 2
* *

31 2 1

1 2 3 1

1 2 3 1

dim dim

0
1 , 1

dim dim

, , 1 , , 1

1 1
1! 2!

1 1 .
3! !

n

n

n

n n
i i i

i i i
i i i

n n
i ii i i

i i i i i
i i i i i

f f f

f f
n

= =

= =
= =

= =

+ + ∧ +

+ ∧ ∧ + + ∧ ∧

∑ ∑

∑ ∑

1 e e e

e e e e e

X X

X X  
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Example 4-1: Clifford product: , , (3,0)sign∗ ∗ ∈ =x y x y X X  

Let ∗ ∈x y X  be a real three-dimensional vector space X of signature (3, 
0). Then ∗x y (read: “xCliffordy”) with respect to a set of the bases {e1, 
e2, e3} accounts for 

 
3 3 3 3

1 1 1 1

i j i j
i j i j

i j i j

x y x y∗ ∗ ∗

= = = =

∧ = ∧ = ∧∑∑ ∑∑x y e e e e  

 1 2 3 1 2 3
1 2 3 1 2 3( ) ( )x x x y y y∗ ∗∧ = + + ∧ + +x y e e e e e e

 
1 1 2 2 3 3 1 2 2 1

1 2
2 3 3 2 3 1 1 3

2 3 3 1

( ) ( )

( ) ( )

x y x y x y x y x y

x y x y x y x y

∗∧ = + + + ∧ − +

+ ∧ − + ∧ −

x y 1 e e

e e e e
 

Indeed ∗∧x y  as a Clifford number is decomposed into a scalar part and an 
antisymmetric tensor part with respect to the bilinear basis 

1 2 2 3 3 1{ , , }∧ ∧ ∧e e e e e e . 

Tensor algebra or the algebra of multilinear functions, namely 

 

* *

1 1 2

1 1 2

1 1 2

* *

31 2 1

1 2 3 1

1 2 3 1

dim dim

0
1 , 1

dim dim

, , 1 , , 1

*
0 ( ) ( )

n

n

n

n n
i i i

i i i
i i i

n n
i ii i i

i i i i i
i i i i i

n
m

f f f

f f

= =

= =

= =

= =

+ −
=

+ + ⊗ +

+ ⊗ ⊗ + + ⊗ ⊗ ∈

∈⊕ ⊗ = ⊗ = ⊕

∑ ∑

∑ ∑

1 e e e

e e e e e

X X

X X

X X T T

 

 subject to 
2

0
2 1

0

( ) (" ")

( ) (" ")

h
h

k
k

even

odd

+
=

− +
=

⎡ = ⊕ ⊗
⎢

= ⊕ ⊗⎢⎣

X
X

T

T
 

in the sum of two spaces, +T  and −T , respectively, in particular 

 

31 2 1 2 4

1 2 1 2 3 4

1 2 1 2 3 4

31 1 2

1 1 2 3

1 1 2 3

0
, 1 , , , 1

1 , , 1

1 1 ,
2! 4!

1 1 .
1! 3!

n n
ii i i i i

i i i i i i
i i i i i i

n n
ii i i

i i i i
i i i i

C f f f

C f f

∗ ∗ ∗ ∗+

= =

∗ ∗−

= =

∋ + ∧ + ∧ ∧ ∧ +

∋ + ∧ ∧ +

∑ ∑

∑ ∑

1 e e e e e e

e e e e
 

Obviously C +  as well as C −  are subalgebras of C . Let the Clifford numbers 
z be divided into z C+ +∈  and z C− −∈ , then the properties 

 , ,z z C z z C z z C∗ ∗ ∗+ + + − − + + − −∧ ∈ ∧ ∈ ∧ ∈  

prove that ( ,  ) C p q  is graded over the cydric group 2 {0,1}=Z . 

 



 

 

 

 

 

Chapter 5 
Partial contraction of tensor-valued function 
 

While the Hodge star operator constituted a linear map of antisymmetric multi-
linear functions p pf ∈ ⊂A T  into antisymmetric multilinear functions 

n p n pf + −∗ ∈ ⊂A T  there is a similar linear map called partial contraction which 
transforms multilinear functions pf ∈T  into multilinear functions c p sf −∈T  
(read contraction f), 

 
*

1

1

1

dim

, ,

c { }p

p

p

iip
rs i i

i i

f f∋ = ⊗ ⊗ ⇒∑T e e
…

X

 

 1 1 1 1 1

1 11 1 1

1 1 1 1

1 , , , , , , , , 1

2
1

{

}
r r s s p

s sr r r

r s s p

n n

k i i i i i i

i ii i i i p
i i i ki if

− + − +

− +− +

+ − +

= =

−
=⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ∈

∑ ∑

e e e e e e T
 

or 

 
1 1 1 1 1 1

1

c :
p r r s s p

n

rs i i i i ki i ki i
k

f f f
− + − +

=

⇒ ∑  

in array notation. Obviously by partial contraction the tensor element 
r si if  has 

been removed by summation. More generally, for a (p, q) tensor-valued multilin-
ear function p

qf ∈T , 1
1cs p

r qf −
−∈T  maps linearly into a (p-1, q-1) tensor-valued 

multilinear function by means of 
11

1 1

1 1, , , ,

c : { }p p

p p

p p

n n
i j jis p

r q j j i i
i i j j

f f f∋ = ⊗ ⊗ ⊗ ⊗ ⊗ ⇒∑ ∑T e e e e  

 

*

1 1 1

1 1 1 1 1 1

1 1 1

1 1 1 1 1 1

dim dim

1 , , , , , , , , , ,

, , 1
, , 1

{

} .

pr r

r r p s s p

s s p

s s q s s p

n n n
ii i i

k i i i i j j j j

j j k j j p
j j j j i i k i i qf

− +

− + − +

− +

− + − +

= =

=

−
−

⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ∈

∑ ∑ ∑ e e e e

e e e e T

X X

 

While a partial contraction map reduces both covariant and contravariant degree 
by one, successive contraction define a map down to 0

0 =T R , but not uniquely. 
For instance, for an equal covariant and contravariant degree, n = q the contrac-
tion map f¬  (read key) is defined by 
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11

1 1

1 1

1

1

1

, ,
, ,

, , , ,

, , 0
, , 0

, ,

{ }

: .

p p

p p

p p

p

p

p

i j jip
p j j i i

i i j j

n
k k

k k
k k

f f

f f

∋ = ⊗ ⊗ ⊗ ⊗ ⊗ ⇒

⇒ = ∈ ∈

∑ ∑

∑

T e e e e

¬ T  R
 

There are p! possible total contraction p
p →T R  according to how we pair the 

elements of  1

1

p

p

j j
i if . Even worse, for different covariant and contravariant de-

gree, p q f≥ ¬  generates an element of 0
p q−T , namely 

 
1 1 1

1 11

1 1 1

1 1

1 1

1 1

, , , , , , ,

, ,
, , , , ,

, , 0
, , , , ,

, , , ,

{

}

:

q q p p

q q p q

q q q p

q p p

q q p

q q p

p
q

i i i i j j

i i i j ji
j j i i i i

i i k k
k k i i p q

k k i i

f

f

f f

+

+

+

+

+

+

−

∋ =

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⇒

⇒ = ⊗ ⊗ ∈

∑ ∑

∑ ∑

T

e e e e e e

¬ e e T

 

or 

 1 1

1 1 1 1

1

, , , ,
, , , , , , , , , ,

, ,

: p q

q q p q q p

q

j j k k
i i i i k k i i

k k

f f f
+ +

→ ∑¬  

namely an array of dimension dim ( )f n n p q= × × −¬  times. Let us continue 
the decomposition of tensor-valued multilinear functions p p p

q q qf ∈ = ⊕ST A  - 
sometimes written p p

q q∧ ⊕ ∨  in order to emphasize the spaces spanned by the 
interior product “ ∨ ”- namely the decomposition of 2 1 0

0 1 2, ,S S S , respectively into 
2 2 2
0 0 0= ⊕S C D , 1 1 1

1 1 1= ⊕S C D , 0 0 0
2 2 2= ⊕S C D , respectively of contracted symmet-

ric bilinear functions and their deviatoric residuals, also called trace-free. The 
origin of such an additional decomposition is the following situation: Assume a 
(2, 0) tensor-valued bilinear function f which is decomposed as an element of 

2 2 2
0 0 0= ⊕T S A  (the direct sum of 2

0S  and 2
0A ), in short 2 2 2= ⊕T S A . Note the 

(2, 0) tensor-valued antisymmetric bilinear function as an element of A2 has 
2{tr 0 | }f f= ∈ A . Accordingly for a (0, 0) tensor-valued bilinear function it is 

worthwhile to compute 2{tr | }f f ∈S , namely the trace of a (2, 0) tensor-valued 
symmetric bilinear function. Whether or not 2{tr | }f f ∈S  is zero as will be 
seen later is an important property of a symmetric tensor of type (2, 0). As a 
constituent of a symmetric (2, 0) tensor [ fij ] = [ fji ] or F = FT  

 1 1 1 1(tr )[ ] (tr ) (tr )[ ] (tr )
! ij n ij nf or versus f g or

n n n n
δ F I F I  

with respect to an orthonormal base, * 1span { , , }n= e eX , versus a set of linear 
independent bases, * 1span { , , }n= b bX , amounts to the factorization of 

1tr , tr −∈ ∈F FGR R , respectively, also called scalars and the matrices of the 
metric [δij] or n n

n ∈ ×I R R , [ ] n n
ijg = ∈ ×G R R , respectively. A symmetric (2, 

0) tensor [ fij ] = [ fji ] enjoys the “contracted decomposition” 
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 1 1[ ] [ ] tr [ ] [ (tr ) ]ij ji ij ij ijf f f f f
n n

δ δ= = + −  

 with respect to an orthonormal base  
 versus 

 1 11 1(tr ) [ (tr ) ]T

n n
− −= = − −F F FG G F FG G , 

 
, 1 , 1

1 1( ) ( ( ) )
2

n n
k k

ij ji k ij ij k ij
k k

f f f g g f f g g
n= =

= = − −∑ ∑  

or 2 2 2= ⊕S C D  (the direct sum of 2C  and 2D ) with 2 tr [ ] /ijf nδ∋C , 2 tr∋ (C  
1)−FG G , 2 [ (tr ) / ]ij ijf f nδ∋ −D , 2 1(tr ) / n−∋ −D F FG G  and 2 [ ]ijg∋S . Due to 

tr[ ]ij nδ = , tr[ (tr ) ] 0ij ijf f nδ− = , the (2, 0) symmetric tensor 

 1[ ] : [ (tr ) ]ij ij ijd f f
n

δ= −  

 with respect to an orthonormal base  
 versus 

 11: (tr )
n

−= −D F FG G , in general 

measures the deviation of [ fij ] = [ fji ] from “trace zero”. [dij] is accordingly 
called the tensor deviator or deviatoric tensor. Another motivation to reduce 
symmetric multilinear function by their traces is given by “invariant integration” 
which will be outlined as soon as we know how to deal with active and passive 
transformations of  geometric objects so far considered.  

Example 5-1: Contraction of multilinear functions 1
1tr : p p

q qf −
−→T T  

(i) 1 2

1 2

2
0 1 2: , {1,2,3}, 3i i

i if f i i n∋ = ⊗ ∀ ∈ =T e e , 

0
11 22 33 0

1

tr trkk
k

f f f f f
=

= = + + = ∈∑ F T . 

For a (2, 0) tensor-valued function 2
0f ∈T  tr f  coincides with the 

trace of the matrix 
1 2

3 3[ ] , dim 3 3i if ×= ∈ = ×F FR  

(ii) 1 2 1

1 1 2

2
1 1 2 1: , , {1,2,3}, 3i i j

j i if f i i j n∋ = ⊗ ⊗ ∀ ∈ =T e e e , 

1

1

3
1 1 1 3 2 1 2 3

11 12 13 21 22 23
1

3 1 2 3 1 *
31 32 33 0

tr (2,1) ( ) ( )

( ) .

i k
i k

k

f f f f f f f f

f f f
=

= = + + + + + +

+ + + ∋ =

∑e e e

e T X
 

For a (2, 1) tensor-valued function 2
1f ∈T  tr f (2, 1) coincides with 

a vector, whose coordinates are generated by 
1

k
k ifΣ . 
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(iii) 1 2

1 2

2
0 1 2: , {1,2,3}, 2i i

i if f i i n∋ = ⊗ ∀ ∈ =T b b , 

11 21 12 22 1 0
11 12 21 22 0

,

tr tr .k
k

k

f f g f g f g f g f g −= = + + + = ∈∑ FG T   

For a (2, 0) tensor-valued function 2
0f ∈T  represented in a general 

coordinate base {b1, b2} tr f coincides with the trace of the product 
1−FG , 2 2[ ]kf

×= ∈F R , 1 2 2[ ]kg− ×= ∈G R , dim dim 2 2= = ×F G . 
♣



 

 

69

 
 
 
 

References 
 

Abe, Y. and K.Kopfermann (2001): Toroidal groups: Line bundles, cohomology and 
quasi-Abelian varieties, Springer Verlag, Berlin  2001 

Ablamowicz, R. (1998): Matrix exponential via Clifford algebras, J. Nonlinear Math. 
Physics 5 (1998) 294-313 

Ablamowicz, R. and B. Fauser (1999): On the decomposition of Clifford algebras of 
arbitrary bilinear form, Department of Mathematics, Tennessee Technological Uni-
versity, Technical Report, Cookeville 1999 

Ablamowicz, R. and B.Fauser (2000): Clifford algebras and their applications in mathe-
matical physics, vol. 1, Algebra and physics, Birkhäuser Verlag, Boston 2000 

Ablamowicz, R. and B. Fauser (2000): Hecke algebra representations in ideals generated 
by q-Young Clifford idempotents, in: Ablamowicz, R. and B. Fauser (Eds.): Clifford 
algebras and their applications in mathematical physics, vol. 1, Algebra and physics, 
Birkhäuser Verlag, Boston 2000, 245-268 

Ahlfors, L. and P. Lounesto(1989): Some remarks on Clifford algebras, Complex Vari-
ables, Theory and Application 12 (1989) 201-209 

Albert, A.A. (1939): Structure of algebras, American Mathematical Society Colloquium 
Publications 24, American Mathem. Soc., New York City 1939  

Altmann, S.L. (1986): Rotations, quaternions and double groups, Clarendon Press, Oxford 
1986 

Anton, H. (1994): Elementary linear algebra, J.Wiley, New York 1994 
Anton, H. (1998): Lineare Algebra: Einführung, Grundlagen, Übungen, Spektrum Aka-

demischer Verlag, Heidelberg 1998 
Araki, H. (1990): Some of the legacy of John von Neumann in physics: theory of meas-

urements, quantum logic, and von Neumann algebras in physics, Proceedings of 
Symposia in Pure Mathematics 50 (1990) 119-136 

Arnold, V.I. (1991): Differentialgleichungen auf Mannigfaltigkeiten, Geo. Diff. Gl., 
Berlin 1991 

Arndt, A.B. (1983): Al-Khwarizmi, Mathematics Teacher 76 (1983) 668-670 
Artin, M. (1993): Algebra, Birkhäuser Verlag, Basel-Boston- Berlin 1993 
Atiyah, M.F. (1967): K-Theorie, Benjamin, New York 1967 
Atiyah, M.F., Bott, R.H. and A. Shapiro (1964): Clifford modules, Topology 3 Suppl. 1 

(1964) 3-38 
Atiyah,M.F., Hitchin, N.J. and Singer, J.M. (1978): Self-duality and four-dimensional 

Riemannian geometry, Proc. Royal Soc. London A362 (1978) 425-461 
Bäuerle, G.G.A. and E.A. de Kerf (1990): Lie algebras, Part 1, Finite and infinite dimen-

sional Lie algebras and applications in physics, North-Holland, Amsterdam 1990 
Baez, J.C. (2001): The octonions, Bulletin of the American Mathematical Society 39 

(2001) 145-205 
Bäuerle, G.G.A. and E.A. de Kerf (1990): Lie algebras, part I, Finite and infinite dimen-

sional Lie algebras and applications in physics, North Holland Elsevier Science, Am-
sterdam 1990  



 References 

 

70 

Baker, A. (2002): Matrix groups – an introduction to lie group theory, Springer-Verlag, 
London 2002 

Barfield, W., Furness III, and A. Thomas (1995): Virtual environments and advanced 
interface design, Oxford University Press, 1995 

Bar-Itzhack, I.Y. (1989): Extension of Euler’s Theorem to n-dimensional spaces, IEEE 
Transactions on Aerospace and Electronic Systems 25 (1989) 903-909 

Bar-Itzhack, I.Y. (1990): Minimal parameter solution of the orthogonal matrix differential 
equation, IEEE Transactions on Automatic Control 35 (1990) 314-317 

Barnabei, M., Brini, A. and G.C. Rota (1985): On the exterior calculus of invariant theory, 
J. Algebra 96 (1985) 120-160 

Batchelor, G.K. and A.A. Townsend (1949): The nature of turbulent motion at large wave 
numbers, Proc. Roy. Soc. London Ser. A 199 (1949) 238-255 

Batchelor, M. (1980): The structure of super-manifolds, Transactions of the Am. Math. 
Soc. 253 (2980) 329-338 

Bautista, R., Mucino, J., Nahmad-Achar, E. and M. Rosenbaum (1991): On the classifica-
tion of group-invariant connections, in: Relativity and gravitation: Classical and quan-
tum, World Sci. Publ. Co., 1991, p. 176 

Bautista, R., Criscuolo, A., Durdevic, M., Rosenbaum, M. and J.D. Vergara (1996): 
Quantum Clifford algebras from Spinor representations, J. Math. Phys. 37 (1996) 
5747-5775 

Baylis, W.E. (1999): Electrodynamics – A modern geometric approach, Birkhäuser, Bos-
ton-Basel- Berlin 1999 

Baylis, W.E. (2000): Multiparavector subspaces of Cln: Theorems and applications, in: 
Ablamowicz, R. and B.Fauser (Eds.): Clifford algebras and their applications in 
mathematical physics, vol. 1, Algebra and physics, Birkhäuser Verlag, Boston 2000, 
pp. 3-20 

Beatty, M.F. (1977): Vector analysis of finite rigid rotations, Journal of Applied Mechan-
ics September (1977) 501-502 

Belinfante, J.G.F. (2000): Clifford algebras and the construction of the basic Spinor and 
Semi-Spinor modules, in: Ablamowicz, R. and B.Fauser (Eds.): Clifford algebras and 
their applications in mathematical physics, vol. 1, Algebra and physics, Birkhäuser 
Verlag, Boston 2000, pp. 323-339 

Benn, I.M. and R.W.Tucker (1987): An Introduction to spinors and geometry with appli-
cations in physics, Adam Hilger, Bristol 1987 

Berman, A. and R.J. Plemmons (1994): Non-negative matrices in the Mathematical Sci-
ences, SIAM, Philadelphia 1994 

Berman, G. (1961): The wedge product, The American Mathematical Monthly 68 (1961) 
112-119 

Bette, A. (2000): Twistor approach to relativistic dynamics and to the Dirac equation – a 
review, in: Ablamowicz, R. and B.Fauser (Eds.): Clifford algebras and their applica-
tions in mathematical physics, vol. 1, Algebra and physics, Birkhäuser Verlag, Boston 
2000, 75-92 

Blij, van der, F. (1961): History of the oktaves, Simon Stevin 34 (1961) 106-125 
Blij, van der, F. and T.A. Springer (1960): Octaves and triality, Nieuw Arch. v. Wiskunde 

8 (1960) 158-169 
Bognar, J. (1974): Indefinite inner product spaces, Springer Verlag, Berlin 1974 
Bolinder, E.F. (1987): Clifford algebra: What is it? IEEE Antennas and Propagation, 

Society Newsletter 29 (1987) 18-23 
Bonsall, F.F. and J. Duncan (1973): Complete normed algebras, Springer, Berlin / Heidel-

berg / New York 1973 



References 71 

Boos, D. (1998): Ein tensorkategorieller Zugang zum Satz von Hurwitz, Diplomarbeit, 
ETH Zürich 1998 

Bourbaki, N. (1959): Algèbre, Chapitre 9, Formes sesquilinéaires et formes quadratiques, 
Hermann, Paris 1959 

Brackx, F., R.Delanghe and F.Sommen (1982): Clifford analysis, Research Notes in 
Mathematics 76, Pitman Books, London 1982 

Brackx, F., R.Delanghe and H.Serras (1993): Clifford algebras and their applications in 
mathematical physics, Kluwer, Dordrecht 1993 

Branson, T.P. (1986): Conformal indices of Riemannian manifolds, Composition Math. 
60 (1986) 261-293 

Branson, T.P. (1987): Group representations arising from Lorentz conformal geometry J. 
Funct. Anal. 74 (1987) 199-291 

Branson, T.P. (1989): Conformal transformation, conformal change, and conformal co-
variants, Supp. Rend. Circ. Matem. Palermo 21 (1989) 115-134 

Branson, T.P. (1998): Second order conformal covariants, Proc. Amer. Math. Soc. 126 
(1998) 1031-1042 

Branson, T.P. and B. Orsted (1986): Conformal indices of Riemannian manifolds, Com-
positio Math. 60 (1986) 261-293 

Branson, T.P. and B. Orsted (1991): Conformal geometry and global invariants, Differen-
tial Geometry and its Applications 1 (1991) 279-308 

Branson, T.P., Gilkey, P. and J. Pohjanpelto (1995): Invariants of conformally flat mani-
folds, Trans. Amer. Math. Soc. 347 (1995) 939-954 

Brauer, R. and H.Weyl (1935): Spinors in n dimensions, Amer. J. Math. 57 (1935), pages 
425-449, reprinted in Selecta Hermann Weyl, Birkhäuser, pages 431-454, Basel 1956  

Brink, D.M. and G.R. Satchler (1968): Angular momentum, Clarendon Press, Oxford 
1968, 2nd edition 

Bröcker, T. and T.Tom Dieck (1985): Representations of compact Lie groups, Springer 
Verlag, New York 1985 

Budinich, P. and A. Trautman (1988): The spinorial chessboard, Springer, Berlin 1988 
Cartan, E. (1908): Nombres complexes, in: J.Molk (red.): Encyclopédie des sciences 

mathématiques, Tome I, vol. 1 (1908) 329-468 
Cartan, E. (1938): Leçons sur la théorie des spineurs I, Exposés de géométrie IX, Actuali-

tés scientifiques et industrielles 643, Hermann et Cie, éditeurs, Paris 1938 
Cartan, E. (1966): The theory of spinors, The M.I.T. Press, Cambridge 1966 
Cartan, H. (1958): Nicolas Bourbaki und die heutige Mathematik, Arbeitsgemeinschaft 

für Forschung des Landes Nordrhein-Westfalen, Heft 76, Köln 1958 
Castellvί, P., Jaén, X. and E.Llanta (1994): TTC: Symbolic tensor and exterior calculus, 

Computers in Physics 8 (1994) 360-367 
Cayley, A. (1845): On Jacobi's elliptic functions, in reply to the Rev. B. Bronwin; and on 

quaternions, Philos. Mag. 26 (1845) 208-211 
Cayley, A. (1848): On the application of Quaternions to the theory of rotation. Phil. 

Mag.33 (1848)196-200 
Cayley, A. (1885): On the quaternion equation qQ — Qq’ = 0, Messenger 14 (1885)108-

112 
Cayley, A. (1963): On Jacobi's elliptic functions, in reply to the Rev. B. Bronwin; and on 

quaternions (appendix only), in The Collected Mathematical Papers, Johnson Reprint 
Co., New York 1963, p. 127 

Champagne, F.H. (1978): The Fine-scale structure of the turbulent velocity field, J. Fluid 
Mech. 86 (1978) 67-108 



 References 

 

72 

Chen,L.(1995) : Witt algebra on the ring of Laurent polynomials, Math.Phys. 167 (1995) 
443-469  

Chen, Y.T. and A.Cook (1993): Gravitational experiments in the Laboratory, Cambridge 
University Press, Cambridge 1993 

Chevalley, C. (1946): Theory of Lie groups, Princeton University Press, Princeton 1946 
Chevalley, C. (1954): The algebraic theory of spinors, Columbia University Press, New 

York 1954 
Chevalley, C. (1955): The construction and study of certain important algebras, Mathe-

matical Society of Japan, Tokyo 1955 
Chevalley, C. (1997): The algebraic theory of spinors and Clifford algebras, Springer 

Verlag, Berlin 1997 
Chisholm, J.S.R. and A.K. Common (1986): Clifford algebras and their applications in 

mathematical physics, Reidel, Dordrecht 1986 
Clifford, W.K. (1878): Applications of Grassmann's extensive algebra, American J. Math. 

1 (1878) 350-358, republished in: Mathem. Papers by William Kingdon Clifford (ed. 
R. Tucker), pp. 266-276,  Macmillan and Co, London 1882 

Clifford, W.K. (1882): Mathematical papers, Chelsea, Bronx, New York 1968, reprint of 
the 1882 edition 

Clifford, W.K. (1882): On the classification of geometric algebras, Mathematical Papers 
by William Kingdon Clifford (ed. R.Tucker), pp. 397-401, Macmillan and Co, Lon-
don 1882 

Cline, E., Parshall, B. and L.Scott (1988): Finite dimensional algebras and highest weight 
categories, J. reine angewandte Mathematik 391 (1988) 85-99 

Cohn, P.M. (2000): Introduction to ring theory, Springer Verlag, London 2000 
Connes, A. (1986): Non-commutative differential geometry I, II, Publ. Math. 62 (1986) 

44-144 
Conradt, O. (2000): The principle of duality in Clifford algebra and projective geometry, 

in: Ablamowicz, R. and B.Fauser (Eds.): Clifford algebras and their applications in 
mathematical physics, vol. 1, Algebra and physics, Birkhäuser Verlag, Boston 2000, 
157-193 

Constantinescu, F. and H.F. de Groote (1989): Integral theorems for supersymmetric 
invariants, Journal Math. Phys. 30 (1989) 981-992 

Constantinescu, F. and H.F. de Groote (1994): Geometrische und algebraische Methoden 
der Physik: Supermannigfaltigkeiten und Virasoro-Algebren, Teubner Verlag, Stutt-
gart 1994 

Coxeter, H.S.M. (1946): Integral Cayley numbers, Duke Math. Jour. 13 (1946) 561-578 
Crawford, J.P. (1991): Clifford algebra: Notes on the spinor metric and Lorentz, Poincaré, 

and conformal groups, J.Math.Phys. 32 (1991) 576-583 
Crowe, M.J. (1967): A history of vector analysis, University of Notre Dame Press 1967 
Crumeyrolle, A. (1990): Orthogonal and sympletic Clifford algebras, Kluwer Acad. Publ., 

Dordrecht 1990 
Curtis, C.W. (1963): The four and eight square problem and division algebras, in Studies 

in Modern Algebra, ed. A. Albert, Prentice-Hall, Englewood Cliffs, New Jersey 1963, 
pp. 100-125 

Dambeck, J.H. (1998): Diagnose und Therapie geodätischer Trägheitsnavigationssysteme, 
Stuttgart, 1998 

Dauxois, J.Y. Romain and S.Viguier-Pla (1994): Tensor products and statistics, Linear 
Algebra Appl. 210 (1994) 59-88 

Deheuvels, R. (1981): Formes quadratiques et groupes classiques, Presses Universitaires 
de France, Paris 1981 



References 73 

Delanghe, R. and F. Sommen (1982): Fourier analysis on the unit sphere, A.M.S. Series, 
Contemporary Math. 11 (1982) 89-100 

Delanghe, R., Sommen, F. and V.Soucek (1992): Clifford algebra and spinor valued 
functions: A function theory for the Dirac operator, Kluwer, Dordrecht 1992 

Demmel, J. et al (1999): Computing the singular value decomposition with high relative 
accuracy, Linear Algebra and its Applications 299 (1999) 21-80 

Deschamps, G.A. (1981): Electromagnetics and differential forms, Proceedings of the 
IEEE 69 (1981) 676-696 

Deschamps, G.A. (1986): Comparison of Clifford and Grassmann algebras in applications 
of electromagnetics, in: Chisholm, J.S.R. and A.K. Common: Clifford algebras and 
their applications in mathematical physics, pages 501-515, D.Reidel Publ., Dordrecht 
1986 

Dickson, L.E. (1919): On quaternions and their generalization and the history of the eight 
square theorem, Ann. Math. 20 (1919) 155-171 

Dieterich, E. (2000): Eight-dimensional real quadratic division algebras, UUDM Report 
2000:24 (to appear in Annonces de Montpell) 

Dirac, P.A.M. (1928): The quantum theory of the electron, Proc. Roy. Soc. A117 (1928) 
610-624 

Dixon, G.M. (1994): Division Algebras: Octonions, quaternions, complex numbers, and 
the algebraic design of physics, Kluwer, Dordrecht 1994  

Dodson, C.T.J. and  T.Poston (1979): Tensor geometry, Pitman, London 1979 
Doolin, B.F. and C.F. Martin (1990): Introduction to differential geometry for engineers, 

Marcel Dekker Verlag, New York 1990 
Doran, C. (1993): Lie groups as spin groups, J. Math. Phys. 34 (1993) 3642-3669 
Dray, T. and C.A. Manogue (2000): Quaternionic spin, in: Ablamowicz, R. and B.Fauser 

(Eds.): Clifford algebras and their applications in mathematical physics, vol. 1, Alge-
bra and physics, Birkhäuser Verlag, Boston 2000, 21-37 

Dresner, L. (1999): Applications of Lie's theory of ordinary and partial differential equa-
tions, Institute of Physics Publishing, Philadelphia 1999 

Dubois-Violette, M., Kerner, R. and J. Madore (1990): Non commutative differential 
geometry of matrix algebras, Journal Math. Phys. 31 (1990) 316-322 

Dubois-Violette, M., Kerner, R. and J. Madore (1990): Non commutative differential 
geometry of matrix algebras, Journal Math. Phys. 31 (1990) 323-330 

Eckmann, B. (1968): Continuous solutions of linear equations - some exceptional dimen-
sions in topology, Battelle Rencontres, eds. C.M. de Witt and J.A. Wheeler, W.A. 
Benjamin Publ., pages 516-527, New York 1968 

Emch, G.G. (1986): Mathematical and conceptual foundations of 20th-century physics, 
North-Holland, Amsterdam 1986 

Evans, T. (1949): The word problem for abstract algebras, J. London Math. Soc. 24 
(1949) 64-71 

Fauser, B: (1996): Clifford algebraic remark on the Mandelbrot set of two-component 
number systems, Adv. in Appl. Clifford Alg. 6 (1996) 1-26 

Fauser, B. (1999): Hecke algebra representations within Clifford geometric algebras of 
multivectors, J. Phys. A: Math. Gen. 32 (1999) 1919-1936 

Fauser, B. and R. Ablamowicz (2000): On the decomposition of Clifford algebras of 
arbitrary bilinear form, in: Ablamowicz, R. and B.Fauser (Eds.): Clifford algebras and 
their applications in mathematical physics, vol. 1, Algebra and physics, Birkhäuser 
Verlag, Boston 2000, pp. 341-366 

Fauser, B. and Z. Oziewicz (2001): Clifford Hopf gebra for two dimensional space, Mis-
cellanea Algebraica 2 (2001) 31-42 



 References 

 

74 

Fernández, V.V., Moya, A.M. and W.A. Rodriguez Jr. (2000): Covariant derivatives on 
Minkowski Manifolds, in: Ablamowicz, R. and B.Fauser (Eds.): Clifford algebras and 
their applications in mathematical physics, vol. 1, Algebra and physics, Birkhäuser 
Verlag, Boston 2000, 367-423 

Filmore, J.P. and A. Springer (1990): Möbius groups over general fields using Clifford 
Algebras associated with spheres, International Journal of Theoretical Physics 29 
(1990) 225-327 

Foley, J.D., and A. Van Dam (1982): Fundamentals of interactive computer graphics, 
Addison-Wesley Publishing Company, Inc. 1982  

Forder, H.G. (1960): Calculus of extension, Chelsea Publ., New York 1960 
Freudenthal, H. (1953): Zur ebenen Oktavengeometrie, Indag. Math. 15 (1953) 195-200 
Frisch, U., Sulem, P.-L. and M. Nelkin (1978): A simple dynamical model of intermittent 

fully developed turbulence, J. Fluid. Mech. 86 (1978) 719-736 
Garding, L. (1970): Marcel Riesz in memoriam, Acta Math. 124 (1970) I-XI 
Garding, L. and L.Hörmander (1988): Marcel Riesz, collected papers, Springer, Berlin 

1988 
Gericke, H. and H.Wäsche (1962): Lineare Algebra, in: Grundzüge der Mathematik, Bd.I, 

2.Aufl., pp. 270-299, Vandenhoeck-Ruprecht, Göttingen 1962 
Geroch, R. (1985): Mathematical Physics, The Univerity of Chicago Prss, Chicago-

London 1985 
Gibbs, J.W. and E.B. Wilson (1925): Vector analysis, Yale University Press, New Haven 

1925 
Gijsbertus, J. and F. Belifante (2000): Clifford algebras and the construction of the basic 

spinor and semi-spinor modules, in: : Ablamowicz, R. and B. Fauser (Eds.): Clifford 
algebras and their applications in mathematical physics, vol. 1, Algebra and physics, 
Birkhäuser Verlag, Boston 2000, 323-339 

Gilbert, J. and M. Murray (1991): Clifford algebras and Dirac operators in harmonic 
analysis, Cambridge Studies in Advanced  Mathematics, Cambridge University Press, 
Cambridge 1991 

Glimm, J., Impagliazzo, J. And I. Singer (Eds.) (1990): The legacy of John von Neumann, 
Proceedings of Symposia in Pure Mathematics 50 (1990), American Mathematical 
Society Providence, Rhode Island 1990 

Graham, A. (1981): Kronecker products and matrix calculus with applications, Ellis Hor-
wood Limited, Chichester 1981 

Grassmann, H. (1911): Gesammelte mathematische und physikalische Werke, Teubner 
Verlag, Leipzig 1911 

Greub, W.H. (1967): Multilinear algebra, Springer Verlag, Berlin 1967 
Greub, W.H. (1978): Multilinear algebra, 2nd ed., Springer, Berlin 1978 
Griffiths, P. and J. Harris (1978): Principles of algebraic geometry, Wiley-Interscience, 

New York 1978 
Günaydin, M. (1993): Generalized conformal and superconformal group actions and 

Jordan algebras, Mod. Phys. Lett. 8 (1993) 1407-1416  
Günaydin, M., Koepsell, K. and H. Nicolai (2001): Conformal and quasiconformal reali-

zations of exeptional Lie groups, Comm. Math. Phys. 221 (2001) 57-76 
Gürlebeck, K. and W.Sprössig (1990): Quaternionic analysis and elliptic boundary value 

problems, Birkhäuser Verlag, Basel-Boston-Berlin 1990 
Gürlebeck, K. and W.Sprössig (1997): Quaternionic and Clifford calculus for physicists 

and engineers, J.Wiley, New York 1997 
Hamilton, W.R. (1847): On quaternions, Proceedings of the Royal Irish Academy 3 

(1847) 1-16 



References 75 

Hamilton, W.R. (1967): Four and eight square theorems, in Appendix 3 of The Mathe-
matical Papers of William Rowan Hamilton 3, eds. H. Halberstam and R.E. Ingram, 
Cambridge University Press, Cambridge 1967, 648-656 

Hankins, T.L. (1980): Sir William Rowan Hamilton, John Hopkins University Press, 
Baltimore 1980 

Hardy, Y. and W.-H. Steeb (2001): Classical and quantum computing, Birkhäuser-Verlag, 
Basel-Boston-Berlin 2001 

Harvey, F.R. (1990): Spinors and calibrations, Academic Press, San Diego 1990 
Helmstetter, J. (1982): Algèbres de Clifford et algèbres de Weyl, Cahiers Math. 25, 

Montpellier 1982 
Hestenes, D. (1966): Space-time algebra, Gordon and Breach, New York 1966/1987/1982 
Hestenes, D. (1971): Vectors, spinors, and complex numbers in classical and quantum 

physics, AJP 39 (1971) 1013-1027 
Hestenes, D. (1992): Mathematical viruses, in: Clifford algebras and their applications in 

mathematical physics, Proc. 2nd Workshop, Montpellier 1989, A. Micali and R. 
Boudet (eds.), Kluwer Academic Publ., Dordrecht 1992 

Hestenes, D. and G. Sobczyk (1984): Clifford algebra to geometric calculus, Kluwer 
Academic Publishers, Boston 1984 

Hile, G.N. and P. Lounesto (1990): Matrix representations of Clifford algebras, Linear 
Algebra Appl. 128 (1990) 51-63 

Hodge, W.V.D. (1941): Theory and applications of harmonic integrals, Cambridge Uni-
versity Press, Cambridge 1941 

Hodge, W.V.D. and D. Pedoe (1968): Methods of algebraic geometry, vol. 1, Cambridge 
University Press, London 1968 

Hojman, S., Rosenbaum, M., Ryan, M. and L. Shepley (1978): Gauge invariance, minimal 
coupling and torsion, Phys. Rev. D 17 (1978) 

Housner, G.W. and D.E. Hudson (1959): Applied mechanics dynamics, D. van Nostrand 
Company, Inc. 1959 

Hurwitz, A. (1898): Über die Composition der quadratischen Formen von beliebig vielen 
Variablen, Nachr. Ges. Wiss. Göttingen (1898) 309-316 

Ickes, B.P. (1970): A new method for performing digital control system attitude comopu-
tations using quaternions, AIAA Journal 8 (1970) 13-17 

Imaeda, K. (1986): Quaternionic formulation of classical electromagnetic fields and the-
ory of functions of a biquaternion variable, in: Chisholm, J.S.R. and A.K. Common: 
Clifford algebras and their applications in mathematical physics, pages 495-500, 
D.Reidel Publ., Dordrecht 1986 

Isham, C.J. (1999): Modern differential geometry for physicists, 2nd ed., World Scientific, 
Singapore – New Jersey – London – Hong-Kong 1999 

Jancewicz, B. (1998): Multivectors and Clifford algebra in electrodynamics, World Scien-
tific Publ., Singapore 1998 

Johnson, R.W. (2000): Fiber with intrinsic action on a 1+1 dimensional spacetime, in: 
Ablamovicz, R. and B. Fauser (Eds.), Clifford algeabras and their applications in 
mathematical physics, Birkhäuser Verlag, Boston – Basel – Berlin 2000, 93-100 

Jordan, P. (1932): Über eine Klasse nicht associativer hyperkomplexer Algebren, Nachr. 
Ges. Wiss. Göttingen (1932) 569-575 

Just, K. and J. Thevenot (2000): Pauli terms must be absent in the Dirac equation, in: 
Ablamovicz, R. and B. Fauser (Eds.), Clifford algeabras and their applications in 
mathematical physics, Birkhäuser Verlag, Boston – Basel – Berlin 2000, 39-48 

Juvet, G. (1930): Opérateurs de Dirac et équations de Maxwell, Comment. Math. Helv. 2 
(1930) 225-235 



 References 

 

76 

Kac, V.G. (1979): Contravariant form for infinite dimensional Lie algebras and superal-
gebras, Lecture Notes in Phys. 94 (1979) 441-445 

Kadison,R.V. (1990): Operator algebras - an overview, in :The Legacy of John von Neu-
mann J.Glimm, J.Impagliazzo, I. Singer, eds.) Proc. Symp. Pure Mathematics , vol. 
50, pages 61-89, American Mathematical Society, Providence, Rhode Island 1990 

Kähler, E. (1960): Innerer und äusserer Differentialkalkül, Abhandlungen der Deutschen 
Akademie der Wissenschaften zu Berlin, Nr. 4, Akademie-Verlag, Berlin 1960  

Kähler, E. (1962): Der innere Differentialkalkül, Rendiconti di Matematica e delle sue 
Applicazioni (Roma) 21 (1962) 425-523 

Kanatani, K. (1990): Group-theoretical methods in image understanding, Springer- 
Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong 1990 

Kawada, Y. and N. Iwahori (1950): On the structure and representations of Clifford alge-
bras, J.Math. Soc. Japan 2 (1950) 34-43 

Keller, J. (Ed.) (1998): Advances in applied Clifford algebras 8 (1998) 
Kerr, R.M. (1985): Higher-order derivative correlations and the alignment of small-scale 

structures in isotropic numerical turbulence, J. Fluid Mech 87 (1978) 719-736 
Keskinen, R. and M.Lehtinen (1976): On the linear connection and curvature in Newto-

nian mechanics, J.Math. Physics 17 (1976) 2082-2084 
Kida, S. and Y. Murakami (1989): Statistics of velocity gradients in turbulence at moder-

ate Reynolds numbers, Fluid Dynamics Res 4 (1989) 347-370 
Killing, W. (1888): Die Zusammensetzung der stetigen endlichen Transformationsgrup-

pen I, Math. Ann. 31 (1888) 252-290 II, 33 (1889) 1-48 III, 34 (1889), 57-122 IV, 36 
(1890) 161-189 

Kiyek, K.-H. and F.Schwarz (1999): Lineare Algebra, B.G.Teubner, Stuttgart 1999 
Knörrer, H. (1996): Geometrie, Vieweg Verlag, Braunschweig-Wiesbaden 1996 
Knus, M.-A. (1988): Quadratic forms, Clifford algebras and spinors, Univ. Estadual de 

Campinas, SP, 1988 
Koecher, M. and R. Remmert (1991): Hamilton's quaterions, in: Numbers, ed. H.D. 

Ebbinghaus et al, pages 189-220, Springer Verlag, New York 1991 
Kofidis, E. and P.A. Regalia (2002): On the best rank-1 approximation of higher-order 

supersymmetric tensors, SIAM J. Matrix Anal. Appl. 23 (2002) 863-884 
Kolda, T.G. (2001): Orthogonal tensor decompositions, SIAM J. Matrix Anal. Appl. 23 

(2001) 243-255 
Kolmogorov, A.N. (1941): The local structure of turbulence in incompressible viscous 

fluid for very large Reynolds numbers, C.R. Acad. Sci. USSR 30 (1941) 301-305 
Kolmogorov, A.N. (1941): On degeneration of isotropic turbulence in an incompressible 

viscous fluid, C.R. Acad. Sci. USSR 31 (1941) 538-540 
Kolmogorov, A.N. (1962): A refinement of previous hypotheses concerning the local 

structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. 
Fluid Mech. 12 (1962) 82-85 

Kraichnan, R.H. (11974): On Kolomogrov’s intertial-range theories, J. Fluid Mech. 62 
(1974) 305-330 

Kuipers, J.B. 1999): Quaternions and rotation sequences, Princeton, New Jersey 1999 
Kuo, A.Y.-S. and S. Corrsin (1971): Experiments on internal intermittency and fine-

structure distribution functions in fully turbulent fluid, J. Fluid Mech. 50 (1971) 285-
319 

Lam, T.Y. (1973): The algebraic theory of quadratic forms, Benjamin, Reading 
1973/1980 

Lamprecht, E. (1993): Lineare Algebra, 2 vols., 2. Auflage, Birkhäuser Verlag, Basel 
1993 



References 77 

Laporte, O. and G.E.Uhlenbeck (1931): Application of spinor analysis to the Maxwell and 
Dirac equations, Phys. Rev. 37 (1931) 1380-1397 

Lawson, H.B. and M.L. Michelsohn (1989): Spin geometry, Princeton University Press, 
New Jersey, Princeton 1989 

Lee, H.C. (1948): On Clifford algebras and their representations, Ann. of Math. 49 (1948) 
760-773 

Lefferts, E.J., Markley, F.L. and M.D. Shuster (1982): Kalman filtering for spacecraft 
attitude estimation, J. Guidance 5 (1982) 417-429 

Legendre, A.M. (1785): Recherches sur l'attraction des sphéroides homogènes, Mém. 
Math. Phys. Prés à l'acad. Roy. Sci. (Paris) 10 (1785) 411-434 

Leites, D.A. (1980): Introduction to the theory of supermanifolds, Russian Math. Surveys 
35 (1980) 1-64 

Lewis, A., Lasenby, A. and C. Doran (2000): Electron scattering in the spacetime algebra, 
in: : Ablamowicz, R. and B.Fauser (Eds.): Clifford algebras and their applications in 
mathematical physics, vol. 1, Algebra and physics, Birkhäuser Verlag, Boston 2000, 
49-71 

Li, H. (2000): Doing geometric reearch with Clifford algebra, in: Ablamowicz, R. and 
B.Fauser (Eds.): Clifford algebras and their applications in mathematical physics, vol. 
1, Algebra and physics, Birkhäuser Verlag, Boston 2000, 195-217 

Lipschitz, R. (1880): Principes d'un calcul algébrique qui contient comme espèces particu-
lières le calcul des quantités imaginaires et des quaternions, C.R. Acad. Sci. Paris 91 
(1880) 619-621, 660-664, reprinted in: Bull. Soc. Math. 11 (1887) 115-120 

Lipschitz, R. (1886): Untersuchungen über die Summen von Quadraten, Max Cohen und 
Sohn, Bonn 1886, pages 1-147, French résumé of all three chapters in Bull. Sci. Math. 
10 (1886) 163-183 

Lipschitz, R. (1959): Correspondence, Ann. of Math. 69 (1959) 247-251 
Liu, H. and J. Ryan (2001): The conformal Laplacian on spheres and hyperbolas via 

Clifford analysis, in: F. Brackx et al (Eds.), Clifford Analysis and its applications, 
kluwer Academic Publishers 2001, 255-266 

Lounesto, P. (1980): Sur les idéaux à gauche algèbres de Clifford et les produits scalaires 
des spineurs, Annales de l'Institut Henri Poincaré 33 (1980) 53-61 

Lounesto, P. (1985): Report of Conference, NATO and SERC Workshop on 'Clifford 
Algebras and their applications in mathematical physics', University of Kent, Canter-
bury 1985, Found. Phys. 16 (1986) 967-971 

Lounesto, P. (1986): Clifford algebras and spinors, in: J.S.R. Chisholm and A.K. Com-
mon (eds.), Clifford Algebras and their Applications in Mathematical Physics, D. 
Reidel publishing Company, 1986, 25-37 

Lounesto, P. (1989): Möbius transformations and Clifford algebras of Euclidean and anti-
Euclidean spaces, in: J. Lawrynowicz (ed.), Deformations of Mathematical Structures, 
Kluwer Academic Publishers 1989, 79-80 

Lounesto, P. (1992): Clifford algebra calculations with a microcomputer, in: Clifford 
algebras and their applications in mathematical physics, Proc. 2nd Workshop, Mont-
pellier 1989, A. Micali, R. Boudet and J. Helmstetter (eds.), Kluwer Acad. Publ., 
Dordrecht 1992 

Lounesto, P. (1997): Clifford algebras and spinors, Cambridge UP, 1997, (2nd ed.) 2001 
Lounesto, P. (2001): Marcel Riesz's work on Clifford algebras, in: Clifford numbers and 

spinors, Bolinder, E.F. and P. Lounesto (eds.), Kluwer Academic Publ, p. 215-241, 
Dordrecht 1993 

Lounesto, P. (2001): Clifford algebras and spinors, 2nd ed., Cambridge University Press, 
Cambridge 2001 



 References 

 

78 

Lounesto, P. and E. Latvamaa (1980): Conformal transformations and Clifford algebras, 
Proc. Amer. Math. Soc. 79 (1980)  

Ludwig, W. and C. Falter (1996): Symmetries in physics, 2nd extended ed., Springer-
Verlag, Berlin-Heidelberg-New York 1996 

Luehr, C.P. and M. Rosenbaum (1968): Intrinsic vector and tensor techniques in Min-
kowski space with applications to special relativity, J. Math. Phys. 9 (1968) 284ff 

Luehr, C.P. and M. Rosenbaum (1970): Intrinsic formulation of the already unified theory 
of Maxwell, Einstein and Rainich, Ann. Of Phys. 60 (1970) 384ff 

Mackey, N. (1995): Hamilton and Jacobi meet again: quaternions and the eigenvalue 
problem, SIAM J. Matrix Anal. Appl. 16 (1995) 421-435 

Madore, J. (1993): Matrix geometry and physics, Preprint, LPTHE Orsay 93/000, 1993 
Maks, J. (1992): Clifford algebras and Möbius transformations, in: Clifford Algebras and 

their applications in mathematical physics, Micali, A., Boudet, R. and Helmstetter, J. 
(eds.) pages 57-63, Kluwer Academic Publishers, Dordrecht 1992 

Mandelbrot, B. (1974): Intermittent turbulence in self-similar cascades, J. Fluid Mech. 62 
(1974) 331-358 

Manogue, C.A. and J. Schray (1996): Octonionic representations of Clifford algebras and 
triality, Found. Phys. 26 (1996) 17-70 

Marcus, M. (1975): Finite dimensional multilinear algebra, 2 vols., M.Dekker Publ., New 
York 1975 

Markley, F.L. (1988): Attitude determination using vector observations and the singular 
value decomposition, The journal of the Austronautical Sciences 36 (1988) 245-258 

Markley, F.L. (1993): New dynamic variables for momentum-bias spacecraft, The journal 
of the Austronautical Sciences 41 (1993) 557-567 

McGuire, G. and F.O.Cairbre (2001): A bridge over a Hamiltonian path, The Mathemati-
cal Tourist 23 (2001) 41-43 

Meister, L. (1998): Quaternions and their application in photogrammetry and navigation, 
Habilitation der TU Freiberg, 1998 

Micali, A. and P.Revoy (1977): Modules quadratiques, Cahier Math. 10, Montpellier 
1977, Bull.Soc.Math. France 63 (1979) 5-144 

Micali, A., Boudet, R. and J.Helmstetter (1991): Clifford algebras and their applications 
in mathematical physics, Kluwer, Dordrecht 1991 

Miller, R.B. (1983): A new strapdown attitude algorithm, J. Guidance 6 (1983) 287-291 
Minzoni, A.A., Mucino, J. and M. Rosenbaum (1994): On the structure of Yang-Mills 

fields in compactified Minkowski space, J. Math. Phys. 35 (1994) 5642-5659 
Mirman, R. (1995): Group theory: an intuitive approach, World Scientific, Singapore-

New Yersey-London-Hong Kong 1995 
Missoum, A.: Algebraic-numerical chess notation 
Monin, A.S. and A.M.Yaglom (1981): Statistical fluid mechanics: mechanics of turbu-

lence, vol. 2, The Mit Press, Cambridge 1981 
Moriya, M. (1942): Struktur der Divisionsalgebren über diskret bewerteten perfekten 

Körpern in: Proceedings of the Imperial Academy, pages 5-11, Office of the Academy 
Ueno Park, Tokyo 1942 

Morris, A.O. and M.K. Makhool (1992): Real projective representations of real Clifford 
algebras and reflection groups, in: A. Micali, R. Boudet and J. Helmstetter (eds.), 
Clifford algebras and their applications in mathematical physics, Proc. 2nd Workhop, 
Montpellier 1989, Kluwer Acad. Publ., Dordrecht 1992 

Mortensen, R.E. (1974): Strapdown guidance error analysis, IEEE Transactions on Aero-
space and Electronic Systems 4 (1974) 451-457 



References 79 

Murray, R.M., Li, Z. and S.S. Sastry (1994): A mathematical introduction to robotic 
manipulation, CRC Press, Boca Raton-Ann Arbor-London-Tokyo 1994 

Naber, G.L. (1997): Topology, geometry and gauge fields, Springer Verlag, New York 
1997 

Neutsch, W. (1995): Koordinaten, Spektrum Adademischer Verlag, 1353 pages, Heidel-
berg 1995 

Nicholson, W.K. (1999): Introduction to abstract algebra, 2nd ed., J.Wiley, New York 
1999 

Novikov, E.A. and R.W. Steward (1964): Intermittency of turbulence and the energy 
dissipation-fluctation spectrum,, Izv. Akad. Nauk SSSR Ser. Geophy 3 (1964) 408-
413 

Obukhov, A.M. (1962): Some specific features of atmospheric turbulence, J. Fluid Mech. 
12 (1962) 77-81 

Okubo, S. (1991): Real representations of finite Clifford algebras. I. Classification, J. 
Math. Phys. 32 (1991) 1657-1668 

Okubo, S. (1991): Real representations of finite Clifford algebras. II. Explicit construction 
and pseudo-octonion, J. Math. Phys. 32 (1991) 1669-1673 

Okubo, S. (1995): Representations of Clifford algebras and its applications, Math. Japn. 
41 (1995) 59-79 

Okubo, S. (1995): Introduction to octonion and other non-associative algebras in physics, 
Cambridge University Press, Cambridge 1995 

Okubo, T. (1987): Differential geometry, M.Dekker Publ., New York 1987 
Olver, P.J. (1999): Classical Invariant theory, London Mathematical Society Student 

Texts 44, Cambridge University Press, Cambridge 1999 
Oziewicz, Z. (1997): Clifford algebra of multivectors, Advances in Applied Clifford 

Algebras 7 (1997) 467-486 
Oziewicz, Z. and J. R. R. Zeni (2000): Oridinary differential equation: symmetries and 

last multiplier, in: R. Ablamowicz and B. Fauser, Clifford algebras and their applica-
tions in mathematical physics, Vol. 1: Algebra and Physics, Birkhauser, Boston 2000, 
425-448 

Panda, R., Sonnad, V., Clementi, E., Orszag, S.A. and V. Yakhot (1989): Turbulence in a 
randomly stirred fluid, Phys. Fluids A1 (1989) 1045-1053 

Pauli, W. (1927): Zur Quantenmechanik des magnetischen Elektrons, Z.Phys. 42 (1927) 
601-623 

Peano, G. (1888): Calcolo geometrico secondo l'Ausdehnungslehre di H.Grassmann, 
Fratelli Bocca Editori, Torino 1888 

Penrose, R. and W.Rindler (1984): Spinors and space-time, vol. 1, Cambridge University 
Press, Cambridge (1984) 

Penrose, R. and W.Rindler (1986): Spinors and space-time, vol. 2, Cambridge University 
Press, Cambridge (1986) 

Pezzaglia Jr., W.M. (2000): Dimensionally democratic calculus and principles of polydi-
mensional physics, in: R. Ablamowicz and B. Fauser, Clifford algebras and their ap-
plications in mathematical physics, Vol. 1: Algebra and Physics, Birkhauser, Boston 
2000, 101-123 

Piazzese, F.I. (2000): A Pythagorean metric in relativity, in: : R. Ablamowicz and B. 
Fauser, Clifford algebras and their applications in mathematical physics, Vol. 1: Al-
gebra and Physics, Birkhauser, Boston 2000, 125-133 

Pickert, G. and H.-G. Steiner(1962): Komplexe Zahlen und Quaternionen, in: Grundzüge 
der Mathematik, Band 1, Grundlagen der Mathematik, Arithmetik und Algebra, Van-
denhoeck & Ruprecht, Göttingen 1962 

Pierce, R.S. (1982): Associative algebras, Springer Verlag, New York 1982 



 References 

 

80 

Pistone, G., Riccomagno, E. and H.Wynn (2001): Algebraic statistics: Computational 
commutative algebra in statistics, Chapman and Hall, Boca Raton 2001 

Porteous, I.R. (1981): Topological geometry, 2nd edition, Cambridge University Press, 
Cambridge 1981 

Porteous, I.R. (1993): Clifford algebra tables, in: F. Brackx et al. (Eds.), Clifford algebras 
and their applications in mathematical physics, Kluwer, Dordrecht, Netherlands 1993, 
pp. 13-22 

Porteous, I.R. (1995): Clifford algebras and the classical groups, Cambridge University 
Press, Cambridge 1995 

Porteous, I.R. (1996): A tutorial on conformal groups, in: J. Lawrynowicz (Ed.), Gener-
alizations of complex analysis and and their applications in physics, Banach Center 
Publications, 37, Warsaw 1996, pp. 137-150 

Psenichnyi, B.N. (1971): Necessary conditions for an extremum, M.Dekker, New York 
1971 

Qian, T., Hempfling, T., McIntosh, A. and Sommen, F. (2004): Advances in Analysis and 
Geometry: New Developments Using Clifford Algebras, Birkhäuser Verlag Basel, 
Boston,  Berlin 2004 

Riesz, M. (1993): Clifford numbers and spinors, ed. E.Folke Bolinder and P. Lounesto, 
The Netherlands: Kluwer Academic Publishers, Dordrecht 1993 

Rodrigues Jr., W.A. and Q.A.G. de Souza (1993) : The Clifford bundle and the Nature of 
the gravitational field, Foundations of Physics 23 (1993) 1465-1490 

Rogers, A. (1980): A global theory of super-manifolds, Journal Math. Phys. 21 (1980) 
1352-1365 

Roman, S. (1992): Advanced linear algebra, Springer Verlag New York, Harrisonburg 
1992 

Rongved, L. and H.J. Fletcher (1964): Relational Coordiantes, Journal of the Franklin 
Institute 277 (1964) 414-421 

Rose, H.E. (2002): Linear algebra – a pure mathematical approach, Birkhäuser Verlag, 
Basel-Boston-Berlin 2002 

Rosenbaum, M. (2001): The short scale structure of space-time and the Dirac operator, 
IJTP 40 (2001) 139-162 

Rosenbaum, M., D'Olivo, J.C., Nahmad-Achar, E., Bautista, R. and J. Mucino (1989): 
Geometric model for gravitation and electroweak interactions, J. Math. Phys. 30 
(1989) 1579ff 

Rosenbaum, M. and J.D. Vergara (2000): Dirac operator, the Hopf algebra of renormali-
zation and the structure of space-time, in: R. Ablamowicz and B. Fauser, Clifford al-
gebras and their applications in mathematical physics, Vol. 1: Algebra and Physics, 
Birkhauser, Boston 2000, pp. 283-302 

Rost, M. (1996): On the dimension of a composition algebra, Doc. Math. 1 (1996) 209-
214 

Roth, B. (1979): Theoretical kinematics, North-Holland Publishing-Company, Amster-
dam-New York-Oxford 1979 

Ryan, J. (1985): Conformal Clifford manifolds arising in Clifford analysis, Proc. R. Ir. 
Acad. 85A (1985) 1-23 

Rothstein, M.J. (1986): The axioms of supermanifolds and a new structure arising from 
them, Trans. Amer. Math. Soc. 297 (1986) 159-180 

Ryan, J. (1988): Clifford matrices, Cauchy Kowaleski extensions and analytic functionals, 
Proceedings of the Centre for Mathematical Analysis, Australian National Universtiy 
16 (1988) 284-299 



References 81 

Ryan, J. (1996): The spherical Fourier transform, Proceedings of the Conference on Qua-
ternionic Structures in Mathematics and Physics, Trieste, Italy, SISSA, 1996, pp.277-
289 

Ryan, J. (Ed.) (1996): Clifford algebras in analysis and related topics, Studies in advanced 
mathematics, CRC Press, Boca Raton 1996 

Ryan, J. (1998): A decomposition theorem in Clifford analysis, Journal of Operator The-
ory 39 (1998) 297-308 

Ryan, J. and W. Sprößig (2000): Clifford algebras and their applications in mathematical 
physics, vol. 2, Clifford analysis, Birkhäuser Verlag, Boston 2000 

Ryan, J. and H. Liu (2001): The conformal Laplacian on spheres and hyperbolas via 
Clifford analysis, in: F. Brackx et al. (eds.), Clifford analysis and its applications, 
Kluwer, 2001, pp. 255-266 

Salamon, S. (1989): Riemannian geometry and holonomy groups, Longman Scientific, 
Essex 1989 

Sauter, F. (1930): Lösung der Diracschen Gleichungen ohne Spezialisierung der Dirac-
schen Operatoren, Z.Phys. 63 (1930) 803-814 

Schafer, R.D. (1995): Introduction to non-associative algebras, Dover, New York 1995 
Schikin, J. (1994): Der lineare Farbenraum, in: Lineare Räume und Abbildungen, Spek-

trum Akademischer Verlag, Heidelberg 1994 
Schletz, B. (1982): Use of quaternions in shuttle guidance, navigation, and control, AJAA, 

Guidance and Control Conference, San Diego, 1982, 753-760 
Schmeikal, B. (2000): Clifford algebra of quantum logic, in: Ablamowicz, R. and 

B.Fauser (Eds.): Clifford algebras and their applications in mathematical physics, vol. 
1, Algebra and physics, Birkhäuser Verlag, Boston 2000, pp. 219-241 

Schmitt, T. (1984): Superdifferential geometry, IMath der Akademie der Wissenschaften 
der DDR, Report 05/84, 1984 

Schnirelmann, L. (1930): Über eine neue kombinatorische Invariante, Monatshefte für 
Mathematik und Physik 37 (1930) 131-134 

Schwarzenberger, R.L.E. (1974): Crystallography in spaces of arbitrary dimension, Math. 
Proc. Cambridge Phil. Soc. 76 (1974) 23-32 

Schwerdtfeger, H. (1962): Geometry of complex numbers, University of Toronto Press, 
Toronto 1962 

Sethuraman, B.A.: Division algebras 
Seywald, H. and R.R. Kumar (1993): Singular control in minimum time spacecraft reori-

entation, Journal of Guidance, Control, and Dynamics 16 (1993) 686-694 
She, Z.-S., Jackson, E. and S.A. Orszag (1990): Intermittency of turbulence, Proceedings 

of Symposia in Pure Mathematics 50 (1990) 197-? 
Shibata, M. (1986): Error analysis strapdown inertial navigation using quaternions, Engi-

neering notes May/June (1986) 379-381 
Shuster, M.D. and G. A. Natanson (1993): Quaternion computation from a geodetic point 

of view, The Journal of the Austronautical Sciences 41 (1993) 545-556 
Shuster, M.D. (1993): A survey of attitude representations, The Journal of the Austronau-

tical Sciences 41 (1993) 439-517 
Singh, S. (1997): Fermat's last theorem, Fourth Estate, London 1997 
Smith, T.(2003): Dixon, Division Algebras, and Physics, http://www.innerx.net/personal/ 

tsmith/Dixon.html 
Smith, T.(2004): Deriving the standard model plus gravitation from simple operations on 

finite set, http://www.innerx.net/personal/tsmith/Sets2Quarks2.html 
Snygg, J. (1986): Expediting the spinning top problem with a small amount of Clifford 

algebra, Am. J. Phys. 54 (1986) 708-712 



 References 

 

82 

Snygg, J. (1997): Clifford algebra, A computational tool for physicists, Oxford University 
Press, Oxford 1997 

Sohnius, M.F. (1985): Introducing supersymmetry, Physics Reports 128 (1985) 39-204 
Sommen, F. (1983): Hyperfunctions with values in a Clifford algebra, Simon Stevin 57 

(1983) 225-254 
Sommer, G. (2001): Geometric computing with Clifford algebras. Theoretical foundations 

and applications in computer vision and robotics, Springer Verlag, Berlin / Heidelberg 
2001 

Spencer, A.J.M. and R.S.Rivlin (1958): The theory of matrix polynomials and its applica-
tion to the mechanics of isotropic continua, Arch.Rational Mech.Anal. 2 (1958) 309-
336 

Spencer, A.J.M. (1987): Isotropic polynomial invariants and tensor functions, in: Applica-
tions of tensor functions in solid mechanics, ed. J.P.Boehler, Springer Verlag, pages 
141-186, Wien (1987) 

Springer, T.A. and F.D. Veldkamp (2000): Octonions, Jordan algebras, and exceptional 
groups, Springer Verlag, New York 2000 

Sproessig, W. (1981): Methode der harmonischen Approximation, Beiträge zur Nu-
merischen Mathematik 9 (1981) 185-193 

Sproessig, W. (1998): Operators in Clifford algebras and applications, Proceedings of the 
Conference "Dirac operators and applications" held at Cetaro, October 4-10, 1998, 
Advances in Clifford algebras 

Sproessig, W. and K. Gürlebeck (1997): Quaternionic and Clifford calculus for physicists 
and engineers, Wiley and Sons, Chichester 1997 

Sproessig, W. and J. Ryan (2000): Clifford algebras and their applications in mathemati-
cal physics, Volume 2: Clifford analysis, Birkhäuser, New York 2000 

Steeb, W.H. (1991): Kronecker product of matrices and applications, BI Wissenschafts-
verlag, Mannheim 1991 

Strubecker, K. (1972): Geometrie und Kinematik des elliptischen, quasielliptischen und 
isotropen Raumes, in: K. Strubecker (ed.), Geometrie, Wissenschaftliche Buchgesell-
schaft Darmstadt 1972 

Stuelpnagel, J. (1964): On the parametrization of the three-dimensional rotation group, 
SIAM Review 6 (1964) 422-430 

Sudbery, A. (1984): Division algebras, (pseudo)orthogonal groups and spinors, Jour. 
Phys. (1984) 939-955 

Takesaki, M. (1979): Theory of operator algebras I, Springer Verlag, New York 1979 
Trudeau, R.J. (1987): The non-Euclidean revolution, Birkhäuser Verlag, Boston-Basel-

Stuttgart 1987  
Vadali, S.R., Kraige, L.G. and J.L. Junkins (1984): New results on the optimal spacecraft 

attitude maneuver problem, J. Guidance 7 (1984) 378-380 
Vahlen, K.T. (1897): Über höhere komplexe Zahlen, Schriften der phys.- ökon. Gesell-

schaft zu Königsberg 38 (1897) 72-78 
Vahlen, K.T. (1902): Über Bewegungen und complexe Zahlen, Math. Ann. 55 (1902) 

585-593 
Van Groesen, E. and E.M. de Jager (Eds.) (1990): Studies in mathematical physics 1, 

Noth-Holland, Amsterdam 1990 
Vargas, J.G. and D.G. Torr (2000): Clifford-valued clifforums: a geometric language for 

dirac equations, , in: Ablamowicz, R. and B.Fauser (Eds.): Clifford algebras and their 
applications in mathematical physics, vol. 1, Algebra and physics, Birkhäuser Verlag, 
Boston 2000, 135-154 

Vivarelli, M.D. (1983): Development of spinor descriptions of rotational mechanics from 
Euler’s rigid body displacement theorem, Publ. Astron. Soc. Pacific (1983) 193-207 



References 83 

Waerden, van der B.L. (1966): On Clifford algebras, Nederl. Akad. Wetensch. Proc. Ser. 
A69 (1966) 78-83 

Waerden, van der B.L. (1976): Hamilton's discovery of quaternions, Math. Mag. 49 
(1976) 227-234 
Waerden, van der B.L. (1985): A history of algebra, Springer Verlag, Berlin 1985 
Wakimoto, M. (1999): Infinite-dimensional lie algebras, American Mathematical Society, 

Providence, Rhode Island 1999 
Wallner, R.P. (1982): Feldtheorie im Formenkalkül, Dissertation (Ph.D.Thesis), 491 

pages, Universität Wien, Wien 1982 
Ward, R.S. and R.O. Wells Jr. (1990): Twister geometry, Cambridge University Press, 

Cambridge 1990 
Wess, J. und B. Zumino (1974): Supergauge transformations in four dimensions, Nucl. 

Phys. B 70 (1974) 39-50 
Weiss, H. (1993): Quaternion-based rate/attitude tracking system with application to 

gimbal attitude control, Journal of Guidance, Control and Dynamics 16 (1993) 609-
616 

Westgard, J.B. (1995): Electrodynamics: A concise introduction, Springer-Verlag, New 
York 1995 

Wie, B. and P.M. Barba (1984): Quaternion feedback for spacecraft large angle maneu-
vers, J. guidance 8 (1984) 360-365 

Wie, B., Weiss, H. and A. Arapostathis (1989): Quaternion feedback regulator for space-
craft eigenaxis rotations, J. Guidance 12 (1989) 375-380 

Witt, E. (1937): Theorie der quadratischen Formen in beliebigen Körpern, J.Reine An-
gew. Math. 176 (1937) 31-44 

Wolf, H. (1993): Friedrich Robert Helmert – sein Leben und Wirken, Zeitschrift für Ver-
messungswesen 118 (1993) 582-590 

Woolfson, M.M. (1996): An introduction to X-ray crystallography, 2nd ed., Cambridge 
University Press, Cambridge 1996 

Wrobel, B.P. (1992): 2 minimum solutions for orientation, Paper to the Workshop: Cali-
bration and orientation of cameras in computer vision, Springer-Verlag, Washington, 
D.C. 1992 

Yaglom, A.M. (1966): The influence of fluctations in energy dissipation on the shape of 
turbulence characteristics in the inertial interval, Dokl. Akad. Nauk SSSR 166 (1966) 
49-52 

Yakhot, V. and S.A. Orszag (1986): Renormalization group analysis of turbulence 1, 
Basis theory, J. Sci. Comput. 1 (1986) 3-51 

Yakhot, V., Z.-S. She and S.A. Orszag (1989): Space-time correlations in turbulence, 
Kinematical versus dynamical effects, Phys. Fluids A1 (1989) 184-186 

Yano, K. (1970): Integral formulas in Riemannian geometry, M.Dekker, New York 1970 
Yano, K. and S. Ishihara (1973): Differential geometry of tangent and co-tangent bundles, 

M.Dekker, New York 1973 
Zaddach, A. (1994): Graßmann algebra in der Geometrie, B.J. Wissenschaftsverlag, 

Mannheim 1994 
Zorn, M. (1930): Theorie der alternativen Ringe, Abh. Math. Sem. Univ. Hamburg 8 

(1930) 123-147 
Zorn, M. (1933): Alternativkörper und quadratische Systeme, Abh. Math. Sem. Univ. 

Hamburg 9 (1933) 395-402 
Zund, J. (1971): The theory of bivectors, Tensor New Series 22 (1971) 179-185 





Schriftenreihe Institut für Photogrammetrie der Universität Stuttgart, Stuttgart University, 
Geschwister-Scholl-Str. 24/D, D-70174 Stuttgart 
Fax: ++49 711 121 3297; Internet: http://www.ifp.uni-stuttgart.de
 
___________________________________________________________________________ 
 
 

Nr. 1 (1976)  Vorträge des Lehrgangs Numerische Photogrammetrie (III), 
Esslingen 1975 - vergriffen 

Nr. 2 (1976)  Vorträge der 35. Photogrammetrischen Woche Stuttgart 1975 
Nr. 3 (1976)  Contributions of the XIIIth ISP-Congress of the Photogrammetric 

Institute, Helsinki 1976 - vergriffen 
Nr. 4 (1977)  Vorträge der 36. Photogrammetrischen Woche Stuttgart 1977 
Nr. 5 (1979)  E. Seeger: Das Orthophotoverfahren in der Architekturphoto-

grammetrie, Dissertation 
Nr. 6 (1980)  Vorträge der 37. Photogrammetrischen Woche Stuttgart 1979 
Nr. 7 (1981)  Vorträge des Lehrgangs Numerische Photogrammetrie (IV): Gro-

be Datenfehler und die Zuverlässigkeit der photogrammetrischen 
Punktbestimmung, Stuttgart 1980 - vergriffen 

Nr. 8 (1982)  Vorträge der 38. Photogrammetrischen Woche Stuttgart 1981 
Nr. 9 (1984)  Vorträge der 39. Photogrammetrischen Woche Stuttgart 1983 
Nr. 10 (1984)  Contributions to the XVth ISPRS-Congress of the Photogramme-

tric Institute, Rio de Janeiro 1984 
Nr. 11 (1986)  Vorträge der 40. Photogrammetrischen Woche Stuttgart 1985 
Nr. 12 (1987)  Vorträge der 41. Photogrammetrischen Woche Stuttgart 1987 
Nr. 13 (1989)  Vorträge der 42. Photogrammetrischen Woche Stuttgart 1989 
Nr. 14 (1989)  Festschrift - Friedrich Ackermann zum 60. Geburtstag, Stuttgart 

1989 
Nr. 15 (1991)  Vorträge der 43. Photogrammetrischen Woche Stuttgart 1991 
Nr. 16 (1992)  Vorträge zum Workshop "Geoinformationssysteme in der Ausbil-

dung", Stuttgart 1992 

http://www.ifp.uni-stuttgart.de/


Technical Reports Department of Geodetic Science, Stuttgart University, Geschwister-Scholl-
Str. 24/D, D-70174 Stuttgart 
Fax: ++49 711 121 3285; Internet: http://www.uni-stuttgart.de/gi/research
___________________________________________________________________________ 
 
 

Nr. 1 (1987)  K. Eren: Geodetic Network Adjustment Using GPS Triple Diffe-
rence Observations and a Priori Stochastic Information 

Nr. 2 (1987)  F.W.O. Aduol: Detection of Outliers in Geodetic Networks Using 
Principal Component Analysis and Bias Parameter Estimation 

Nr. 3 (1987)  M. Lindlohr: SIMALS; SIMulation, Analysis and Synthesis of Ge-
neral Vector Fields 

Nr. 4 (1988)  W. Pachelski, D. Lapucha, K. Budde: GPS-Network Analysis: The 
Influence of Stochastic Prior Information of Orbital Elements on 
Ground Station Position Measures 

Nr. 5 (1988)  W. Lindlohr: PUMA; Processing of Undifferenced GPS Carrier 
Beat Phase Measurements and Adjustment Computations 

Nr. 6 (1988)  R.A. Snay, A.R. Drew: Supplementing Geodetic Data with Prior 
Information for Crustal Deformation in the Imperial Valley, Cali-
fornia 1988 

Nr. 7 (1989)  H.-W. Mikolaiski, P. Braun: Dokumentation der Programme zur 
Behandlung beliebig langer ganzer Zahlen und Brüche 

Nr. 8 (1989)  H.-W. Mikolaiski: Wigner 3j Symbole, berechnet mittels Ganz-
zahlarithmetik 

Nr. 9 (1989)  H.-W. Mikolaiski: Dokumentation der Programme zur Multikpli-
kation nach Kugelfunktionen entwickelter Felder 

Nr. 10 (1989)  H.-W. Mikolaiski, P. Braun: Dokumentation der Programme zur 
Differentiation und zur Lösung des Dirichlet-Problems nach Ku-
gelfunktionen entwickelter Felder 

Nr. 11 (1990)  L. Kubácková, L. Kubácek: Elimination Transformation of an Ob-
servation Vector preserving Information on the First and Second 
Order Parameters 

Nr. 12 (1990)  L. Kubácková: Locally best Estimators of the Second Order Para-
meters in Fundamental Replicated Structures with Nuisance Para-
meters 

Nr. 13 (1991)  G. Joos, K. Jörg: Inversion of Two Bivariate Power Series Using 
Symbolic Formula Manipulation 

Nr. 14 (1991)  B. Heck, K. Seitz: Nonlinear Effects in the Scalar Free Geodetic 
Boundary Value Problem 

Nr. 15 (1991)  B. Schaffrin: Generating Robustified Kalman Filters for the Inte-
gration of GPS and INS 

Nr. 16 (1992)  Z. Martinec: The Role of the Irregularities of the Earth's Topogra-
phy on the Tidally Induced Elastic Stress Distribution within the 
Earth 

Nr. 17 (1992)  B. Middel: Computation of the Gravitational Potential of Topogra-
phic-Isostatic Masses 

Nr. 18 (1993)  M.I. Yurkina, M.D. Bondarewa: Einige Probleme der Erdrota- 
tionsermittlung 

Nr. 19 (1993)  L. Kubácková: Multiepoch Linear Regression Models 
Nr. 20 (1993)  O.S. Salychev: Wave and Scalar Estimation Approaches for 

GPS/INS Integration 

http://www.uni-stuttgart.de/gi/research


Schriftenreihe der Institute des Studiengangs Geodäsie und Geoinformatik (ehemals Fachbe-
reich Vermessungswesen); Technical Reports Department of Geodesy and GeoInformatics, 
Stuttgart University, Geschwister-Scholl-Str. 24/D, D-70174 Stuttgart 
Fax: ++49 711 121 3285; Internet: http://www.uni-stuttgart.de/gi/research
___________________________________________________________________________ 
 
 
Nr. 1994.1 (1994)  H.-J. Euler: Generation of Suitable Coordinate Updates for an 

Inertial Navigation System 
Nr. 1994.2 (1994)  W. Pachelski: Possible Uses of Natural (Barycentric) Coordi-

nates for Positioning 
Nr. 1995.1 (1995)  J. Engels, E.W. Grafarend, P. Sorcik: The Gravitational Field 

of Topographic-Isostatic Masses and the Hypothesis of Mass 
Condensation - Part I & II 

Nr. 1995.2 (1995)  Minutes of the ISPRS Joint Workshop on Integrated Acquisi-
tion and Interpretation of Photogrammetric Data 

Nr. 1996.1 (1996)  Festschrift für Klaus Linkwitz anläßlich der Abschiedsvorle-
sung im Wintersemester 1995/96; herausgegeben von Eberhard 
Baumann, Ulrich Hangleiter und Wolfgang Möhlenbrink 

Nr. 1996.2 (1996)  J. Shan: Edge Detection Algorithms in Photogrammetry and 
Computer Vision 

Nr. 1997.1 (1997)  Erste Geodätische Woche Stuttgart, 7.-12. Oktober 1996; her-
ausgegeben von A. Gilbert und E.W. Grafarend 

Nr. 1997.2 (1997)  U. Kälberer: Untersuchungen zur flugzeuggetragenen Radaral-
timetrie 

Nr. 1998.1 (1998)  L. Kubácek, L. Kubácková: Regression Models with a weak 
Nonlinearity 

Nr. 1999.1 (1999)  GIS-Forschung im Studiengang Geodäsie und Geoinformatik 
der Universität Stuttgart; herausgegeben von M. Sester und F. 
Krumm 

Nr. 1999.2 (1999)  Z. Martinec: Continuum Mechanics for Geophysicists and Ge-
odesists. Part I: Basic Theory 

Nr. 1999.3 (1999)  J. H. Dambeck: Diagnose und Therapie geodätischer Träg-
heitsnavigationssysteme. Modellierung – Systemtheorie – Si-
mulation – Realdatenverarbeitung 

Nr. 1999.4 (1999)  G. Fotopoulos, C. Kotsakis, M. G. Sideris: Evaluation of Ge-
oid Models and Their Use in Combined GPS/Levelling/Geoid 
Height Network Adjustment 

Nr. 1999.5 (1999)  Ch. Kotsakis, M. G. Sideris: The Long Road from Determinis-
tic Collocation to Multiresolution Approximation 

Nr. 1999.6 (1999)  Quo vadis geodesia...? Festschrift for Erik W. Grafarend on the 
occasion of his 60th birthday; herausgegeben von F. Krumm 
und V.S. Schwarze - vergriffen, out of stock -  

Nr. 2000.1 (2000)  J. Banks, K. Kubik, Y. H. Lu: Investigation into Digital Image 
Matching 

Nr. 2000.2 (2000)  P. Xu, E. Cannon, G. Lachapelle: Mixed Integer Observation 
Models, GPS Decorrelation and Integer Programming 

Nr. 2000.3 (2000)  B. Voosoghi: Intrinsic Deformation Analysis of the Earth Sur-
face Based on 3-Dimensional Displacement Fields Derived 
from Space Geodetic Measurements 

Nr. 2001.1 (2001)  F. Butsch: Untersuchungen zur elektromagnetischen Inter-
ferenz bei GPS 

http://www.uni-stuttgart.de/gi/research


Nr. 2001.2 (2001)  A. M. Abolghasem: Numerical Modeling of Post-Seismic Dis-
placement Fields 

Nr. 2002.1 (2002)  J. L. Awange: Gröbner Bases, Multipolynomial Resultants and 
the Gauss-Jacobi Combinatorial Algorithms - Adjustment of 
Nonlinear GPS/LPS Observations 

Nr. 2002.2 (2002)  Y. Kuroishi: On the Application of Downward Continuation of 
Surface Gravity onto the Reference Ellipsoid, to the Geoid 
Determination in Mountainous Areas 

Nr. 2002.3 (2002)  H. Schade: Neigungsbestimmung mit GPS für die Photogram-
metrie 

Nr. 2003.1 (2003)  D. Dettmering: Die Nutzung des GPS zur dreidimensionalen 
Ionosphärenmodellierung 

Nr. 2003.2 (2003)  D. Wolf: Continuum Mechanics in Geophysics and Geodesy: 
Fundamental Principles 

Nr. 2004.1 (2004)  E. W. Grafarend: Tensor Algebra, Linear Algebra, Multilinear 
Algebra 

 




