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1 Introduction

1.1 Solids and fluids

Materials are usually classified either as solids or as fluids. Commonly, solids are considered

to have a definite shape. Fluids, on the other hand, do not have this property and individual

particles of a compositionally homogeneous fluid are envisaged as being capable of rearrange-

ment without affecting the macrophysical properties of the fluid. Obviously, the distinguishing

properties of solids and fluids are closely related to the ease by which the materials are deformed

by applied forces. This suggests the following qualitative classification:

• A solid is a material for which changes in the applied forces cause simultaneous changes

in the relative positions of the constituent particles.

• A fluid is a material for which steadily applied forces cause continuous changes in the

relative positions of the constituent particles.

A more rigorous classification will be introduced below (Chap. 5).

Furthermore, fluids are commonly subdivided into liquids and gases. The characteristic

difference between liquids and gases is the much larger compressibility of the latter. From a

dynamical point of view, compressibility is, however, a less discriminatory property than fluidity.

Therefore, liquids and gases are usually studied together.

1.2 Continuity principle

In the continuum theory of solids and fluids, a real material is represented by the concept of the

continuum. The following definition will be used:

• A continuum is a fictitious material which completely fills a particular region of space at

any time epoch and whose characteristic fields can be represented by continuous functions

of space and time.

The adequacy of this concept in view of the discrete structure of real materials is obviously

related to the enormous number of molecular particles contained in macrophysically small vol-

umes and to the extreme shortness of molecular oscillations in comparison to the duration of

macrophysical changes. To understand this more clearly, we envisage a measuring instrument

5
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Figure 1.1: Dependence of the measured value of an arbitrary field associated with a real

material on the effective volume or time interval considered.

which responds to some field associated with the material. The result of each measurement is an

average value of this field over an effective volume during an effective time interval. Normally,

the instrument is designed in such a way that further reductions, within limits, of the effective

volume or the effective time interval would not change the value of the measurement. Then,

the effective volume and time interval are small relative to the macrophysical scale and the

measurement is called localized in space and time. However, for the same measurement, the

effective volume and time interval must be large relative to the microphysical scale, i.e. they

must contain a sufficient number of particles and oscillations. This is in order that molecular

fluctuations in space and time do not affect the value of the measurement. Experience has shown

that it is usually possible to assign localized values to the fields associated with real materials

in this sense (Fig. 1.1). We are thus led to the continuity principle:

• The macrophysical behaviour of a real material with given discrete structure is identical to

that of a fictitious material with assumed continuous structure whose values of the fields

are equal to the localized values of the respective fields, referred to a particular point in

space and time, of the given real material.

The continuity principle justifies the description of the behaviour of real materials by continuous

functions of space and time and the use of the mathematical methods of calculus for the closer

study of this behaviour. Simultaneously, it provides a simple physical model in agreement with

everyday experience. The principle therefore allows mathematical analysis to be guided by

physical intuition.
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1.3 Elements of continuum mechanics

In the following chapters, we will be concerned with continuum mechanics, which divides natu-

rally into three major parts:

• General concepts and principles

• Constitutive equations

• Specialized field theories

The general concepts and principles apply to all types of continuum. They include the kinematic

concepts of deformation and flow (Chap. 2), the mechanical concept of stress (Chap. 3), and the

dynamical principles governing the conservation of mass, momentum and energy as well as the

change of entropy (Chap. 4). Constitutive equations specify the particular type of continuum

and, in particular, determine whether the continuum is a solid or a fluid (Chap. 5). The combi-

nation of the general concepts and principles with special constitutive equations results in the

field theories of elastodynamics, viscodynamics and viscoelastodynamics (Chap. 6).

7



2 Deformation and flow

2.1 Introduction

In the following, we will refer to the continuum as the body and to any subset of it as a subbody.

We will also introduce the 3-D Euclidean space and call any subset of it a domain. Hence, at any

time epoch, any subbody fills some domain. Furthermore, we will distinguish between particles

of the body and points of the 3-D Euclidean space. The identification of the particles of the

body with the points of the domain occupied then defines the current state of the body at the

time epoch considered.

Deformation studies distinguish between the undeformed initial state and the deformed

current state. This view implies that the particular sequence of states by which the body has

passed from the initial to the current state does not affect the latter. By contrast, flow studies do

not distinguish an initial state, but specify the sequence of current states and, thus, emphasize

the history of the body. Familiar examples of these concepts are elastic deformations and viscous

flows, respectively.

We begin with a brief introduction into the two kinematic representations most widely

used in continuum mechanics (Sec. 2.2). This is followed by a summary of the concepts of

spatial and material time derivatives (Sec. 2.3). After this, infinitesimal strain and infinitesimal

rotation (Sec. 2.4), finite deformation and finite strain (Sec. 2.5), and strain rate and vorticity

(Sec. 2.6) will be discussed. The chapter concludes with an outline of the concepts of principal,

spherical and deviatoric strains (Sec. 2.7).

2.2 Kinematic representations

Several types of kinematic representation of the motion (deformation or flow) of a body have

been developed. Most widely used are the Eulerian and Lagrangian representations, which

we introduce for arbitrary Cartesian tensor fields. We also present formulae for the gradients,

differentials and integrals of fields in the two kinematic representations and compile several

useful identities.
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Figure 2.1: Material (initial) position, Xi, spatial (current) position, ri and displacement, Ui

or ui, of some particle of the body.

2.2.1 Fields

A particular field is the position, which we use to refer particles or points to some Cartesian

coordinate system. Distinguishing between the initial time epoch, t = 0, and the current time

epoch, t ≥ 0, we introduce the following kinematic representations (Fig. 2.1):

Eulerian representation: The independent variables are the spatial position, r ∈ R ∪ ∂R, with

R the spatial 3-D domain (spatial volume) currently occupied by some subbody confined by the

spatial 2-D domain (spatial boundary) ∂R, and the current time epoch, t ∈ [ 0,∞). If Xi is the

initial position of the particle currently at r, the motion is given by

Xi = Xi(r, t). (2.1)

We assume the function to be single valued and continuously differentiable. If t is held fixed,

(2.1) represents a mapping of the current state onto the initial state. For fixed r, it allows us to

identify those particles that successively occupy a particular spatial position.

Lagrangian representation: The independent variables are the material position, X ∈ X ∪ ∂X ,

with X the material 3-D domain (material volume) initially occupied by some subbody confined

by the material 2-D domain (material boundary) ∂X , and the current time epoch, t ∈ [ 0,∞).

9



If ri is the current position of the particle initially at X, the motion is given by

ri = ri(X, t). (2.2)

As before, we assume that the function is single valued and continuously differentiable. If t is

held fixed, (2.2) represents a mapping of the initial state onto the current state. For fixed X, it

allows us to identify those spatial positions that are successively occupied by a particular particle.

With (2.1) and (2.2) single-valued and continuously differentiable mappings, they are

unique inverses of each other. Necessary and sufficient for this is that the spatial and material

Jacobian determinants of the respective 3 × 3 matrices of partial derivatives are positive:

J r(r, t) := det (∂Xi(r, t)/∂rj) > 0, (2.3)

jX(X, t) := det [∂ri(X, t)/∂Xj) > 0. (2.4)

A field related to the position is the displacement, whose Eulerian and Lagrangian repre-

sentations are defined by (Fig. 2.1)

Ui(r, t) := ri −Xi(r, t), (2.5)

ui(X, t) := ri(X, t) −Xi. (2.6)

More generally, any Cartesian tensor field associated with the body can be described using

either kinematic representation. The appropriate mappings are

Fij... = Fij...(r, t), (2.7)

fij... = fij...(X, t), (2.8)

which are the Eulerian and Lagrangian representations, respectively, of the field. If the Eulerian

representation is given, substitution of (2.2) into (2.7) yields the corresponding Lagrangian

representation:

Fij...[r(X, t), t] ≡ fij...(X, t). (2.9)

If, on the other hand, the Lagrangian representation is given, substitution of (2.1) into (2.8)

gives the associated Eulerian representation:

fij...[X(r, t), t] ≡ Fij...(r, t). (2.10)

Note that Fij... specifies the current value of the field at the fixed spatial position r, whereas

fij... gives this value at the moving particle with the material position X. As before, we suppose

that both mappings are single valued and continuously differentiable. Sometimes, a field is more

conveniently described in one kinematic representation than in the other. For example, in defor-

mation studies, the undeformed state is distinguished from all other states. Displacements and
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strains are therefore naturally defined using the Lagrangian representation, with the undeformed

state taken as the initial state (Sec. 2.4). In contrast to this are flow studies, where, usually,

no natural initial state can be distinguished. Thus, velocities and strain rates are more readily

expressed using the Eulerian representation (Sec. 2.6).

We continue to use upper-case indicial symbols for the Eulerian representation of fields

and lower-case indicial symbols for their Lagrangian representation. Note that the same symbol

is employed both for the field value and for its functional dependence. In contrast to this, the

bold-face symbols are used for the position when regarded as an independent variable. In the

following, the independent variables spatial position, r, material position, X, and current time

epoch, t, will usually be suppressed.

2.2.2 Gradients

When considering the gradients of fields, we define for brevity

Fij...,k :=
∂Fij...

∂rk
, (2.11)

fij...,k :=
∂fij...

∂Xk

, (2.12)

which are the spatial and material gradients, respectively, of the field. Note that, by differenti-

ation of (2.9) and (2.10), the following relationships apply:

Fij...,lrl,k = fij...,k, (2.13)

fij...,lXl,k = Fij...,k. (2.14)

2.2.3 Kronecker and Levi–Civita symbols, identities

Special quantities required in the following are the Kronecker symbol and the Levi–Civita sym-

bol. The Kronecker symbol is a second-rank tensor with the following properties:

δij :=






1, i = j

0, i 6= j
. (2.15)

The Levi–Civita symbol is a third-rank tensor defined as follows:

εijk :=





1, ijk even permutation of 123

−1, ijk odd permutation of 123

0, ijk no permutation of 123

. (2.16)

Note that δij and εijk do not depend on the position, whence the Eulerian and Lagrangian

representations are identical. For simplicity, lower-case symbols are always employed. For

11



particular derivations, the Jacobian identities are useful:

J rεlmn ≡ εijkXi,lXj,mXk,n, (2.17)

jXεlmn ≡ εijkri,lrj,mrk,n. (2.18)

Other useful identities are

J rjX ≡ 1, (2.19)

∂Xi

∂Xj

≡
∂ri
∂rj

≡ δij , (2.20)

Xi,krk,j ≡ ri,kXk,j ≡ δij . (2.21)

Obviously, Xi,j and ri,j are mutually inverse tensors, whence we have

X−1
i,j = ri,j , r−1

i,j = Xi,j . (2.22)

Finally, we list the Piola identities:

(J rX−1
j,i )

,j ≡ (jXr−1
j,i ),j ≡ 0. (2.23)

2.2.4 Differentials and integrals

In the following, we will be concerned with spatial and material 1-D differentials (differential

lengths), dri and dXi, respectively, spatial and material 2-D differentials (differential areas), d 2ri

and d 2Xi, respectively, and spatial and material 3-D differentials (differential volumes), d 3r and

d 3X, respectively, for a fixed time epoch, t. The magnitudes of dri and dXi, respectively, are

defined by

dr := (dri dri)
1
2 , (2.24)

dX := (dXi dXi)
1
2 . (2.25)

Furthermore, we introduce the spatial unit vector collinear with dri and the material unit vector

collinear with dXi, respectively, by

p r

i :=
dri
dr
, (2.26)

P X

i :=
dXi

dX
. (2.27)

Similarly, we define the magnitudes of d 2ri and d 2Xi, respectively, by

d 2r := (d 2ri d
2ri)

1
2 , (2.28)

d 2X := (d 2Xi d
2Xi)

1
2 (2.29)

and the spatial unit vector collinear with d 2ri and the material unit vector collinear with d 2Xi,

respectively, by

n r

i :=
d 2ri
d 2r

, (2.30)
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N X

i :=
d 2Xi

d 2X
. (2.31)

The differentials and unit vectors introduced above may also be used as fields in the Eulerian

and the Lagrangian representations. To restrict the number of symbols, no special upper- and

lower-case symbols are introduced in these cases.

Differentials of arbitrary fields, Fij... and fij..., for a fixed time epoch, t, respectively, are

introduced by

dFij... := Fij...,k drk, (2.32)

dfij... := fij...,k dXk. (2.33)

The integrals of Fij... over R and fij... over X , respectively, are given by

Fij... :=

∫

R

Fij... d
3r, (2.34)

Fij... :=

∫

X

fij... d
3X. (2.35)

2.2.5 Transformation formulae for differential length, area and volume

Eulerian representation: In view of (2.32), the Eulerian representation of the initial differential

length, dXi, associated with the spatial differential length, dri, is given by

dXi = Xi,j drj . (2.36)

To obtain the Eulerian representation of the initial differential area, d 2Xi, in terms of the

spatial differential area, d 2ri, we write it as the vector product of two differently directed initial

differential lengths, dX
(1)
i and dX

(2)
i (Fig. 2.2):

d 2Xi = εijk dX
(1)
j dX

(2)
k , (2.37)

which, using (2.36), can be rewritten as

d 2Xi = εijkXj,m dr(1)m Xk,n dr
(2)
n . (2.38)

Using the Jacobian identity (2.17), we obtain from (2.38) the expression

Xj,i d
2Xj = J rεijk dr

(1)
j dr

(2)
k . (2.39)

In view of the formula for the current differential area equivalent to (2.37):

d 2ri = εijk dr
(1)
j dr

(2)
k , (2.40)

equation (2.39) reduces to

Xj,i d
2Xj = J r d 2ri. (2.41)

13
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Figure 2.2: Material (initial) differential lenghts, dX
(k)
i , located at Xi and associated spatial

(current) differential lenghts, dr
(k)
i , located at ri.

Multiplication with ri,k and consideration of (2.21) and (2.22) finally provides

d 2Xi = J rX−1
j,i d

2rj. (2.42)

The Eulerian representation of the initial differential volume, d 3X, in terms of the spatial

differential volume, d 3r, can be obtained by writing it as a vector triple product (Fig. 2.2):

d 3X = εijk dX
(1)
i dX

(2)
j dX

(3)
k , (2.43)

which, in view of (2.36), can be recast into

d 3X = εijkXi,l dr
(1)
l Xj,m dr(2)m Xk,n dr

(3)
n . (2.44)

Using (2.17) and the formula equivalent to (2.43):

d 3r = εijk dr
(1)
i dr

(2)
j dr

(3)
k , (2.45)

we finally get

d 3X = J r d 3r. (2.46)

Lagrangian representation: Since the Eulerian representation (2.1) is formally identical to the

Lagrangian representation (2.2), the inverse relations corresponding to (2.36), (2.42) and (2.46)

are obtained by replacing ri and J r by Xi and j X, respectively, and vice versa. This gives the

following formulae:

dri = ri,j dXj , (2.47)

14



d 2ri = jXr−1
j,i d

2Xj , (2.48)

d 3r = jX d 3X. (2.49)

2.3 Time derivatives

We first consider the time derivatives for arbitrary fields. Following this, we give expressions for

the time derivatives of the differential length, the differential area and the differential volume.

2.3.1 Fields

The time rate of increase of any field with respect to a fixed spatial position is called the spatial

time derivative. This needs to be distinguished from the material time derivative, which gives

the time rate of increase with respect to a moving particle. The natural representation of the

spatial time derivative is the Eulerian representation, whereas the Lagrangian representation is

appropriate to the material time derivative.

Since the laws of dynamics apply to particles, it is the material time derivative that natu-

rally appears in the fundamental principles. However, in flow studies, the trajectories of particles

are in general unknown, whence ri(X, t) cannot be specified. This excludes the knowledge of

the material time derivative of ri:

vi :=

(
∂ri
∂t

)

X

, (2.50)

which is the Lagrangian representation of the velocity, and of the material time derivative of v i:

v̇i :=

(
∂vi

∂t

)

X

, (2.51)

which is the Lagrangian representation of the acceleration. On the other hand, the Eulerian

representation of the fields characterizing the flow can usually be determined. Reconsidering

the velocity, we thus know

Vi = Vi(r, t). (2.52)

The spatial time derivative of Vi is

V̇i :=

(
∂Vi

∂t

)

r

, (2.53)

which, in general, is different from v̇i. For example, in inhomogeneous and steady flow, the

spatial time derivative of the velocity vanishes everywhere, whereas a particle may experience

acceleration while moving to a neighbouring spatial position where the velocity is different.

Since the laws of dynamics involve the acceleration of particles and since the Lagrangian

representation of the velocity is usually not possible, the acceleration must be calculated from the

Eulerian representation of the velocity. To accomplish this, only the existence of the unknown

15



trajectories, ri = ri(X, t), must be assumed. Substitution into (2.52) gives

Vi = Vi[r(X, t), t] (2.54)

and, by the chain rule of calculus,

(
∂Vi

∂t

)

X

=

(
∂Vi

∂t

)

r

+ Vi,j

(
∂rj
∂t

)

X

, (2.55)

which, using (2.50) and vi ≡ Vi, can be expressed as

(
∂Vi

∂t

)

X

=

(
∂Vi

∂t

)

r

+ Vi,jVj. (2.56)

This expresses the acceleration in terms of the Eulerian representation of the velocity and its

derivatives. For convenience, the following notational simplifications are introduced:

dVi

dt
:=

(
∂Vi

∂t

)

X

, (2.57)

DVi

Dt
:=

(
∂Vi

∂t

)

r

. (2.58)

With these definitions, (2.56) takes the form

dVi

dt
=
DVi

Dt
+ Vi,jVj. (2.59)

The difference between the material and spatial time derivatives of Vi is given by the second term

on the right-hand side of (2.59). Physically, this term describes the part of the material time

derivative which is due the movement of the particle to a neighbouring spatial position where the

velocity is in general different. For this reason, the term is called the advective time derivative.

The material time derivative of any other field can be calculated in the same way if its

Eulerian representation is known. This allows the introduction of the material time-

derivative operator:
d

dt
:=

(
D

Dt
+ Vi

∂

∂ri

)
, (2.60)

which can be applied to any field given in the Eulerian representation.

2.3.2 Differential length, area and volume

Also useful are expressions of the material time derivatives of the current differential length, the

current differential area and the current differential volume. Before we derive these expressions,

we calculate the material time derivative of j X. Expanding the determinant in (2.4), we obtain

jX = εijkr1,ir2,jr3,k, (2.61)

d jX

dt
= εijk

(
dr1,i
dt

r2,jr3,k + r1,i
dr2,j
dt

r3,k + r1,ir2,j
dr3,k
dt

)
. (2.62)
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Interchanging the order of the derivatives and using vi := dri/dt and Vi ≡ vi, we may write

dri,j
dt

= vi,j = Vi,krk,j . (2.63)

Substituting this equation into (2.62) results in

d jX

dt
= εijk(V1,lrl,ir2,jr3,k + r1,iV2,lrl,jr3,k + r1,ir2,jV3,lrl,k) (2.64)

or, alternatively,

d jX

dt
= V1,lεijkrl,ir2,jr3,k + V2,lεijkr1,irl,jr3,k + V3,lεijkr1,ir2,jrl,k. (2.65)

Six of the nine determinants vanish, because two rows of the associated matrices are identical

in these cases. Keeping only the non-vanishing determinants, we have

d jX

dt
= V1,1εijkr1,ir2,jr3,k + V2,2εijkr1,ir2,jr3,k + V3,3εijkr1,ir2,jr3,k, (2.66)

which, using (2.61), reduces to
d jX

dt
= Vi,i j

X. (2.67)

Differential length: With (2.47), we obtain for the differential length

d

dt
dri =

dri,j
dt

dXj , (2.68)

which, upon interchanging the order of the derivatives on the right-hand side and considering

vi := dri/dt and (2.13), yields
d

dt
dri = Vi,krk,j dXj . (2.69)

Using (2.47) again, this equation takes the form

d

dt
dri = Vi,j drj . (2.70)

Differential area: According to (2.48), the differential area satisfies

d 2ri = jXXj,i d
2Xj , (2.71)

so that the material time derivative takes the form

d

dt
d 2ri =

(
d jX

dt
Xj,i + jX

dXj,i

dt

)
d 2Xj . (2.72)

Using (2.67), the first term in the parentheses is given by

d jX

dt
Xj,i = Vk,k j

XXj,i. (2.73)
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The second term can be evaluated by taking the material time derivative of (2.21), resulting in

dri,k
dt

Xk,j + ri,k
dXk,j

dt
= 0. (2.74)

Interchanging the order of the derivatives in the first term, rearranging the terms and using

vi := dri/dt and (2.14) yields

ri,k
dXk,j

dt
= −Vi,j (2.75)

or, after multiplication with Xl,i and use of (2.21),

dXj,i

dt
= −Vk,iXj,k. (2.76)

If we substitute (2.73) and (2.76) into (2.72), we obtain

d

dt
d 2ri = jX(Vk,kXj,i − Vk,iXj,k) d

2Xj , (2.77)

which, using (2.48), finally reduces to

d

dt
d 2ri = Vj,j d

2ri − Vj,i d
2rj. (2.78)

Differential volume: Using (2.49), we have, for the differential volume,

d

dt
d 3r =

d jX

dt
d 3X. (2.79)

Substituting (2.67) into this expression yields

d

dt
d 3r = Vi,i j

X d 3X (2.80)

and, in view of (2.49), the formula

d

dt
d 3r = Vi,i d

3r. (2.81)

2.4 Infinitesimal strain and rotation

We consider neighbouring particles initially separated by the material differential length dX i

and experiencing the displacements ui and ui + dui (Fig. 2.3). In view of (2.33), the differential

displacement, dui, for a fixed time epoch, t, can then be expressed by

dui = ui,j dXj , (2.82)

where ui,j is the material displacement gradient. Normalizing dui with respect to dX, we obtain

with (2.27) for the differential displacement per material unit length the expression

dui

dX
= ui,jP

X

j . (2.83)
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Figure 2.3: Displacements, ui and ui + dui, for a fixed time epoch, t, of two particles initially

at neighbouring material positions, Xi and Xi + dXi, respectively.

This relation can be shown to represent a linear vector function mapping an arbitrarily directed

material unit vector, P X

i , onto the relative displacement per material unit length, dui/dX, so

that ui,j is a second-rank tensor.

We now introduce the following decomposition:

ui,j ≡
1
2 (ui,j + uj,i) + 1

2 (ui,j − uj,i). (2.84)

The first term on the right-hand side is symmetric:

eij := 1
2(ui,j + uj,i), (2.85)

whereas the second term is skew-symmetric:

αij := 1
2(ui,j − uj,i). (2.86)

To find simple interpretations of the symmetric and skew-symmetric parts of ui,j, we assume

that it is infinitesimal. Then, eij and αij are referred to as the infinitesimal strain tensor and

the infinitesimal rotation tensor, respectively.

First, we set αij = 0, so that (2.83) reduces to

dui

dX
= eijP

X

j . (2.87)

Defining the infinitesimal strain vector by

ei :=
dui

dX
, (2.88)
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Figure 2.4: Longitudinal strain, e11, and transverse strain, e21, associated with some material

differential length, dXi, assumed to be infinitesimal.

equation (2.87) takes the form

ei = eijP
X

j . (2.89)

The interpretation of the components of eij can be seen by considering

eiQ
X

i = eijQ
X

i P
X

j , (2.90)

which represents the component of ei in the direction of a second material unit vector, QX

i .

If, for example, P X

i = (1, 0, 0) and QX

i = (1, 0, 0), the component describes the longitudinal

strain (extension per material unit length) of the infinitesimal length initially oriented in the

X1 direction and is given by e11 (Fig. 2.4). If, on the other hand, P X

i = (1, 0, 0) and QX

i =

(0, 1, 0), the component describes the transverse strain (shear per material unit length) in the

X2 direction of the infinitesimal length initially oriented in the X1 direction and is given by

e21 (Fig. 2.4). More generally, we find that the main-diagonal components of eij are associated

with extension, whereas the off-diagonal components of eij are associated with shear. However,

since eij = eji, the rotation of the infinitesimal length initially oriented in the Xi direction is

balanced by an equal, but opposite rotation of the infinitesimal length initially oriented in the

Xj direction. Hence, for pure strain, any infinitesimal material surface with sides initially in

these directions experiences no net rotation.

To illustrate αij, we set eij = 0, so that (2.82) becomes

dui = αij dXj . (2.91)
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Figure 2.5: Rotation, αi, associated with some material differential length, dXi, assumed to be

infinitesimal.

If we introduce the infinitesimal rotation vector by

αi := −1
2εijkαjk, (2.92)

equation (2.91) is equivalent to

dui = εijkαj dXk. (2.93)

This formula describes a relative rotation by the infinitesimal rotation angle α of two particles

separated by the infinitesimal material length dXi about an axis parallel to αi (Fig. 2.5).

2.5 Finite deformation and strain

Before extending the concept of strain to finite deformations, it is necessary to formalize the

concept of deformation.

2.5.1 Cauchy deformation and strain

We begin with the Eulerian representation and consider the initial differential length, dXi, for

a fixed time epoch, t. In view of (2.25) and (2.36), its squared magnitude can be written as

dX2 = Xi,j drj Xi,k drk. (2.94)

If we define the Cauchy deformation by

H C
ij := Xk,iXk,j, (2.95)
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equation (2.94) becomes

dX2 = H C
ij dri drj . (2.96)

Using (2.25), we now consider the difference

dr2 − dX2 = dri dri −H C
ij dri drj

= (δij −Xk,iXk,j) dri drj . (2.97)

Introducing the Cauchy strain by

E C
ij := 1

2(δij −Xk,iXk,j), (2.98)

equation (2.97) can be rewritten as

dr2 − dX2 = 2E C
ij dri drj . (2.99)

We may use (2.5) to express E C
ij in terms of Ui. Since, according to (2.5), Xi,j = δij − Ui,j,

equation (2.98) takes the form

E C
ij = 1

2 [δij − (δki − Uk,i)(δkj − Uk,j)]

= 1
2 (Ui,j + Uj,i − Uk,iUk,j). (2.100)

2.5.2 Green deformation and strain

Alternatively, we consider the Lagrangian representation of the current differential length, dr i,

for a fixed time epoch, t. In view of (2.24) and (2.47), its squared magnitude becomes

dr2 = ri,j dXj ri,k dXk. (2.101)

If we introduce the Green deformation by

hG
ij := rk,irk,j , (2.102)

equation (2.101) becomes

dr2 = hG
ij dXi dXj . (2.103)

Next, we take the difference

dr2 − dX2 = hG
ij dXi dXj − dXi dXi

= (rk,irk,j − δij) dXi dXj . (2.104)

In terms of the Green strain defined by

eG
ij := 1

2 (rk,irk,j − δij), (2.105)
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equation (2.104) can be recast into

dr2 − dX2 = 2eG
ij dXi dXj . (2.106)

Using (2.6) to express eG
ij in terms of ui and considering ri,j = δij + ui,j according to (2.6), we

may rewrite (2.105) in the form

eG
ij = 1

2 [(δki + uk,i)(δkj + uk,j) − δij ]

= 1
2(ui,j + uj,i + uk,iuk,j). (2.107)

2.5.3 Relation to infinitesimal strain

Assuming infinitesimal displacement gradients, the products in (2.100) and (2.107) may be

neglected, so that

E C
ij = 1

2(Ui,j + Uj,i), (2.108)

eG
ij = 1

2(ui,j + uj,i). (2.109)

Comparing these results with (2.85), we note that eG
ij = eij in this special case. However,

from (2.6) and (2.14), it follows that Ui,j = ui,kXk,j = ui,k(δkj − Uk,j), which, for Ui,j and

ui,j infinitesimal, reduces to Ui,j = ui,j . Hence, E C
ij = eG

ij applies on this assumption, i.e. the

distinction between the Cauchy strain and the Green strain is not necessary.

2.6 Strain rate and vorticity

In contrast to the trajectory as the path followed by a particle during flow, the streamline is

the curve whose tangent at any point has the direction of the velocity vector for the particle

currently at this point. In the special case of steady flow, all fields are time-independent.

Hence, the streamline pattern does not change with time and the trajectories coincide with

the streamlines.

In deformation studies (Sec. 2.4), the actual trajectories are irrelevant and the deformation

is profitably specified in terms of the displacement field with respect to the initial state, ui(X, t),

i.e. in the Langrangian representation. The geometric illustration of this displacement is a

straight line directed from Xi to ri, whether the actual movement does proceed along this line

or not (Fig. 2.3).

In flow studies, it is obvious to specify the sequence of current states. In principle, this can

be achieved by specifying the trajectory of each particle explicitly. However, as the trajectories

are usually unknown, it is necessary to start from the observable spatial streamline pattern,

Vi = Vi(r, t), i.e. to use the Eulerian representation.
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Figure 2.6: Velocities, Vi and Vi + dVi, of two particles currently at neighbouring spatial

positions, ri and ri + dri, respectively. The dashed lines indicate the unknown trajectories.

In Fig. 2.6, the dashed lines represent the unknown trajectories of two particles currently

separated by the spatial differential length dri. Their current velocities are tangential to the

trajectories at their respective positions and given by Vi and Vi + dVi. In view of (2.32), the

differential velocity, dVi, for a fixed time epoch, t, can be written in terms of dri as

dVi = Vi,j drj , (2.110)

where Vi,j is the spatial velocity gradient. Using (2.24) and (2.26), the differential velocity per

spatial unit length is given by
dVi

dr
= Vi,jp

r

j . (2.111)

This represents a linear vector function, whence Vi,j is a second-rank tensor.

For the interpretation of Vi,j , we decompose it into

Vi,j ≡
1
2(Vi,j + Vj,i) + 1

2(Vi,j − Vj,i). (2.112)

The first term on the right-hand side is symmetric and called the strain-rate tensor:

Dij := 1
2 (Vi,j + Vj,i). (2.113)

The second term is skew-symmetric and referred to as the vorticity tensor:

Ωij := 1
2(Vi,j − Vj,i). (2.114)

The interpretation of Dij is found by setting Ωij = 0, in which case (2.111) becomes

dVi

dr
= Dijp

r

j . (2.115)

24



Introducing the strain-rate vector by

Di :=
dVi

dr
, (2.116)

we can rewrite equation (2.115) as

Di = Dijp
r

j . (2.117)

For the interpretation of Dij , we consider

Diq
r

i = Dijq
r

i p
r

j , (2.118)

which represents the component of Di in the direction of a second spatial unit vector, q r

i . If, in

particular, p r

i = (1, 0, 0) and q r

i = (1, 0, 0), the component D11 describes the longitudinal strain

rate (extension rate per spatial unit length) of the infinitesimal length currently oriented in the

r1 direction. On the other hand, if p r

i = (1, 0, 0) and q r

i = (0, 1, 0), the component D21 describes

the transverse strain rate (shear rate per spatial unit length) in the r2 direction associated with

the infinitesimal length currently oriented in the r1 direction. More generally, we can state that

the main-diagonal components of Dij are associated with extension, whereas the off-diagonal

components describe shear.

The interpretation of Ωij follows if we set Dij = 0 and consider

dVi = Ωij drj. (2.119)

With the vorticity vector given by

Ωi := −1
2εijkΩjk, (2.120)

equation (2.119) is equivalent to

dVi = εijkΩj drk. (2.121)

This formula describes a relative rotation with the angular speed Ω of two particles separated

by the infinitesimal spatial length dri about an axis parallel to Ωi (Fig. 2.5).

2.7 Special measures of strain

2.7.1 Principal strains

As discussed in Sec. 2.4, the infinitesimal strain tensor, eij , assigns to an arbitrarily directed

material unit vector, P X

i , the strain vector, ei. Of particular interest are the principal direc-

tions, for which the two vectors are collinear and, therefore, the strains purely longitudinal. In

general, these directions depend on X. We therefore consider P X

i as a field in the Lagrangian

representation and write

ei = λP X

i . (2.122)
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Since, according to (2.89),

ei = eijP
X

j , (2.123)

we obtain from these equations the linear relation

(eij − λδij)P
X

j = 0. (2.124)

Non-trivial solutions to this equation result only if the coefficient determinant vanishes:

det (eij − λδij) = 0. (2.125)

Expansion of the determinant leads to a cubic polynomial in λ:

λ3 − a(1)λ2 + a(2)λ− a(3) = 0, (2.126)

where

a(1) := eii, (2.127)

a(2) := 1
2(eiiejj − eijeij), (2.128)

a(3) := det eij (2.129)

are the first, second and third invariants of eij , respectively. It can be shown that, with eij

symmetric and real, the three roots of (2.126) are also real. They are called the principal values

of eij and denoted by e(1), e(2) and e(3). For each e(k), the associated principal direction, P
X(k)

i ,

is found by solving

(eij − e(k)δij)P
X(k)

j = 0 (2.130)

subject to the condition P
X(k)

i P
X(k)

i ≡ 1. If e(1), e(2) and e(3) are distinct, the three orthogonal

principal directions, P
X(1)

i , P
X(2)

i and P
X(3)

i , are uniquely determined. If, for example, e(1) =

e(2) and e(1) 6= e(3), only P
X(3)

i is uniquely determined. The other principal directions are any

pair of mutually orthogonal unit vectors in the plane normal to P
X(3)

i , whence shearing cannot

take place in this plane. If, even, e(1) = e(2) = e(3), any direction is a principal direction and

shearing is not possible.

In any case, three mutually orthogonal principal directions, P
X(1)

i , P
X(2)

i and P
X(3)

i , can

be selected as the basis of a new Cartesian coordinate system. Since, per definitionem, the

strain is purely longitudinal in any of its principal directions, the strain matrix in this principal

coordinate system must be diagonal, with the principal values of eij the main-diagonal elements

of this matrix:

[eij ] =




e(1) 0 0

0 e(2) 0

0 0 e(3)



. (2.131)
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Figure 2.7: Material (initial) differential volume, d 3X = dX1 dX2 dX3, and associated spatial

(current) differential volume, d 3r = dr1 dr2 dr3.

Obviously, three components fully determine the strain if expressed in a principal coordinate

system. However, the description of the state of strain is only complete if the principal directions

are also known. This requires the specification of three additional scalar quantities.

We note that our analysis of principal strains has only supposed that eij is symmetric and

real. With the appropriate modifications, it therefore also applies to any other field with these

properties, for example the Cauchy strain, E C
ij , the Green strain, eG

ij , and the strain rate, Dij .

2.7.2 Spherical and deviatoric strains

Sometimes, it is useful to decompose eij into the sum of two particular fields:

eij ≡
1
3ekkδij + e[ij]. (2.132)

The first term on the right-hand side is referred to as the spherical part of eij .:

e(ij) := 1
3ekkδij . (2.133)

Obviously, it is a diagonal tensor whose trace equals a(1). The second term, e[ij], is called the

deviatoric part of eij .

The interpretations of eii and e[ij] can be found by considering an infinitesimal subbody

initially occupying a rectangular parallelepiped with the material differential volume
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d 3X = dX1 dX2 dX3. Provided that the subbody is strained longitudinally along its edges,

it occupies a rectangular parallelepiped with the current differential volume d 3r = dr1 dr2 dr3

(Fig. 2.7). In view of the interpretation of the main-diagonal components of eij (Sec. 2.4), we

can thus write

d 3r − d 3X

d 3X
=

(1 + e11) dX1 (1 + e22) dX2 (1 + e33) dX3 − dX1 dX2 dX3

dX1 dX2 dX3

= (1 + e11)(1 + e22)(1 + e33) − 1, (2.134)

which, taking into account that eij is infinitesimal, reduces to

d 3r − d 3X

d 3X
= e11 + e22 + e33 = eii. (2.135)

Since, by (2.132), e[ii] = 0, the main-diagonal components of e[ij] do not involve volume changes.

Moreover, with e[ij] = e[ji], the off-diagonal components of e[ij] describe the skewing of the sub-

body initially occupying the rectangular parallelepiped. Since e[ij] is infinitesimal, this transfor-

mation can be shown not to be accompanied by volume changes. Therefore, eii measures the

increase in volume per material unit volume, i.e. the dilatation of the material volume, whereas

e[ij] describes its distortion.

We emphasize that the interpretations of eii as the dilatation and e[ij] as the distortion

are contingent upon eij being infinitesimal and, therefore, cannot be extended to the Cauchy

strain, E C
ij , or the Green strain, eG

ij .
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3 Stress

3.1 Introduction

After reviewing the kinematic concepts of continuum mechanics in Chap. 2, this chapter discusses

the mechanical concepts. We begin with the distinction between volume forces and surface

forces (Sec. 3.2) and state the Cauchy traction principle for the latter (Sec. 3.3). Next, we will

introduce the Cauchy stress and investigate its symmetry properties (Sec. 3.4). This is followed

by the definitions of the Piola, Finger and Kirchhoff stresses (Sec. 3.5). Finally, the concepts

of principal, spherical and deviatoric stresses will be outlined (Sec. 3.6). We note that, whereas

the Cauchy stress is introduced on fairly general assumptions, the symmetry of the associated

tensor is established only for the restricted case of equilibrium, absence of volume forces and

homogeneous stress distribution (for a more general proof see Sec. 4.6).

3.2 Volume and surface forces

The forces acting upon some subbody can be classified by distinguishing between long-range

and short-range interactions. Long-range interactions comprise gravitational, electromagnetic

and inertial forces. These forces decrease very gradually with increasing distance between the

interacting particles. As a result, long-range forces act uniformly upon the material contained

within a sufficiently small volume, so that they are proportial to its size (Fig. 3.1a). In continuum

mechanics, long-range forces are therefore called volume forces.

Short-range interactions comprise several types of molecular forces. Their common feature

is that they decrease extremely rapidly with increasing distance between the interacting particles.

Hence, short-range forces are appreciable only when this distance does not exceed molecular

dimensions. A further consequence is that, if the material occupying a volume is acted upon by

short-range forces originating from interactions with the material outside of this volume, these

forces can only influence the particles on and immediately below the surface of this volume

(Fig. 3.1b). In continuum mechanics, short-range forces are therefore classified as surface forces.

They are specified more closely by constitutive equations (Chap. 5).

In the following, it will be supposed that volume and surface forces arise due to interactions

that are equal, opposite and collinear (strong axiom of action and reaction). Because of this

restriction, distributed volume and surface couples cannot arise.
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a b

Figure 3.1: (a) Volume forces and (b) surface forces acting upon selected particles currently

occupying some spatial volume.

3.2.1 Eulerian representation

We first define the integral volume force, F V
i , acting upon the subbody currently occupying

some spatial volume, R. If Fi denotes the force per spatial unit volume, we then have

F V
i :=

∫

R

Fi d
3r. (3.1)

Since gravitational and inertial forces are proportional to the mass, we may alternatively

write (Fig. 3.2)

F V
i =

∫

R

ρGi d
3r, (3.2)

where Gi denotes the force per unit mass (gravity) and ρ the mass per spatial unit volume

(volume-mass density). Next, let Ti denote the force per spatial unit area (Cauchy traction).

With this, the integral surface force, F S
i , currently exerted across the spatial boundary, ∂R, is

given by (Fig. 3.2)

F S
i :=

∫

∂R
Ti d

2r. (3.3)

Furthermore, we define by

Fi := F V
i + F S

i (3.4)

the integral force acting upon the subbody currently occupying R. From (3.2) and (3.3), we

then find

Fi =

∫

R

ρGi d
3r +

∫

∂R
Ti d

2r. (3.5)
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Figure 3.2: Differential volume force, ρGi d
3r, and differential surface force, Ti d

2r, currently

acting upon the subbody occupying some spatial volume, R, with the spatial boundary ∂R.

3.2.2 Lagrangian representation

To find the Lagrangian representation of (3.5), we consider the square of (2.48):

d 2ri d
2ri = (jX)2 r−1

j,i r
−1
k,i d

2Xj d
2Xk. (3.6)

Using (2.28) and (2.31), we obtain

d 2r = jX(r−1
j,i r

−1
k,iN

X

j N X

k )
1
2 d 2X. (3.7)

In view of (2.49) and this equation, (3.5) takes the form

Fi =

∫

X

jXρgi d
3X +

∫

∂X
jX(r−1

k,jr
−1
l,j N

X

k N X

l )
1
2 ti d

2X. (3.8)

where X is the material volume initially occupied by the subbody considered and ∂X is its

material boundary. To simplify this equation, we introduce the Piola traction:

tP
i := jX(r−1

k,jr
−1
l,j N

X

k N X

l )
1
2 ti. (3.9)

Considering (3.8) and (3.9), the Lagrangian representation corresponding to (3.5) is

Fi =

∫

X

jXρgi d
3X +

∫

∂X
tP
i d

2X. (3.10)

This equation shows that j Xρgi and tP
i can be interpreted as the force per material unit volume

and the force per material unit area, respectively.

3.3 Cauchy traction principle

We proceed by defining the Cauchy traction more formally. For this purpose, we introduce as

a special case of the continuity principle (Sec. 1.2) the Cauchy traction principle. To illustrate
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Figure 3.3: Differential surface force, dF S
i , currently acting across some spatial differential area,

d 2r, with the outward spatial unit vector normal to it, n r+
i , upon the subbody inside of some

spatial volume, R.

it, we consider a spatial surface, assumed to be planar and inside of some body, and isolate a

spatial volume, R, on one side of it. Furthermore, we denote by dF S
i the differential surface

force currently exerted across some spatial differential area, d 2r, with the outward spatial unit

vector normal to it, n r+
i , upon the subbody inside of R (Fig. 3.3). The Cauchy traction principle

then postulates the existence of the limit

T
(n)
i := lim

d 2r→0

dF S
i

d 2r
. (3.11)

Obviously, this limit is meaningful only if d 2r degenerates not to a curve, but to a point. Hence,

we refer to T
(n)
i as the Cauchy traction at this point. Normally, T

(n)
i depends on the orientation

of the subsurface, which is indicated by the superscript. Incidentally, a continuous distribution

of forces acting across a surface is in general equivalent to a surface force and a surface couple.

Since it can be shown that, at the limit d 2r → 0, the couple per spatial unit area vanishes, this

complication has been excluded from the preceding argument.

An elementary consequence of (3.11) and the strong axiom of action and reaction is

T
(n)
i ≡ −T

(−n)
i . (3.12)

This means that the force exerted across d 2r by the subbody outside of R on the subbody

inside of it is equal in magnitude, but opposite in direction to the force exerted across d 2r by

the subbody inside of R on the subbody outside of it.

As shown in Sec. 3.4, the Cauchy tractions with respect to planes normal to Cartesian

coordinate axes are particularly useful. Henceforth, we use the notation T
(j)
i to denote the
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Figure 3.4: Traction components, Ti
(j), acting on particles centred on orthogonal faces on the

subbody currently inside of some cube.

Cauchy traction acting across a plane normal to the rj coordinate. Figure 3.4 displays the

Cartesian components of three such tractions, T
(1)
i , T

(2)
i and T

(3)
i , acting on particles assumed

to be centred on orthogonal faces of a cube. The figure also serves to illustrate the sign convention

adopted. According to it, T
(j)
i is positive if the ith component of the Cauchy traction exerted on

the subbody inside of the cube across the face whose outward normal points in the rj direction

has the direction shown.

If the spatial differential lengths, dr1, dr2 and dr3, of the cube approach zero, the points

of action of the three Cauchy tractions converge. However, since they continue to act across

three mutually orthogonal planes, they generally remain different at this limit. This agrees with

the Cauchy traction principle and confirms that the state of traction at a given point cannot be

described by a vector.

On account of (3.12), it follows that, if the cube is infinitesimal, the ith component of the

Cauchy tractions acting on the subbody inside of the cube across the face with the outward

normal in the rj direction is equal and opposite to the ith component acting across the opposite

face. Therefore, the three normal components are tensile tractions if positive or compressive

tractions if negative. The six tangential components are not distinguished according to their

signs and are collectively referred to as shear tractions.
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Figure 3.5: Differential volume and surface forces currently acting upon the subbody inside of

some tetrahedron.

3.4 Cauchy stress

3.4.1 Definition

Figure 3.5 shows a tetrahedron with the spatial differential volume d 3r currently occupied by

a subbody. Using the Eulerian representation of the equation of motion (Sec. 4.5.1), the time

rate of increase of the differential linear momentum of the subbody currently occupying the

tetrahedron equals the differential force currently acting upon it:

ρ∗ dV
∗
i

dt
d 3r = ρ∗G∗

i d
3r + T

(n)∗
i d 2r − T

(1)∗
i d 2r1 − T

(2)∗
i d 2r2 − T

(3)∗
i d 2r3, (3.13)

where the asterisk indicates the appropriate spatial mean. In this equation, ρ∗G∗
i d

3r is the

differential volume force, T
(n)∗
i d 2r the differential surface force across the oblique face and

−T
(k)∗
i d 2rk the differential surface force across the face whose outward normal points opposite

to the rk direction. In view of (2.30) and d 3r = 1
3h d

2r, where h is the altitude of the oblique

face with respect to the origin, o, equation (3.13) reduces to

1

3

(
dV ∗

i

dt
−G∗

i

)
ρ∗h = T

(n)∗
i − T

(1)∗
i n r+

1 − T
(2)∗
i n r+

2 − T
(3)∗
i n r+

3 . (3.14)
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Next, we let h → 0 without changing the orientation of h or the position of o. Then,

(3.14) becomes

T
(n)
i = T

(1)
i n r+

1 + T
(2)
i n r+

2 + T
(3)
i n r+

3 , (3.15)

where all tractions now apply to the origin, o, as indicated by dropping the asterisks. This

equation allows us to determine the Cauchy traction at a given point acting across an arbitrarily

inclined plane provided that the Cauchy tractions acting across three mutually orthogonal planes

through this point are known. If we define

Tij := T
(j)
i (3.16)

and apply the summation convention, (3.15) is transformed into the Cauchy stress formula:

T
(n)
i = Tijn

r+
j . (3.17)

Accordingly, the nine components of T
(j)
i form the components of a second-rank tensor, Tij,

which is called the Cauchy stress. In other words, Tij represents a linear vector function which

maps an arbitrary spatial unit vector, n r+
i , onto the Cauchy traction, T

(n)
i , acting across the

surface whose outward spatial unit vector normal to it is n r+
i .

3.4.2 Symmetry

It is sometimes convenient to arrange the components of the Cauchy stress as the elements of a

matrix:

[Tij ] :=




T11 T12 T13

T21 T22 T23

T31 T32 T33



, (3.18)

where the first subscript indicates the traction component and the second identifies the normal

to the plane considered. If the Cauchy stress tensor is symmetric, Tij = Tji, i.e. the pairs of

elements placed symmetrically with respect to the main diagonal of the matrix are equal:

T21 = T12, T31 = T13, T32 = T23. (3.19)

Here, the symmetry of the stress tensor is established only for the special case of equilibrium,

absence of volume forces and homogeneous stress distribution. A proof on more general assump-

tions will be given below (Sec. 4.6).

To prove the first relation of (3.19), we consider the differential surface-torque component in

the r3 direction acting upon the subbody currently occupying a cube with the spatial differential

lengths dr1, dr2 and dr3 (Fig. 3.4). Because of the assumed homogeneity of the stress field, the

differential surface-force components normal to the r3 direction become

T11 dr2 dr3, T21 dr2 dr3 (face with outward normal in r1 direction),
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T12 dr1 dr3, T22 dr1 dr3 (face with outward normal in r2 direction),

T13 dr1 dr2, T23 dr1 dr2 (face with outward normal in r3 direction)

and act at the centres of the respective faces. With T11 dr2 dr3 and T22 dr1 dr3 balanced by equal,

opposite and collinear forces acting across the opposite faces, torques due to the normal forces

cannot arise. Similarly, the torques due to T13 dr1 dr2 and T23 dr1 dr2 are balanced by those

due to equal and opposite forces acting across the opposite faces with the same moment arms,

dr2/2 and dr1/2, respectively. The differential surface-torque component in the r3 direction is

thus given by dr1(T21 dr2 dr3)−dr2(T12 dr1 dr3). However, since equilibrium applies and volume

forces are absent, this component vanishes, leaving T12 = T21. The second and third relations

of (3.19) can be proved in a similar way by considering the components of the surface-torque

balance in the r2 and r1 directions, respectively. On the restrictive conditions stated above, we

have therefore established

Tij = Tji. (3.20)

3.5 Non-Cauchy stresses

Any surface forces acting in the body are in general associated with deformation. When intro-

ducing the concept of traction, it is thus natural to normalize the forces acting in the deformed

state across some spatial surface with respect to the unit area of this surface. This view has led

to the definition of the Cauchy stress, which is normally given in the Eulerian representation

(Sec. 3.3). If an undeformed state of the body can be distinguished, the use of the Lagrangian

representation with this state serving as the initial state is more natural (Sec. 2.2). This allows

three other types of stress to be introduced (Fig. 3.6).

3.5.1 Piola stress

We consider the subbody occupying the volumes X and R in the undeformed initial state and

the deformed current state, respectively. In view of (2.30), (3.3) and (3.17), the differential

surface force, dF S
i , currently acting across some spatial differential area, d 2ri, on this subbody

is expressible as follows:

dF S
i = Tij d

2rj . (3.21)

Using (2.48), dF S
i = df S

i and Tij = tij, this equation can be rewritten as

df S
i = jXr−1

k,jtij d
2Xk. (3.22)

If we define the Piola stress by

tP
ij := jXr−1

j,ktik, (3.23)
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Figure 3.6: Differential areas and differential tractions related to the Cauchy, Tij , Piola, tP
ij ,

Finger, T F
ij , and Kirchhoff, tK

ij , stresses.

equation (3.22) can be recast into

df S
i = tP

ij d
2Xj . (3.24)

Comparing (3.21) and (3.24) shows that, in contrast to the Cauchy stress, tij, the Piola stress,

tP
ij , is obtained by normalizing the currently acting differential surface force, df S

i , in terms of the

material differential area, d 2Xi. Inspection of (3.23) shows that, in general, t P
ij is not symmetric.

The inverse relationship corresponding to (3.23) is found to be

Tij = J rX−1
j,kT

P
ik . (3.25)

3.5.2 Finger stress

For the definition of the Finger stress, T F
ij , we consider instead of the actual differential surface

force, dF S
i , currently acting across the spatial differential area, d 2ri, the fictitious differential

surface force, dF̂ S
i , obtained from dF S

i in the same way that the material differential length,

dXi, is related the spatial differential length, dri. In view of (2.36), we thus define

dF̂ S
i := Xi,j dF

S
j , (3.26)

which, using (3.21), becomes

dF̂ S
i = Xi,jTjk d

2rk. (3.27)

If we introduce the Finger stress by

T F
ij := Xi,kTkj, (3.28)
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equation (3.27) can be rewritten as

dF̂ S
i = T F

ij d
2rj . (3.29)

Equation (3.28) shows that T F
ij is usually not symmetric. The inverse relation associated with

(3.28) is found to be

Tij = X−1
i,k T

F
kj. (3.30)

3.5.3 Kirchhoff stress

The Kirchhoff stress, tK
ij , is related to the Piola stress, t P

ij , by considering instead of the actual

differential surface force, df S
i , the fictitious differential surface force, df̂ S

i . Using (2.22) and

(3.26), we obtain

df̂ S
i = r−1

i,j df
S
j (3.31)

or, with (3.24), the equation

df̂ S
i = r−1

i,j t
P
jk d

2Xk. (3.32)

If we define the Kirchhoff stress by

tK
ij := r−1

i,k t
P
kj, (3.33)

equation (3.32) can be rewritten as

df̂ S
i = tK

ij d
2Xj . (3.34)

Substitution of (3.23) into (3.33) alternatively yields

tK
ij := jXr−1

i,k r
−1
j,l tkl, (3.35)

whose inverse relation is

Tij = J rX−1
i,kX

−1
j,l T

K
kl . (3.36)

Inspection of (3.35) shows that tK
ij is symmetric provided that tij is also symmetric.

3.6 Special measures of stress

3.6.1 Principal stresses

At any point, the Cauchy stress tensor, Tij , assigns to an arbitrarily directed spatial unit vector,

n r+
i , the Cauchy traction, Ti, acting across the plane whose outward spatial unit vector normal

to it is n r+
i . As in Sec. 2.7 for the strain, we are interested in the principal directions, for which

the two vectors are collinear. Since, in general, these directions depend on r, we consider n r

i as

a field in the Eulerian representation and write

Ti = λn r

i . (3.37)
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Since, according to (3.17),

Ti = Tijn
r

j , (3.38)

we obtain from (3.37) and (3.38) the linear expression

(Tij − λδij)n
r

j = 0. (3.39)

Necessary and sufficient for non-trivial solutions to this equation is that the coefficient determi-

nant vanishes:

det (Tij − λδij) = 0. (3.40)

Expansion of the determinant yields a cubic polynomial in λ:

λ3 −B(1)λ2 +B(2)λ−B(3) = 0, (3.41)

with

B(1) := Tii, (3.42)

B(2) := 1
2(TiiTjj − TijTij), (3.43)

B(3) := det Tij (3.44)

as the first, second and third invariants of the stress tensor, respectively. Assuming that Tij is

symmetric and real, it can be shown that the three roots of (3.41) are also real. They constitute

the principal values of Tij, in the following denoted by T (1), T (2) and T (3). For each T (k), the

associated principal direction, n
r(k)
i , is found by solving

(Tij − T (k)δij)n
r(k)
j = 0 (3.45)

subject to the condition n
r(k)
i n

r(k)
i ≡ 1. If T (1), T (2) and T (3) are distinct, three uniquely

determined orthogonal directions, n
r(1)
i , n

r(2)
i and n

r(3)
i , result. If, for example, T (1) = T (2) and

T (1) 6= T (3), only n
r(3)
i is uniquely determined, whereas n

r(1)
i and n

r(2)
i are any two directions

in the plane normal to n
r(3)
i . Then, there is no shear-stress component in this plane and the

state of stress is called cylindrical. If T (1) = T (2) = T (3), any three directions identify principal

directions. As a consequence, there is no shear-stress component in any plane and the state of

stress is called spherical. Since this is the only state of stress in a fluid at rest (Sec. 5.3.1), this

state is also called hydrostatic.

In any case, three mutually orthogonal principal directions, n
r(1)
i , n

r(2)
i and n

r(3)
i , exist

and may serve as the basis of a new Cartesian coordinate system. If referred to it, the stress

matrix is diagonal:

[Tij ] =




T (1) 0 0

0 T (2) 0

0 0 T (3)



. (3.46)
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Hence, all shear-stress components vanish when the stress tensor is referred to the principal

coordinate system.

We note in conclusion that, since the condition for T (1), T (2) and T (3) to be real requires

Tij to be symmetric and real, our discussion of principal stresses also applies to the Kirchhoff

stress, tK
ij .

3.6.2 Spherical and deviatoric stresses

We decompose Tij into two tensors as follows:

Tij ≡
1
3Tkkδij + T[ij]. (3.47)

The first term on the right-hand side is referred to as the spherical part of Tij :

T(ij) := 1
3Tkkδij . (3.48)

However, normally, the mechanical pressure defined by

P := −1
3Tii (3.49)

is used. Obviously, it is the negative of the mean of the normal components of Tij . The second

term, T[ij], is called the deviatoric part of T(ij). Further below, it will be shown that, if the body

is isotropic, a spherical state of stress produces dilatation, whereas a deviatoric state of stress

is associated with distortion (Secs. 5.2.5, 5.3.3 and 5.4.3).
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4 Dynamical principles

4.1 Introduction

With the general concepts of deformation (Chap. 2) and stress (Chap. 3) available, this chapter

is concerned with the dynamical principles governing the relationship between these concepts.

After presenting the generalized Gauss theorem (Sec. 4.2) and the Reynolds transport theorem

(Sec. 4.3), we will state the continuity equation (Sec. 4.4) and the equation of motion (Sec. 4.5).

We will then briefly return to the properties of the Cauchy stress tensor and use the angular-

momentum principle to establish its symmetry on more general assumptions than considered

above (Sec. 4.6). After this, we will use the first law of thermodynamics to formulate the energy

equation (Sec. 4.7) and the second law of thermodynamics to formulate the entropy inequal-

ity (Sec. 4.8). This will be followed by an investigation of reversible adiabatic and isothermal

deformations (Sec. 4.9) and by a study of the dissipation function (Sec. 4.10). Finally, we will

deduce from the integral forms of the general principles of continuum mechanics the interface

conditions governing the relevant fields near possible discontinuity surfaces of the material pa-

rameters (Sec. 4.11). We continue to suppose the absence of distributed volume and surface

couples and, in addition, of distributed spin angular momentum, which are sufficient conditions

for establishing the symmetry of the Cauchy stress tensor.

4.2 Generalized Gauss theorem

In the following sections, the Eulerian and Lagrangian representations of the continuity equation,

the equation of motion and the energy equation will, in the first instance, be given in their integral

forms. From these, the respective differential forms will then be derived. This requires the use of

the generalized Gauss theorem, whose Eulerian and Langrangian representations are given here.

4.2.1 Eulerian representation

For a continuously differentiable field, Fij... applying to some property taken per spatial unit

area, the generalized Gauss theorem has the form

∫

∂R
Fij... k d

2rk =

∫

R

Fij... k,k d
3r, (4.1)

where ∂R is the spatial boundary of R and d 2ri points outward.
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4.2.2 Lagrangian representation

To obtain the Lagrangian representation of the generalized Gauss theorem, we consider (2.14),

(2.48) and (2.49) and rewrite (4.1) as

∫

∂X
jXr−1

l,k fij... k d
2Xl =

∫

X

jXr−1
l,k fij... k,l d

3X, (4.2)

with ∂X the material boundary of X and d 2Xi pointing outward. Next, we introduce the tensor

field of arbitrary rank, f P
ij..., applying to the same property per material unit area (Piola field):

f P
ij... l := jXr−1

k,l fij... k. (4.3)

If we take the derivative, we obtain

f P
ij... l,l = (jXr−1

l,k fij... k),l. (4.4)

The right-hand side of this equation can be simplified by means of (2.23), giving

f P
ij... l,l = jXr−1

k,l fij... k,l. (4.5)

Comparing (4.2), (4.3) and (4.5) gives

∫

∂X
f P

ij... k d
2Xk =

∫

X

f P
ij... k,k d

3X, (4.6)

which is the Lagrangian representation of the generalized Gauss theorem. Note that, implicitly,

we have also established the following relations:

∫

∂R
Fij... k d

2rk =

∫

∂X
f P

ij... k d
2Xk, (4.7)

∫

R

Fij... k,k d
3r =

∫

X

f P
ij... k,k d

3X, (4.8)

where, in (4.7), the surfaces are not necessarily closed.

4.3 Reynolds transport theorem

The physical properties of a body may refer to its particles or to its subbodies. Examples of the

second case are the integrals of distributions of volume and surface forces acting upon subbodies

(Sec. 3.2). As for particles, we call the time rate of increase of the integral of any physical

property with respect to some subbody the material time derivative of this integral. This is to

be distinguished from the time rate of increase of the integral of this property with respect to a

given spatial domain, which is the spatial time derivative of this integral. Henceforth, we will

use the following abbreviations for the material and spatial time derivatives, respectively:

dt :=
d

dt
, Dt :=

D

Dt
. (4.9)
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To find the relationship between the derivatives, we consider the subbody currently oc-

cupying some spatial volume, R, and denote by Fij... an arbitrary tensor field per spatial unit

volume. Considering the integral, Fij..., of Fij... over R defined by (2.34), its material time

derivative has the form

dtFij... = dt

∫

R

Fij... d
3r

=

∫

R

(dtFij... + Fij... dt) d
3r. (4.10)

In view of (2.81), this equation becomes

dtFij... =

∫

R

(dtFij... + Fij...Vk,k) d
3r. (4.11)

Using (2.60), we furthermore obtain

dtFij... =

∫

R

DtFij... d
3r +

∫

R

(Fij...Vk),k d
3r, (4.12)

which, by (4.1), can be recast into

dtFij... =

∫

R

DtFij... d
3r +

∫

∂R
Fij...Vk d

2rk. (4.13)

This equation states that the time rate of increase of the intergral of a field carried by the

subbody currently occupying some spatial volume, R, equals the integral of the time rate of

increase of this field inside of R plus its outward flux through its spatial boundary, ∂R. This

relationship is known as Reynolds transport theorem.

4.4 Continuity equation

4.4.1 Eulerian representation

The continuity equation is the form of the mass-conservation principle suitable to continuum

mechanics. To derive its Eulerian representation, we consider the subbody currently occupying

some spatial volume, R. The mass carried by it equals the mass, M, currently contained in R:

M :=

∫

R

ρ d 3r. (4.14)

If no mass is created or destroyed, the mass carried by the subbody does not change:

dtM = 0. (4.15)

Comparing (4.12), (4.14) and (4.15), we thus obtain

∫

R

[Dtρ + (ρVi),i] d
3r = 0. (4.16)
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Since R is arbitrary, it follows that

Dtρ + (ρVi),i = 0, (4.17)

which is the continuity equation. A different form is obtained by rewriting it as

Dtρ + ρ
,i
Vi + ρVi,i = 0, (4.18)

which, in view of (2.60), is equivalent to

dtρ + ρVi,i = 0. (4.19)

If the body is incompressible, it is necessary that the volume-mass density in the neigh-

bourhood of individual particles does not change:

dtρ = 0. (4.20)

Then, (4.19) reduces to

Vi,i = 0, (4.21)

which is the incompressibility condition.

Equation (4.17) can be used to derive an alternative form of the Reynolds transport the-

orem. For this purpose, we assume

Fij... =

∫

R

ρGij... d
3r, (4.22)

where Gij... is the field Fij... per unit mass. With this equation, (4.12) becomes

dt

∫

R

ρGij... d
3r =

∫

R

Dt(ρGij...) d
3r +

∫

R

(ρGij...Vk),k d
3r

=

∫

R

ρ(DtGij... + VkGij...,k) d
3r +

∫

R

Gij...[Dtρ + (ρVk),k] d
3r. (4.23)

Considering (2.60) and (4.17), we finally get

dt

∫

R

ρGij... d
3r =

∫

R

ρ dtGij... d
3r. (4.24)

4.4.2 Lagrangian representation

For specifying the continuity equation in the Lagrangian representation, we consider the subbody

which, at the initial and current time epochs, occupies the spatial volumes R(t = 0) and R(t),

respectively. Conservation of mass requires

∫

R(0)
ρ(0)(d 3r)(0) =

∫

R

ρ d 3r, (4.25)
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where the abbreviations F
(0)
ij... := Fij...(t = 0) and f

(0)
ij... := fij...(t = 0) for the initial parts

of Fij... and fij..., respectively, have been used. In view of (2.49), the associated Lagrangian

representation takes the form

∫

X

jX(0)ρ(0) d 3X =

∫

X

jXρ d 3X. (4.26)

Since r
(0)
i = Xi, it follows that, r

(0)
i,j = δij . Hence, by (2.4), (j X)(0) = 1 and (4.26) reduces to

∫

X

(ρ(0) − jXρ) d 3X = 0. (4.27)

With X arbitrary, it follows that

jXρ = ρ(0), (4.28)

which is equivalent to

dt(j
Xρ) = 0. (4.29)

Using (2.49) and d 3X = (d 3r)(0), we obtain j X = d 3r/(d 3r)(0) and (4.28) can be rewritten as

ρ d 3r = ρ(0) (d 3r)(0), (4.30)

from which we get

dt(ρ d
3r) = 0. (4.31)

Equations (4.28)–(4.31) constitute alternative expressions of the continuity equation in the La-

grangian representation.

If the body is incompressible, it is necessary that the volume-mass density in the neigh-

bourhood of individual particles does not change:

ρ = ρ(0). (4.32)

Then, (4.28) reduces to

jX = 1, (4.33)

which is the incompressibility condition. If, in addition, the strain is infinitesimal, the expansion

of jX := det ri,j , with ri,j = δij + ui,j according to (2.6), takes the form

jX = 1 + ui,i. (4.34)

Comparing (4.33) and (4.34), we obtain

ui,i = 0. (4.35)

45



4.5 Equation of motion

4.5.1 Eulerian representation

We assume internal forces that are equal and opposite (weak axiom of action and reaction) and

consider the subbody currently occupying some spatial volume, R, with the spatial boundary

∂R. The time rate of increase of the integral linear momentum, Pi, of the subbody equals the

integral force, F , acting upon it:

dtPi = Fi. (4.36)

With (3.5), (3.17) and

dtPi := dt

∫

R

ρVi d
3r, (4.37)

we obtain

dt

∫

R

ρVi d
3r =

∫

R

ρGi d
3r +

∫

∂R
Ti d

2r

=

∫

R

ρGi d
3r +

∫

∂R
Tij d

2rj . (4.38)

Considering (4.1) and (4.24), this equation becomes

∫

R

(Tij,j +ρGi −ρ dtVi) d
3r = 0. (4.39)

Since R is arbitrary, it follows that

Tij,j + ρGi = ρ dtVi, (4.40)

which is also referred to as the Cauchy equation of motion.

In the case of static equilibrium, dtVi = 0 and (4.40) reduces to

Tij,j + ρGi = 0, (4.41)

which is the equilibrium equation. Obviously, the three components of (4.41) are insufficient to

determine the six independent components of Tij even if the three components of Gi are known.

Hence, the problem of determining a static distribution of stress cannot be solved without

consideration of the corresponding distribution of strain. The equations to be included take the

form of stress-strain relations, which are also known as constitutive equations (Chap. 5).

4.5.2 Lagrangian representation

We consider (2.49), (4.8) and (4.28) in (4.39) and obtain

∫

X

(tP
ij,j + ρ(0)gi − ρ(0) dtvi) d

3X = 0 (4.42)
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or, with vi := dtui and X arbitrary,

tP
ij,j + ρ(0)gi = ρ(0) dtvi. (4.43)

This is the Lagrangian representation of the equation of motion in terms of the Piola stress,

tP
ij , and the initial volume-mass density, ρ(0). Note that it formally agrees with the Eulerian

representation of the equation of motion, (4.40), in terms of the Cauchy stress, Tij , and the

current volume-mass density, ρ.

4.6 Symmetry of Cauchy stress tensor

So far, the symmetry of the Cauchy stress tensor has been proved only for the restrictive case of

equilibrium, absence of volume forces and homogeneous stress distribution (Sec. 3.5). We now

remove these constraints and prove the symmetry of the Cauchy stress tensor on more general

assumptions.

For this purpose, we assume internal forces that are equal, opposite and collinear (strong

axiom of action and reaction) and consider the subbody currently occupying some spatial volume,

R, with the spatial boundary ∂R. The time rate of increase of its integral angular momentum

equals the integral torque associated with the volume and surface forces acting upon it:

dt

∫

R

εijkrjρVk d
3r =

∫

R

εijkrjρGk d
3r +

∫

∂R
εijkrjTk d

2r. (4.44)

Using (2.20), (3.17), (4.1), (4.24), vi := dtri and Vi = vi, this equation becomes

∫

R

εijk(VjVk + rj dtVk)ρ d 3r =

∫

R

εijk[rj(ρGk + Tkl,l) + δjlTkl] d
3r, (4.45)

which, by (4.40) and εijkVjVk ≡ 0, reduces to

∫

R

εijkTkj d
3r = 0 (4.46)

or, since R is arbitrary, to

εijkTkj = 0. (4.47)

With Tij 6= 0 in general and εijk skew-symmetric with respect to any pair of indices, this equation

is satisfied only if

Tij = Tji. (4.48)

This proves the symmetry of Tij also for the case of disequilibrium, presence of volume forces and

inhomogeneous stress distribution. The symmetry properties of the Piola, Finger and Kirchhoff

stress tensors have been considered above (Sec. 3.5).
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4.7 Energy equation

The energy equation to be derived in this section is a consequence of the equation of motion

and the first law of thermodynamics. As an additional field, the energy equation involves the

internal energy, which, in classical thermodynamics, is a state function and related to the other

thermal state functions by the caloric state equation. We here assume that the changes of state

are thermomechanical, i.e. only due to work or heat. Since work and heat are not state functions,

their time derivatives for given changes of state are not uniquely determined. For clarity, we use

δt for the material time-derivative operator applied to work or heat.

4.7.1 Eulerian representation

We begin by considering the time rate at which work is performed on the subbody currently

occupying some spatial volume, R, with the spatial boundary ∂R. We call this the integral

work-input rate and denote it by δtE
W. Obviously, δtE

W must equal the time rates at which

the integral volume and surface forces perform work on the subbody currently inside of R:

δtE
W =

∫

R

ρGiVi d
3r +

∫

∂R
TiVi d

2r. (4.49)

Using (3.17) and (4.1), we can alternatively write

δtE
W =

∫

R

[(ρGi + Tij,j)Vi + TijVi,j] d
3r. (4.50)

In view of (4.40), this equation is equivalent to

δtE
W =

∫

R

(ρVi dtVi + TijVi,j) d
3r, (4.51)

which, using (4.24) and Vi dtVi = 1
2 dt(ViVi), can be recast into

δtE
W = dt

∫

R

1
2ρViVi d

3r +

∫

R

TijVi,j d
3r. (4.52)

In view of (2.112)–(2.114) and the symmetry of Tij , we finally obtain

δtE
W = dt

∫

R

1
2ρViVi d

3r +

∫

R

TijDij d
3r, (4.53)

where Dij the symmetric part of Vi,j defined by (2.113). The first term on the right-hand side

is recognized as the material time derivative of the integral kinetic energy. The second term is

the integral stress power contributing to the integral work-input rate.

Since we are concerned with thermomechanical changes of state, the integral heat-input

rate, δtE
Q, must be added to the integral work-input rate, δtE

W. With C the heat-production

rate per unit mass and Qi the heat flux per spatial unit area (heat-flux density), we thus get

δtE
Q =

∫

R

ρC d 3r −

∫

∂R
Qi d

2r, (4.54)

48



which, by (4.1), can be recast into

δtE
Q =

∫

R

(ρC −Qi,i) d
3r. (4.55)

The first law of thermodynamics states that a state function, E , exists, so that

dtE = δtE
W + δtE

Q. (4.56)

The quantity E is called the total energy and characterizes the thermomechanical state of the

subbody considered. Alternatively, E can be decomposed into the integral kinetic energy, E K,

and the integral internal energy, E U:

E = E K + E U. (4.57)

Bearing in mind that 1
2ρViVi is the kinetic energy per spatial unit volume and U the internal

energy per unit mass and taking the material time derivative, it follows that

dtE = dt

∫

R

1
2ρViVi d

3r + dt

∫

R

ρU d 3r. (4.58)

Equating (4.56) and (4.58) and considering (4.53) and (4.55) gives

dt

∫

R

ρU d 3r =

∫

R

TijDij d
3r +

∫

R

(ρC −Qi,i) d
3r. (4.59)

By (4.24), this equation reduces to

∫

R

(ρ dtU − TijDij −ρC +Qi,i) d
3r = 0 (4.60)

or, since R is arbitrary, to

TijDij + ρC −Qi,i = ρ dtU, (4.61)

which is the energy equation for thermomechanical changes of state of the body in the Eulerian

representation.

4.7.2 Lagrangian representation

To state the energy equation in the Lagrangian representation, we start from (4.60). We also

use (2.19), (2.22), (3.36) and the symmetry of the Kirchhoff stress, giving

Tij = (jX)−1ri,lrj,kt
K
kl . (4.62)

Furthermore, we take the material time derivative of (2.105) and consider vi := dtri, giving

dte
G
ij = 1

2(vk,irk,j + vk,jrk,i). (4.63)

In view of (2.14), we can rewrite (2.113) in the form

Dij = 1
2 (vi,kXk,j + vj,kXk,i), (4.64)
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which, using (2.21), can be rewritten as

dte
G
kl = ri,l rj,kDij . (4.65)

Considering also (4.8) and (4.28), the Lagrangian representation of (4.60) is found to be

∫

X

(ρ(0) dtu− tK
ij dte

G
ij − ρ(0)c+ q P

i,i) d
3X = 0, (4.66)

where q P
i is the heat flux per material unit area (Piola heat-flux density). Since X is arbitrary,

we also have

tK
ij dte

G
ij + ρ(0)c− q P

i,i = ρ(0) dtu, (4.67)

which is the energy equation for thermomechanical changes of state of the body in the La-

grangian representation. We note that the equation formally agrees with (4.61), i.e. its Eulerian

representation.

4.8 Entropy inequality

The first law of thermodynamics states the mutual convertibility of heat and work, but imposes

no restrictions on the direction and extent of the conversion. This restriction is provided by the

second law of thermodynamics. Its quantitative form is based on the existence of two further

state functions, i.e. the entropy and the thermodynamic temperature.

4.8.1 Eulerian representation

We continue to consider the subbody currently occupying some spatial volume, R, with the

spatial boundary ∂R. The integral entropy-input rate, G, into this subbody is given by

G :=

∫

R

ρB d 3r −

∫

∂R
Hi d

2ri, (4.68)

where B is the entropy-production rate per unit mass and Hi the entropy flux per spatial unit

area (entropy-flux density). Furthermore, we introduce the integral entropy-increase rate, S, by

S := dt

∫

R

ρS d 3r, (4.69)

where S is the entropy per unit mass. The second law of thermodynamics maintains that

S ≥ G. (4.70)

Thus,

dt

∫

R

ρS d 3r ≥

∫

R

ρB d 3r −

∫

∂R
Hi d

2ri, (4.71)
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which, using (4.1) and (4.24), becomes
∫

R

(ρ dtS −ρB +Hi,i) d
3r ≥ 0. (4.72)

Since R is arbitrary, it follows that

B −
Hi,i

ρ
≤ dtS. (4.73)

Assuming that the changes of state are thermomechanical, B and H can be written as

B =
C

Θ
, Hi =

Qi

Θ
, (4.74)

where Θ > 0 is the thermodynamic temperature. Using these eqations, (4.73) takes the form

C

Θ
−

1

ρ

(
Qi

Θ

)

,i

≤ dtS (4.75)

or, equivalently,
C

Θ
−
Qi,i

ρΘ
+
QiΘ,i

ρΘ2
≤ dtS. (4.76)

The last two relations are forms of the Clausius-Duhem inequality and must be satisfied by any

thermomechanical change of state. They express that the rate of increase of entropy is never

less than the rate of increase of this quantity due to heat input alone. Changes during which

the body remains asymptotically in equilibrium are called reversible or conservative and the

equality applies. However, real changes always imply disequilibrium and involve the conversion

of work into heat. Such changes are therefore called irreversible or dissipative and the inequality

is appropriate.

4.8.2 Lagrangian representation

To state the entropy inequality in the Lagrangian representation, we use (2.49), (4.8) and (4.28),

which allow us to rewrite (4.72) as
∫

X

(ρ(0) dts− ρ(0)b+ hP
i,i) d

3X ≥ 0, (4.77)

with hP
i the entropy flux per material unit area (Piola entropy-flux density). Since X is arbitrary,

the inequality also applies to the integrand, giving

b−
hP

i,i

ρ(0)
≤ dts. (4.78)

Assuming thermomechanical changes, we have

b =
c

θ
, hP

i =
q P
i

θ
, (4.79)

which makes (4.78) equivalent to the relations

c

θ
−

1

ρ(0)

(
q P
i

θ

)

,i

≤ dts, (4.80)

c

θ
−

q P
i,i

ρ(0)θ
+
q P
i θ,i
ρ(0)θ2

≤ dts. (4.81)
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4.9 Adiabatic and isothermal deformations

Of special interest are thermomechanical changes of state for which the energy equation can be

written in terms of purely mechanical quantities. These are adiabatic and isothermal deforma-

tions. We here assume that the changes are also reversible.

4.9.1 Eulerian representation

For an adiabatic deformation, we must have

C = 0, Qi = 0, (4.82)

so that (4.61) and (4.76) reduce to

TijDij = ρ dtU, (4.83)

dtS = 0. (4.84)

The last equation shows that reversible adiabatic changes are also isentropic.

If the deformation is isothermal, we replace the internal energy per unit mass, U , by the

Helmholtz free energy per unit mass, Ψ :

Ψ := U − SΘ. (4.85)

Since, for isothermal changes, it is necessary that

Θ
,i = 0, dtΘ = 0, (4.86)

equations (4.61) and (4.76) take the forms

TijDij +ρC −Qi,i −ρΘ dtS = ρ dtΨ, (4.87)

C

Θ
−
Qi,i

ρΘ
= dtS. (4.88)

Consideration of (4.88) in (4.87) finally yields

TijDij = ρ dtΨ. (4.89)

4.9.2 Lagrangian representation

The derivations correspond to those for the Eulerian representation. Thus, for an adiabatic

deformation, we have

c = 0, q P
i = 0, (4.90)
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whence (4.67) and (4.80) reduce to

tK
ij dte

G
ij = ρ(0) dtu, (4.91)

dts = 0. (4.92)

For an isothermal deformation, we use

ψ := u− sθ (4.93)

and take into account that

θ
,i = 0, dtθ = 0. (4.94)

Then, (4.67) and (4.80) take the forms

tK
ij dte

G
ij + ρ(0)c− q P

i,i − ρ(0)θ dts = ρ(0) dtψ, (4.95)

c

θ
−

q P
i,i

ρ(0)θ
= dts. (4.96)

Considering (4.96) in (4.95) finally gives

tK
ij dte

G
ij = ρ(0) dtψ. (4.97)

4.10 Dissipation function

In the case of irreversible processes, it may be assumed that the Cauchy stress can be decomposed

into two parts according to

Tij = T C
ij + T D

ij (4.98)

in the Eulerian representation, where T C
ij and T D

ij are the conservative Cauchy stress and the

dissipative Cauchy stress, respectively. Then, (4.61) can be rewritten as

T C
ij Dij + T D

ij Dij + ρC −Qi,i = ρ dtU. (4.99)

We now introduce the dissipation function by

D := T D
ij Dij . (4.100)

For reversible processes, we have

D = 0 (4.101)

and, according to (4.76), also
C

Θ
−
Qi,i

ρΘ
+
QiΘ,i

ρΘ2
= dtS. (4.102)
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Combination of (4.99)–(4.102) yields

T C
ij Dij + ρΘ dtS −

QiΘ,i

Θ
= ρ dtU. (4.103)

Since U is a state function, (4.103) also applies to irreversible processes. The equation can

therefore be used to eliminate T C
ij in (4.99), giving

C

Θ
+
D −Qi,i

ρΘ
+
QiΘ,i

ρΘ2
= dtS. (4.104)

For an adiabatic change, we must have

C = 0, Qi = 0 (4.105)

and, according to (4.76), also

dtS ≥ 0. (4.106)

In view of ρ > 0 and Θ > 0, these conditions reduce (4.104) to

D ≥ 0, (4.107)

which shows that the dissipation function is non-negative. Further below, this property will be

used to impose constraints on the constitutive equation of Newtonian–viscous fluids (Sec. 5.3.6).

4.11 Interface conditions

When deriving the differential forms of the general principles of continuum mechanics from the

respective integral forms in the preceding sections, the use of the generalized Gauss theorem has

been essential. The main assumption for its validity is that the fields involved are continuously

differentiable.

However, of interest are also cases in which this assumption is violated at particular inter-

faces within the body. Common examples are jump discontinuities of the material properties or

infinitesimally thin sheets of mass. In these situations, the generalized Gauss theorem may still

be applied in the domains adjacent to the interface, but the fields must connected via interface

conditions across the discontinuity.

In the following, the stress interface condition will be derived in the Eulerian and La-

grangian representations.

4.11.1 Eulerian representation

To formulate the interface condition concisely, we consider internal and external spatial volumes,

R(1) and R(2), respectively, currently separated by a smooth spatial interface, ∂R(1), and locally
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assign to it the outward spatial unit vector, n r+
i , normal to it and directed into R(2) (Fig. 4.1a).

Wherever necessary, we distinguish by F−
ij... and F+

ij... an arbitrary tensor field in R(1) and R(2),

respectively. Furthemore, we define the internal limit, the external limit and the jump of Fij...,

respectively, by

[Fij...]
− := lim

ε→0+
F−

ij...(r − εn r+), (4.108)

[Fij...]
+ := lim

ε→0+
F+

ij...(r + εn r+), (4.109)

[Fij...]
+
− := [Fij...]

+ − [Fij...]
−, (4.110)

where r ∈ ∂R(1) and ε > 0 have been assumed. The field may be continued onto the inter-

face using

F ±
ij... := 1

2{[Fij...]
− + [Fij...]

+}. (4.111)

To ensure coupling of the body on the interface, we require that the subbody is welded across

it, i.e. neither slip nor cavitation is allowed. In the Eulerian representation, this can formally

be expressed by the velocity interface condition:

[Vi]
+
− = 0. (4.112)

If the body is currently confined to R(1), then ∂R(1) is its spatial boundary and we may assume

that [Vi]
− is prescribed. Then, (4.112) reduces to the velocity boundary condition:

[Vi]
− = Ci. (4.113)

To derive the stress interface condition, we recall (4.38):

dt

∫

R(1)∪R(2)
ρVi d

3r =

∫

R(1)∪R(2)
ρGi d

3r +

∫

∂R(1)
Tij d

2rj . (4.114)

Considering (4.24) as well as a thin disk with the current volume V, the current area A and the

current thickness h straddling ∂R(1) (Fig. 4.1a), this equation can be rewritten as

∫

V

ρ dtVi d
2r dh′ =

∫

V

ρGi d
2r dh′ +

∫

A

(T+
ij − T−

ij )n r+
j d 2r +O(h), (4.115)

where h′ is the coordinate normal to ∂R(1) and O(h) is the contribution to the surface integral

from the mantle of the disk. We now choose a coordinate origin of h′ on ∂R(1) and allow an

infinitesimally thin sheet of mass on it. Then, ρ is given by

ρ = ρ′ +Σ δ(h′), (4.116)

where ρ′ is the possibly discontinuous volume-mass density, Σ the mass per spatial unit area

(interface-mass density) and δ the Dirac delta function. With this equation, (4.115) reduces to

∫

V

ρ′ dtVi d
2r dh′+

∫

A

Σ dtVi d
2r =

∫

V

ρ′Gi d
2r dh′+

∫

A

ΣGi d
2r+

∫

A

(T+
ij −T

−
ij )n r+

j d 2r+O(h).

(4.117)
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Figure 4.1: Thin disk of thickness h straddling an interface of the body (a) in the current state

and (b) in the initial state. The symbols are explained in the text.

If h→ 0 such that the disk continues to straddle ∂R(1), we obtain
∫

A

{Σ(dtVi −G±
i ) − [Tij ]

+
− n

r+
j } d 2r = 0, (4.118)

where (4.108)–(4.112) have been used. Since A is arbitrary, the integrand must vanish:

[Tij ]
+
− n

r+
j = Σ(dtVi −G±

i ), (4.119)

which is the stress interface condition. If the body is currently confined to R(1), ∂R(1) is its

spatial boundary and [Tij]
+ n r+

j = 0, so that (4.119) reduces to the stress boundary condition:

[Tij ]
− n r+

j = −Σ(dtVi −G±
i ). (4.120)

4.11.2 Lagrangian representation

To formulate interface conditions in the Lagrangian representation, we consider internal and

external material volumes, X (1) and X (2), respectively, separated by a smooth material interface,
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∂X (1), and locally assign to it the outward material unit vector, N X+
i , normal to it and directed

into X (2) (Fig. 4.1b). Wherever necessary, we distinguish by f−
ij... and f+

ij... an arbitrary tensor

field in X (1) and X (2), respectively. Assuming X ∈ ∂X (1) and ε > 0, we define

[fij...]
− := lim

ε→0+
f−ij...(X − εNX+), (4.121)

[fij...]
+ := lim

ε→0+
f+

ij...(X + εNX+), (4.122)

[fij...]
+
− := [fij...]

+ − [fij...]
−. (4.123)

Similar to the Eulerian representation, we may continue the field onto the material interface using

f ±
ij... := 1

2{[fij...]
− + [fij...]

+}. (4.124)

The assumption that the subbody is welded across the material interface is expressed by the

position interface condition:

[ri]
+
− = 0. (4.125)

If ∂X (1) is a material boundary, we may assume that [ri]
− is prescribed. Then, (4.125) reduces

to the position boundary condition

[ri]
− = di. (4.126)

To obtain the stress interface condition, we reconsider (4.118). In view of (2.48), vi := dtri,

d 2r+i := n r+
i d 2r and Σi := Σn r+

i , it can be rewritten as

∫

A(0)
jXr−1

k,j{σj(d
2
t ri − g±

i ) − [tij]
+
−}d

2X+
k = 0, (4.127)

where A(0) is the initial area of the thin disk (Fig. 4.1b) and (4.121)–(4.124) have been implied.

Using (4.3), equation (4.127) simplifies to

∫

A(0)
{σ P

j (d 2
t ri − g±

i ) − [tP
ij ]

+
−} d

2X+
j = 0 (4.128)

or, with σ P := σ P
i N

X+
i and d 2X := N X+

i d 2X+
i , to

∫

A(0)
{σ P(d 2

t ri − g±
i ) − [tP

ij ]
+
−N

X+
j } d 2X = 0, (4.129)

where σ P is the mass per material unit area (Piola interface-mass density).

Since A(0) is arbitrary, we finally obtain

[tP
ij ]

+
−N

X+
j = σ P(d 2

t ri − g±
i ) (4.130)

as the stress interface condition. With ∂X (1) a material boundary, we have [tP
ij ]

+N X+
j = 0.

Then, (4.130) reduces to the stress boundary condition:

[tP
ij ]

−N X+
j = −σ P(d 2

t ri − g±
i ). (4.131)
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5 Constitutive equations

5.1 Introduction

In the preceding chapters, we have been concerned with the development of the kinematic

concepts of deformation and flow (Chap. 2), the mechanical concept of stress (Chap. 3) and

the continuum forms of the principles of dynamics and thermodynamics (Chap. 4). A common

feature of these concepts and principles is that they apply to arbitrary continuous bodies.

In the present chapter, we are concerned with the response of particular continuous bod-

ies to applied forces. Since this response is a consequence of the internal constitution of the

real material considered, the governing relations are called constitutive equations. We will be-

gin with the constitutive equations for two simple cases: elastic solids (Sec. 5.2) and viscous

fluids (Sec. 5.3). Since real materials respond in highly complex ways when the full ranges

of applied force and temperature are taken into account, the elastic and viscous constitutive

equations can only be approximately satisfied by particular materials for limited ranges of force

and temperature. Some of these restrictions will be removed when studying viscoelastic bodies

(Sec. 5.4).

Since the unstressed state serves as a natural initial state for elastic solids, we employ for

them the Lagrangian representation. On the other hand, particles usually cannot be traced in

viscous fluids, which suggests for their description the Eulerian representation. When studying

viscoelasticity, we restrict our analysis to perturbations of an initially unstressed state, whence

the Lagrangian representation is used.

5.2 Elastic solids

A continuous body is a Hookean elastic solid if each of the components of the stress acting upon

any of its particles at the current time epoch is a homogeneous linear function of the components

of the strain experienced by that particle simultaneously. Direct consequences of this definition

are that an elastic solid does not show creep at constant stress or stress relaxation at constant

strain. The constitutive equation expressing this behaviour, here called the generalized Hooke

law, can be written as

tK
ij = mijkle

G
kl , (5.1)
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where mijkl is the elasticity tensor. This tensor equation represents nine scalar equations involv-

ing the 9× 9 = 81 components of mijkl as coefficients. The number of independent components

can be successively reduced if particular assumptions on the stress, the strain and the energy

equation are exploited.

5.2.1 Symmetry of stress

With tK
ij symmetric (Sec. 3.7), we have tK

ij = tK
ji and, in view of (5.1), also

(mijkl −mjikl)e
G
kl = 0. (5.2)

Since eG
ij is arbitrary, it is necessary that

mijkl = mjikl. (5.3)

Hence, mijkl is symmetric with respect to i and j and the number of independent components

of mijkl is reduced to 6 × 9 = 54.

5.2.2 Symmetry of strain

To reduce the number of independent components further, we decomposemijkl into its symmetric

and skew-symmetric parts with respect to k and l:

mijkl ≡
1
2(mijkl +mijlk) −

1
2(mijkl −mijlk). (5.4)

Since eG
ij is symmetric per definitionem (Sec. 2.5.2), eG

ij = eG
ji and it follows that

(mijkl −mijlk)e
G
kl = 0. (5.5)

Combining (5.1), (5.4) and (5.5), we notice that the skew-symmetric part of mijkl with respect

to k and l does not contribute to tK
ij . Without loss of generality, we may therefore replace mijkl

by its symmetric part with respect to k and l. Continuing to denote this part by mijkl, we

thus have

mijkl = mijlk, (5.6)

which reduces the number of independent components of mijkl to 6 × 6 = 36.

5.2.3 Perfect elasticity

We now assume that the elastic solid undergoes a reversible deformation that is either adiabatic

or isothermal. According to (4.91), the energy equation is given in the first case by

tK
ij dte

G
ij = ρ(0) dtu, (5.7)

59



whereas, according to (4.97), it is given in the second case by

tK
ij dte

G
ij = ρ(0) dtψ. (5.8)

If we define

w :=





ρ(0)u, adiabatic deformation

ρ(0)ψ, isothermal deformation
, (5.9)

equations (5.7) and (5.8) can be merged into a single equation:

tK
ij dte

G
ij = dtw. (5.10)

We may interpret w as the strain energy per material unit volume. Since the deformation has

been assumed to be reversible, w is conservative.

To employ (5.10) for the further reduction of the number of independent components of

mijkl, we suppose that ui,j is infinitesimal, that all components of tK
ij are of the same order of

magnitude and that only the lowest-order terms are retained. It then follows from the definitions

of eij, e
G
ij , tij and tK

ij that

eG
ij = eij , (5.11)

tK
ij = tij, (5.12)

which are correct to the first and zeroth order in ui,j, respectively. In view of these equations,

(5.1) and (5.10), respectively, reduce to

tij = mijklekl, (5.13)

dw = tij deij . (5.14)

Since eij is infinitesimal, the average stress acting along the path of some particle from its initial

position to its current position is half the current value of tij. Assuming that w vanishes in the

initial state, we thus obtain from (5.14) by integration

w = 1
2 tijeij (5.15)

or, upon substitution of (5.1),

w = 1
2mijkleijekl, (5.16)

which is correct to the second order in eij . Solids for which w is given by this equation are called

perfectly elastic solids.

To reduce the number of independent elastic moduli further, we now decompose mijkl into

its symmetric and skew-symmetric parts with respect to ij and kl:

mijkl ≡
1
2(mijkl +mklij) + 1

2(mijkl −mklij). (5.17)
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Since eij is symmetric per definitionem (Sec. 2.4), eij = eji and it follows that

(mijkl −mklij)eijekl = 0. (5.18)

Combining (5.16)–(5.18), we notice that the skew-symmetric part of mijkl with respect to ij

and kl does not contribute to w. Then, without loss of generality, mijkl can be replaced by its

symmetric part with respect to ij and kl. Denoting this part also by mijkl, we thus have

mijkl = mklij, (5.19)

which represents 15 independent conditions and reduces the number of independent components

of mijkl to 21.

5.2.4 Isotropy

Since the 21 independent quantities characterizing a perfectly elastic solid constitute the compo-

nents of the elasticity tensor, mijkl, their values change under transformations of the coordinate

system according to the transformation formula for fourth-rank tensors. This directionality of

elastic solids is called anisotropy. The existence of particular transformations of the coordinate

system which do not change the values of these components is called aelotropy.

A simple example of aelotropy is the invariance of the components of mijkl at a particular

point under a reflection of the coordinate system with respect to some plane through that point.

Such a plane is called a plane of elastic symmetry. Note that, in general, a plane of elastic

symmetry is not parallel to a plane of geometric symmetry of the elastic solid or a plane of

symmetry of the strain or stress field. On the other hand, a plane of crystal symmetry in a

single crystal is parallel to a plane of elastic symmetry. It can be shown that the existence of a

plane of elastic symmetry reduces the number of independent components of mijkl from 21 to 13

at that point. If three orthogonal planes of elastic symmetry exist, the solid is called orthotropic

and the number of independent components of mijkl reduces to nine.

The highest symmetry is reached if mijkl is invariant with respect to any orthogonal

transformation of the coordinate system. A tensor showing this type of invariance is referred to

as an isotropic tensor. Similarly, an elastic solid for which mijkl is isotropic at any point is called

an isotropic elastic solid. Real materials that approximate elastic isotropy are polycrystalline

materials with randomly oriented crystal grains. Here, the effective volume (Sec. 1.2) must

contain a sufficiently large number of crystal grains in order that isotropy holds statistically.

The trivial case of an isotropic tensor is the zero tensor, 0ij..., of any rank. Clearly, all

zeroth-rank tensors (scalars) are isotropic, but there is only the trivial isotropic first-rank tensor

(vector). We note without proof that all isotropic second-rank tensors are scalar multiples of δ ij ,

that all isotropic third-rank tensors are scalar multiples of εijk and that the isotropic fourth-rank
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tensor is of the form

fijkl = λδijδkl + µ(δikδjl + δilδjk) + ν(δikδjl − δilδjk), (5.20)

with arbitrary scalars λ, µ and ν.

If fijkl equals mijkl, it is symmetric with respect to i and j, and with respect to k and l.

For either type of symmetry, (5.20) reduces to

mijkl = λδijδkl + µ(δikδjl + δilδjk), (5.21)

where, now, λ and µ are the first and second Lamé parameters, respectively. Substituting (5.21)

into (5.1), we obtain the isotropic Hooke law:

tij = λekkδij + 2µeij . (5.22)

5.2.5 Spherical and deviatoric parts

A different form of the isotropic Hooke law employs the spherical and deviatoric parts of eij and

tij. According to (2.132) and (3.47), we have

eij ≡ 1
3ekkδij + e[ij], (5.23)

tij ≡ 1
3 tkkδij + t[ij]. (5.24)

To obtain the spherical Hooke law, we contract (5.22):

tii = 3keii, (5.25)

with the elastic bulk modulus given by

k := λ+ 2
3µ. (5.26)

To relate the deviatoric parts, we combine (5.22)–(5.24):

1
3 tkkδij + t[ij] = λekkδij + 2µ(1

3ekkδij + e[ij]). (5.27)

Using (5.25) and (5.26), this equation reduces to the deviatoric Hooke law:

t[ij] = 2µe[ij], (5.28)

whence µ is also called the elastic shear modulus.
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5.2.6 Incompressibility

If the elastic solid is incompressible, the Hooke law further simplifies. To see this, we con-

sider (4.35), i.e. the Lagrangian representation of the incompressibility condition for infinitesi-

mal strain:

ui,i = 0. (5.29)

In general, tii and µ remain finite even if the solid is incompressible. In view of (5.25), (5.26)

and eii = ui,i, we must therefore also require

λ→ ∞, k → ∞. (5.30)

Note that, on the assumption of incompressibility, (5.25) is no longer valid, i.e. the spherical

stress is no longer related to the strain components. On the other hand, the definition of the

mechanical pressure continues to apply. Hence, using eii = 0 and tii = −3p, equations (5.23)

and (5.24), respectively, reduce to

eij = e[ij], (5.31)

tij = −pδij + t[ij]. (5.32)

Combining (5.28), (5.31) and (5.32), we obtain

tij = −pδij + 2µeij , (5.33)

which is the incompressible Hooke law.

5.2.7 Strain energy

Finally, we derive the strain energy per material unit volume for an isotropic elastic solid. For

this purpose, we substitute (5.22) into (5.15), giving

w = 1
2λeiiejj + µeijeij . (5.34)

A consequence of (5.23) is

eijeij = 1
3eiiejj + e[ij]e[ij]. (5.35)

Using (5.26) and this equation, (5.34) can alternatively be written as

w = 1
2keiiejj + µe[ij]e[ij]. (5.36)

Since w has been assumed to vanish in the undeformed state, it must be positive in the deformed

state. With the spherical and deviatoric components of eij independently variable, necessary

and sufficient for w ≥ 0 are

k ≥ 0, µ ≥ 0 (5.37)
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and, in view of (5.26), λ ≥ − 2
3µ. However, in real materials, negative values of λ are not realized,

so that

λ ≥ 0. (5.38)

In the case of incompressibility, we have

eii = 0, λ→ ∞, k → ∞, (5.39)

which reduce (5.34) and (5.36), respectively, to

w = µeijeij , (5.40)

w = µe[ij]e[ij]. (5.41)

5.3 Viscous fluids

5.3.1 Thermodynamic pressure

Fluids at rest or in uniform flow cannot support deviatoric stress. Hence, the stress is

purely spherical:

T
(0)
ij = −P (0)δij , (5.42)

with the superscript 0 indicating the state of rest or uniform flow. In thermodynamics, P (0) is

related to ρ(0) and possibly other state functions by a kinetic state equation:

P (0) = P (0)(ρ(0), . . .). (5.43)

In fluid dynamics, we are usually concerned with non-uniformly flowing fluids. We then

introduce the thermodynamic pressure, Π, by the same function of ρ and possibly other state

functions that holds for P (0) at rest or uniform flow:

Π = Π(ρ, . . .). (5.44)

Since P (0) = Π(0), it follows that Π (0) = −T
(0)
ii /3. However, in non-uniformly flowing fluids, Π

does not equal the negative of the mean normal stress in general. A special form of (5.44) is the

kinetic state equation for a barotropic fluid:

Π = Π(ρ). (5.45)

Examples of barotropy are fluids subject to adiabatic or isothermal changes of state. An incom-

pressible fluid is governed by a barotropic state equation of the form

ρ = constant. (5.46)

Note that, in an incompressible fluid, Π is no longer a function of ρ.
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5.3.2 Newtonian viscosity

The characteristic feature of viscous fluids is that they can support deviatoric stress. We here

assume that the difference between the stress in non-uniform flow and the stress at rest or in

uniform flow is a homogeneous linear function of the strain rate. Hence,

Tij = −Πδij +NijklDkl, (5.47)

which is the generalized Navier–Poisson law, with Nijkl the viscosity tensor. A viscous fluid

whose constitutive equation is given by (5.47) is referred to as a Newtonian–viscous fluid. We

note that, in view of the symmetries of Dij and Tij , the number of independent components of

Nijkl is 6× 6 = 36. In the following, we will only consider the case that Nijkl is isotropic. Since

Dij and Tij are symmetric, Nijkl has the form of (5.21):

Nijkl = χδijδkl + η (δikδjl + δilδjk), (5.48)

where χ and η are the first and second viscosity parameters, respectively. Substituting this

equation into (5.47) yields

Tij = −Πδij + χDkkδij + 2ηDij , (5.49)

which is the isotropic Navier–Poisson law.

5.3.3 Spherical and deviatoric parts

As for the isotropic Hooke law (Sec. 5.2), equation (5.49) can be decomposed into spherical and

deviatoric parts. According to (2.132) and (3.47), we have

Dij ≡ 1
3Dkkδij +D[ij], (5.50)

Tij ≡ 1
3Tkkδij + T[ij]. (5.51)

To obtain the spherical Navier–Poisson law, we contract (5.49):

Tii = −3Π + 3κDii, (5.52)

with the bulk viscosity given by

κ := χ + 2
3η. (5.53)

To relate the deviatoric parts, we combine (5.49)–(5.51):

1
3Tkkδij + T[ij] = −Πδij + χDkkδij + 2η (1

3Dkkδij +D[ij]). (5.54)

In view of (5.52) and (5.53), this equation reduces to the deviatoric Navier–Poisson law:

T[ij] = 2ηD[ij], (5.55)

whence η is also called the shear viscosity.
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5.3.4 Stokes condition and incompressibility

Since Tii = −3P , equation (5.52) can be rewritten as

P = Π −κDii. (5.56)

This equation shows that P = Π holds only if one of the following conditions is satisfied:

κ = 0, (5.57)

Dii = 0, (5.58)

which are the Stokes condition and, in view of (4.21) and Dii = Vi,i, the incompressibility

condition, respectively. If the Stokes condition applies, it follows from (5.53) that χ = − 2
3η,

whence (5.49) reduces to

Tij = −Πδij −
2
3ηDkkδij + 2ηDij . (5.59)

Inspection of this equation shows that, although Dii 6= 0 in general, no contribution to the

spherical stress arises from the corresponding term, i.e. Tij + Πδij is purely deviatoric. If the

incompressibility condition applies, (5.49) becomes

Tij = −Πδij + 2ηDij , (5.60)

with Tij + Πδij purely deviatoric. Note that, with Π = −Tii/3 in (5.59) and (5.60), Π may

be replaced by P . Furthemore, in both equations, only the shear viscosity, η, is left as the

characteristic parameter.

5.3.5 Inviscidity

A fluid is inviscid if it cannot support deviatoric stress even in non-uniform flow. Its constitutive

equation therefore is

Tij = −δijΠ. (5.61)

As is obvious from this equation, Π = −Tii/3 always holds in an inviscid fluid. If, in addition,

Π satisfies (5.45), the fluid is called elastic.

5.3.6 Stress power

Further insight is gained by considering the stress power per spatial unit volume:

Z := TijDij. (5.62)

In view of (5.49), (5.50) and (5.53), we obtain

Z = −ΠDii + κDiiDjj + 2ηD[ij]D[ij]. (5.63)
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The term −ΠDii can be positive or negative and, therefore, represents the conservative contribu-

tion to the stress power. The term κDiiDjj+2ηD[ij]D[ij] represents the dissipative contribution.

In view of (4.100) and (4.107), this contribution is also given by the dissipation function, D,

whence we have

κDiiDjj + 2ηD[ij]D[ij] ≥ 0. (5.64)

Since the spherical and deviatoric components of Dij are independently variable, necessary and

sufficient for the inequality to hold are

κ ≥ 0, η ≥ 0 (5.65)

and, by (5.54), also

χ ≥ −
2

3
η. (5.66)

If, in particular, κ = 0, the term κDiiDjj vanishes. Then, spherical strain changes are com-

pletely conservative, i.e. the entire dissipation is due to deviatoric strain changes. If, alterna-

tively, Dii = 0, both −ΠDii and κDiiDjj vanish, i.e. the stress power is fully dissipative.

5.4 Viscoelastic bodies

Elastic solids and viscous fluids represent end members of a suite of materials with varied re-

sponse characteristics. Intermediate members of this suite incorporating characteristics of both

end members are called viscoelastic bodies. This nomenclature suggests some difficulty in de-

ciding whether a viscoelastic body be considered as a solid or a fluid. However, usually, the

distinction between a solid and a fluid can be made. For our purposes, the following improve-

ments of our preliminary definitions of solidity and fluidity (Sec. 1.1) are appropriate.

Solids: Following the application of a time-independent deviatoric stress, the strain ultimately

converges to a finite value. Conversely, following the application of a time-independent devia-

toric strain, the stress ultimately converges to a finite value.

Fluids: Following the application of a time-independent deviatoric stress, the strain rate ulti-

mately converges to a finite value. Conversely, following the application of a time-independent

deviatoric strain, the stress ultimately decays to zero.

5.4.1 Linear viscoelasticity

A characteristic feature of elastic solids is that the current stress is a function of the current

strain. In viscous fluids, the current stress is a function of the current strain rate. In contrast

to this, viscoelastic bodies exhibit a feature which is known as the memory hypothesis. This
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implies that the stress at the current time epoch is not a function of the value of the strain or

strain rate at this epoch, but a functional of the values at all past epochs.

In formalizing this statement, we restrict our analysis to the case that the functional is

linear. Then,

tK
ij (t) =

∫
∞

0
eG
kl (t− τ) dmijkl(τ), (5.67)

with t the current time epoch, τ the lapse time interval, mijkl(τ) the relaxation tensor and

the integral a Stieltjes convolution integral. Upon transforming it into a Riemann convolution

integral, we obtain

tK
ij (t) = mijkl(0) e

G
kl (t) +

∫
∞

0
eG
kl (t− τ) dτmijkl(τ) dτ. (5.68)

Integration by parts gives

tK
ij (t) =

∫ 0

t
mijkl(τ) dτ e

G
kl (t− τ) dτ, (5.69)

where eG
ij (t − τ) = 0 for τ ≥ t has been assumed as the initial condition. After a change of

variable, we obtain

tK
ij (t) =

∫ t

0
mijkl(t− t′) dt′e

G
kl (t

′) dt′, (5.70)

with t′ = t − τ the excitation time epoch. The roles of eG
ij and tK

ij in the preceding derivation

may be interchanged, which leads to a constitutive equation of the form

eG
ij (t) =

∫ t

0
cijkl(t− t′) dt′t

K
kl (t

′) dt′, (5.71)

with cijkl(t− t′) the creep tensor.

We now assume that ui,j is infinitesimal, that the components of tK
ij are of the same order

of magnitude and that only the lowest-order terms are retained. As in Sec. 5.2.3, it then follows

from the definitions of eij , e
G
ij , tij and tK

ij that

eG
ij = eij , (5.72)

tK
ij = tij, (5.73)

which are correct to the first and zeroth orders in ui,j, respectively. In view of these equations,

(5.70) and (5.71) take the forms

tij(t) =

∫ t

0
mijkl(t− t′) dt′ekl(t

′) dt′, (5.74)

eij(t) =

∫ t

0
cijkl(t− t′) dt′ tkl(t

′) dt′, (5.75)

which are equivalent forms of the generalized constitutive equation of linear viscoelasticity. We

note that, in view of the symmetry of eij and tij, the number of independent components of

cijkl(t− t′) and mijkl(t− t′), respectively, is 6 × 6 = 36 (Secs. 5.2.1 and 5.2.2).
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5.4.2 Isotropy

The following analysis will be restricted to isotropic viscoelastic bodies. Since tij and eij are

symmetric, the isotropic forms of mijkl and cijkl are given by equations that formally agree with

(5.21). Hence, choosing scalars m1, m2 and c1, c2, so that

mijkl = m1δijδkl +m2(δikδjl + δilδjk), (5.76)

cijkl = c1δijδkl + c2(δikδjl + δilδjk), (5.77)

substitution into (5.74) and (5.75), respectively, yields

tij =

∫ t

0
m1(t− t′) dt′ekk(t

′) δij dt
′ + 2

∫ t

0
m2(t− t′) dt′eij(t

′) dt′, (5.78)

eij =

∫ t

0
c1(t− t′) dt′ tkk(t

′) δijdt
′ + 2

∫ t

0
c2(t− t′) dt′ tij(t

′) dt′, (5.79)

where m1 and m2 are the first and second relaxation functions, respectively, and c1 and c2 are

the first and second creep functions, respectively.

5.4.3 Spherical and deviatoric parts

To decompose (5.78) and (5.79) into spherical and deviatoric parts, we reconsider the decompo-

sitions (2.132) and (3.47):

eij ≡ 1
3δijekk + e[ij], (5.80)

tij ≡ 1
3δijtkk + t[ij]. (5.81)

Introducing

m3 := m1 + 2
3m2, (5.82)

c3 := c1 + 2
3c2, (5.83)

we obtain in analogy to Sec. 5.2.5 the relations

tii(t) = 3

∫ t

0
m3(t− t′) dt′eii(t

′) dt′, (5.84)

t[ij](t) = 2

∫ t

0
m2(t− t′) dt′e[ij](t

′) dt′, (5.85)

with m2 and m3 the shear-relaxation and bulk-relaxation functions, respectively, and

eii(t) = 3

∫ t

0
c3(t− t′) dt′ tii(t

′) dt′, (5.86)

e[ij](t) = 2

∫ t

0
c2(t− t′) dt′ t[ij](t

′) dt′, (5.87)

with c2 and c3 the shear-creep and bulk-creep functions, respectively.
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5.4.4 Incompressibility

If the viscoelastic body is incompressible, the forms of the constitutive equation further simplify.

With ui,j assumed to be infinitesimal, we have, according to (4.35),

ui,i = 0. (5.88)

However, in general, c2, m2 and tii remain finite even for incompressibility. Considering (5.82)–

(5.84), (5.86) and eii = ui,i, we must therefore also require

m1 → ∞, m3 → ∞, (5.89)

c1 = −2
3c2, c3 = 0. (5.90)

Note that, on the assumption of incompressibility, (5.84) and (5.86) no longer apply, i.e. the

spherical stress and the spherical strain are no longer related. On the other hand, the definition of

the mechanical pressure continues to apply. Hence, using eii = 0 and tii = −3p, equations (5.80)

and (5.81), respectively, reduce to

eij = e[ij], (5.91)

tij = −pδij + t[ij]. (5.92)

Combining (5.85), (5.87), (5.91) and (5.92), we obtain

tij(t) = −pδij + 2

∫ t

0
m2(t− t′) dt′eij(t

′) dt′, (5.93)

eij(t) = 2

∫ t

0
c2(t− t′) dt′ [tij(t

′) + p(t′)δij ] dt
′, (5.94)

which are forms of the incompressible constitutive equation of linear viscoelasticity.

5.4.5 Relaxation experiment

The significance of the relaxation functions is illustrated by studying the response following

the sudden application of a constant strain at t = 0+. This is referred to as the relaxation

experiment. Considering

eij(t) = eij H+(t) (5.95)

in (5.84) and (5.85), where eij is time independent and H+ the right-handed Heaviside step

function defined by H+(t− t′) := H[t− (t′ + 0)], the equations, respectively, become

tii(t) = 3m3(t) eii H+(t), (5.96)

t[ij](t) = 2m2(t) e[ij]H+(t). (5.97)

Typical examples of m2(t) are shown in Fig. 5.1.
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Figure 5.1: Schematic representation of the shear-relaxation function, m2(t), for (a) a viscoelas-

tic solid and (b) a viscoelastic fluid.

5.4.6 Creep experiment

Alternatively, the response following the sudden application of a constant stress at t = 0+ may

be investigated, which is called the creep experiment. Considering

tij(t) = tij H+(t) (5.98)

in (5.86) and (5.87), with tij time-independent, the equations, respectively, become

eii(t) = 3c3(t) tiiH+(t), (5.99)

e[ij](t) = 2c2(t) t[ij]H+(t). (5.100)

Typical examples of c2(t) are shown in Fig. 5.2.

5.4.7 Solids and fluids

We may use the above results to specify further our definitions of solidity and fluidity.

Solids: For a viscoelastic body to be a solid it is necessary and sufficient that, upon the sudden

application of a time-independent deviatoric strain, the deviatoric stress and, thus, m2(t) in

(5.97) converge to a finite value as t→ ∞ (Fig. 5.1a). Then, this equation formally agrees with

(5.28), i.e. the deviatoric constitutive equation of an elastic solid, which suggests the following

definition the elastic shear modulus of a viscoelastic solid:

µ := lim
t→∞

m2(t). (5.101)
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Figure 5.2: Schematic representation of the shear-creep function, c2(t), for (a) a viscoelastic

solid and (b) a viscoelastic fluid.

Fluids: For a viscoelastic body to be a fluid it is necessary and sufficient that, upon the sudden

application of a time-independent deviatoric stress, the strain rate converges to a finite value as

t→ ∞ (Fig. 5.2b). Assuming

dt′e[ij](t
′) = H(t′) d[ij], (5.102)

where d[ij] is time-independent, (5.85) becomes

t[ij](t) = 2d[ij]

∫ t

0
m2(t− t′) dt′. (5.103)

The steady-flow condition is obviously equivalent to the requirement that the integral converges

as t → ∞, so that the equation formally agrees with (5.55), i.e. the deviatoric constitutive

equation of a viscous fluid. This suggests the following definition of the shear viscosity of a

viscoelastic fluid:

η := lim
t→∞

∫ t

0
m2(t− t′) dt′. (5.104)

5.4.8 Strain energy

To calculate the strain energy per material unit volume stored in the viscoelastic body, we

assume infinitesimal strain and consider, similarly to (5.15),

w(t) = 1
2 tij(t) eij(t), (5.105)

where w = 0 in the undeformed state and w > 0 in the deformed state. Substituting the strain

history (5.95) into (5.78), the associated stress history is

tij(t) = [m1(t) ekkδij + 2m2(t) eij ]H+(t) (5.106)
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and (5.105) takes the form

w(t) = [ 12m1(t) eiiejj +m2(t) eijeij ]H+(t). (5.107)

Using (5.35) and (5.82), this can be rewritten as

w(t) = [ 12m3(t) eiiejj +m2(t) e[ij]e[ij]]H+(t). (5.108)

Since the spherical and deviatoric components of eij are independent, necessary and sufficient

for w(t) ≥ 0 are

m2(t) ≥ 0, m3(t) ≥ 0. (5.109)

In view of (5.82), we furthermore obtain m1(t) ≥ −2
3m2(t). However, as for elastic materials,

m1(t) is found to be non-negative, so that also

m1(t) ≥ 0. (5.110)

We note that, on the assumption of a stress history of the form

tij(t) = tij H+(t), (5.111)

where tij is time-independent, the constraints

c1(t) ≥ 0, c2(t) ≥ 0, c3(t) ≥ 0 (5.112)

on the creep functions are obtained in complete analogy to the deduction given above.
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6 Field theories

6.1 Introduction

This chapter is concerned with the specialized field theories corresponding to the particular

types of constitutive behaviour discussed in Chap. 5. Hence, the chapter will summarize the

field equations and interface conditions of elastodynamics (Sec. 6.2), viscodynamics (Sec. 6.3)

and viscoelastodynamics (Sec. 6.4). In each case, the specialized field theory will be restricted to

mechanical changes of state and first given in non-linear form for inhomogeneous and, possibly,

anisotropic materials. Following this, the equations will be linearized and the special cases of

homogeneity and isotropy be considered. Finally, the uniqueness of the solution to the equations

will be proved for each type of constitutive behaviour.

6.2 Elastodynamics

In this section, we consider a Hookean–elastic solid and describe its deformation by means of

the Lagrangian representation, with the undeformed state taken as the initial state. We denote

the material volume of the solid by X and its material boundary by ∂X (2). Furthermore, X is

divided by a material interface, ∂X (1), into the internal material volume, X (1), and the external

material volume, X (2). The outward material unit vectors normal to ∂X (1) and ∂X (2) are N X+
i

(Fig. 6.1). We admit prescribed jump discontinuities of the material parameters on ∂X (1), but

assume continuity elsewhere. Hence, the field equations are defined in X (1) ∪X (2), the interface

conditions are specified on ∂X (1) and the boundary conditions on ∂X (2). These equations must

be supplemented by appropriate initial conditions.

6.2.1 Non-linear theory

From (2.4), (2.105), (3.23), (3.35), (4.28), (4.43) and (5.1), respectively, the field equations of

elastodynamics in the Lagrangian representation are

jX := det ri,j , (6.1)

eG
ij := 1

2 (rk,irk,j − δij), (6.2)

tP
ij := jXr−1

j,ktik, (6.3)
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Figure 6.1: Domains employed in the Lagrangian representation of elastodynamics or viscoelas-

todynamics. The symbols are explained in the text.

tK
ij := jXr−1

i,k r
−1
j,l tkl, (6.4)

jXρ = ρ(0), (6.5)

tP
ij,j + ρ(0)gi = ρ(0) d 2

t ri, (6.6)

tK
ij = mijkle

G
kl , (6.7)

where Xi ∈ X (1) ∪X (2). With gi, mijkl and ρ(0) prescribed fields, the above equations represent

26 scalar equations for 26 scalar unknowns (nine components of t P
ij , six components of tK

ij , six

components of eG
ij , three components of ri, j

X and ρ).

From (4.3), we have

σ P
i = jXr−1

i,j σj (6.8)

and, in view of (4.125), (4.126), (4.130) and (4.131), the associated interface and boundary

conditions applying to Xi ∈ ∂X (1) and Xi ∈ ∂X (2), respectively, are

[ri]
+
− = 0 and [tP

ij ]
+
−N

X+
j = σ P(d 2

t ri − g±
i ), (6.9)

[ri]
− = ci or [tP

ij ]
−N X+

j = −σ P(d 2
t ri − g±

i ), (6.10)

where σ P := σ P
i N

X+
i and ci are assumed to be prescribed.

6.2.2 Linearized theory

We use ri = Xi + ui and assume that the magnitudes of the components of ui,j are sufficiently

small in comparison to unity that only the lowest-order terms be retained. Considering (2.85)

and supposing the magnitudes of the components of tij are of the same order of magnitude, we

obtain from (6.1)–(6.5) the equations

jX = 1, (6.11)

eG
ij = eij , (6.12)

75



tP
ij = tK

ij = tij, (6.13)

ρ = ρ(0), (6.14)

where the second equation is of the first order and the others are of the zeroth order in ui,j.

In view of (6.11)–(6.14) and d 2
t ri = d 2

t ui, equations (6.1)–(6.5) reduce to their

linearized forms:

eij = 1
2(ui,j + uj,i), (6.15)

tij,j + ρgi = ρ d 2
t ui, (6.16)

tij = mijkleij , (6.17)

which represent 15 scalar equations for 15 scalar unknowns (six components of tij, six compo-

nents of eij and three components of ui). In the case of isotropy, the last equation simplifies to

tij = λekkδij + 2µeij . (6.18)

We may eliminate eij and tij from (6.15)–(6.17). Assuming that mijkl is constant, we obtain

1
2mijkl(uk,jl + ul,jk) + ρgi = ρ d 2

t ui, (6.19)

which, for isotropy, becomes

(λ+ µ)uj,ij + µui,jj + ρgi = ρ d 2
t ui. (6.20)

Either vector equation represents three scalar equations for the three components of ui.

We continue using ri = Xi + ui and assuming that the magnitudes of the components of

ui,j are sufficiently small that only the lowest-order terms be retained. Then, (6.8) becomes

σ P = σ, (6.21)

and, in view of (6.13), the interface conditions (6.9) and boundary conditions (6.10), respectively,

reduce to their linearized forms

[ui]
+
− = 0 and [tij]

+
−N

X+
j = σ(d 2

t ui − g±
i ), (6.22)

[ui]
− = ci or [tij]

−N X+
j = −σ(d 2

t ui − g±
i ). (6.23)

On account of the linearity of the field equations, interface conditions and boundary con-

ditions, the superposition principle applies. This means that, if u
(1)
i , e

(1)
ij , t

(1)
ij are solutions

to (6.15)–(6.17) for prescribed g
(1)
i and u

(2)
i , e

(2)
ij , t

(2)
ij are solutions for prescribed g

(2)
i , then

c1u
(1)
i + c2u

(2)
i , c1e

(1)
ij + c2e

(2)
ij , c1t

(1)
ij + c2t

(2)
ij are solutions for c1g

(1)
i + c2g

(2)
i , with c1 and c2

arbitrary constants. The solutions for prescribed interface and boundary conditions can be

superposed in an analogous way.
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6.2.3 Uniqueness theorem of linearized elastostatics

If the acceleration is sufficiently small, the term ρ d 2
t ui can be neglected and (6.15)–(6.17)

simplify to

eij = 1
2(ui,j + uj,i), (6.24)

tij,j + ρgi = 0, (6.25)

tij = mijklekl, (6.26)

which are the field equations of linearized elastostatics.

We now suppose that the fields are continuously differentiable everywhere on X ∪ ∂X (2).

We also assume perfect elasticity, which is equivalent to the existence of a non-negative strain

energy per material unit volume of the form of (5.15):

w = 1
2 tijeij ≥ 0, (6.27)

where w = 0 applies to the undeformed state and w > 0 to the deformed state. The uniqueness

theorem of elastostatics maintains that the solution to (6.24)–(6.26) is unique in X if gi is

prescribed in X and ui := [ui]
− or ti := [tij ]

−N X+
j is prescribed on ∂X (2). To prove the

theorem, we consider two solutions, e
(1)
ij , t

(1)
ij , u

(1)
i and e

(2)
ij , t

(2)
ij , u

(2)
i , corresponding to the

same volume forces in X and to the same boundary conditions on ∂X (2). By the superposition

principle, the solution eij = e
(2)
ij − e

(1)
ij , tij = t

(2)
ij − t

(1)
ij , ui = u

(2)
i − u

(1)
i then corresponds to

gi = 0 in X and to tiui = 0 on ∂X (2). Integration over ∂X (2) gives
∫

∂X (2)
tiui d

2X = 0, (6.28)

which, using (3.17) and (4.3), is equivalent to
∫

X

(tijui),j d
3X = 0. (6.29)

Since, on account of gi = 0, the equation tij,j = 0 obtains, this simplifies to
∫

X

tijui,j d
3X = 0. (6.30)

From (2.84)–(2.86), we have ui,j = eij + αij and, in view of the symmetry properties of tij, eij

and αij, we obtain ∫

X

tijeij d
3X = 0. (6.31)

Considering (6.27), this is possible only if

tijeij = 0 (6.32)

everywhere in X . Since w = 0 applies to the undeformed state, tij = eij = 0, whence

e
(1)
ij = e

(2)
ij , (6.33)
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Figure 6.2: Domains employed in the Eulerian representation of viscodynamics. The symbols

are explained in the text.

t
(1)
ij = t

(2)
ij . (6.34)

In view of (6.24), we also have, except for a possible rigid-body displacement,

u
(1)
i = u

(2)
i . (6.35)

Equations (6.33)–(6.35) confirm that, for perfect elasticity and with gi prescribed in X and ui

or ti prescribed on ∂X (2), the solution to the linearized field equations of elastostatics is unique.

The uniqueness theorem can be generalized in several ways and may be shown to be valid also

in the case of a discontinuity on ∂X (1).

6.3 Viscodynamics

In this section, we summarize the field equations and interface conditions governing the flow

of a Newtonian–viscous fluid. Since, in general, individual particles cannot be distinguished in

fluids, we describe the flow using the Eulerian representation. We choose some spatial volume,

R, inside of the fluid and confine it by its spatial boundary, ∂R(2). Furthermore, R is divided

by the spatial interface ∂R(1) into the internal spatial volume, R(1), and the external spatial

volume, R(2). The outward spatial unit vectors normal to ∂R(1) or ∂R(2) are n r+
i (Fig. 6.2).

We allow prescribed discontinuities of the material parameters on ∂R(1), but suppose continuity

elsewhere. The field equations are thus defined for R(1) ∪ R(2), the interface conditions apply

to ∂R(1) and the boundary conditions are specified on ∂R(2), with the individual domains in

general time-dependent. In addition, appropriate initial conditions must be specified.

6.3.1 Non-linear theory

We restrict the analysis to isotropic Newtonian–viscous fluids. Then, from (2.113), (4.19), (4.40),

(5.45) and (5.49), the field equations of viscodynamics in the Eulerian representation are

Dij = 1
2(Vi,j + Vj,i), (6.36)
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dtρ + ρVi,i = 0, (6.37)

Tij,j + ρGi = ρ dtVi, (6.38)

Π = Π(ρ), (6.39)

Tij = −Πδij + χDkkδij + 2ηDij , (6.40)

where ri ∈ R(1) ∪ R(2). With Gi, Π, χ and η prescribed fields, these equations represent 17

scalar equations for 17 scalar unknowns (six components of Tij, six components of Dij, three

components of Vi, Π and ρ). The number of equations and unknowns can be reduced by

eliminating Dij and Tij. Assuming that χ and η are constant, (6.36)–(6.40) reduce to

dtρ + ρVi,i = 0, (6.41)

Π = Π(ρ), (6.42)

−Π
,i + (χ +η)Vj,ij + ηVi,jj + ρGi = ρ dtVi, (6.43)

which represent five scalar equations for five scalar unknowns (three components of Vi, Π and

ρ). Equation (6.43) is called the Navier–Stokes equation.

If incompressibility is assumed, dtρ = 0 and Π = P and (6.41)–(6.43) reduce to

Vi,i = 0, (6.44)

−P
,i + ηVi,jj + ρGi = ρ dtVi. (6.45)

If the fluid is also inviscid, η = 0 and we get

Vi,i = 0, (6.46)

−P
,i + ρGi = ρ dtVi, (6.47)

where the last equation is called the Euler equation. A simpification that, in a sense, is opposite

to that of inviscidity results if ρ dtVi can be neglected. Then, (6.44) and (6.45) become

Vi,i = 0, (6.48)

−P
,i + ηVi,jj + ρGi = 0, (6.49)

which are the quasi-static field equations.

From (4.112), (4.113), (4.119) and (4.120), the interface and boundary conditions applying

to ri ∈ ∂R
(1) and ri ∈ ∂R

(2), respectively, are

[Vi]
+
− = 0 and [Tij]

+
− n

r+
j = Σ(dtVi −G±

i ), (6.50)

[Vi]
− = Ci or [Tij ]

− n r+
j = −Σ(dtVi −G±

i ), (6.51)

with Σ and Ci prescribed.
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6.3.2 Linearized theory

The non-linearity of the field equations and interface conditions of viscodynamics arises from the

terms ρVi,i and ρ dtVi = ρ(DtVi+VjVi,j) in (6.41) and (6.42), but also appears in (6.50) or (6.51)

if the spatial interface or spatial boundary is moving. Whereas the non-linearities associated

with ρ vanish for incompressible fluids, the non-linearity associated with the advective part of

the material time derivative of Vi remains in this case and even persists if the fluid is inviscid.

One method of linearizing the field equations is to assume that dtVi can be neglected.

This has been applied above and resulted in the quasi-static field equations (6.48) and (6.49).

However, for compressible fluids, this method does not lead to complete linearization.

A different method of linearizating the field equations is the use of perturbation theory.

The fundamental assumption of perturbation theory is that the current state of the fluid can be

expanded into an initial state and an incremental state. Mathematically, this can be represented

by a perturbation equation of the form

Fij... = F
(0)
ij... + F

(1)
ij..., (6.52)

where F
(0)
ij... and F

(1)
ij... denote the initial and incremental parts, respectively, of Fij.... Substituting

this into the non-linear field equations, interface conditions and boundary conditions results in a

set of equations containing zeroth-, first- and second-order terms. In linear perturbation theory,

it is assumed that the increments are sufficiently small that the second-order terms can be

neglected. Assuming that the solution for the initial state is known, we then arrive at a set of

linear equations for the first-order terms.

To illustrate the method, we consider (6.36)–(6.40). On the assumption that the initial

state is hydrostatic, dtF
(0)
ij... = 0, D

(0)
ij = 0 and V

(0)
i,j = 0. Then, the expanded forms of the

equations are

D
(1)
ij = 1

2(V
(1)
i,j + V

(1)
j,i ), (6.53)

Dtρ
(1) + V

(1)
i ρ

(1)
,i + (ρ(0) + ρ(1))V

(1)
i,i = 0, (6.54)

−P
(0)
,i + T

(1)
ij,j + (ρ(0) + ρ(1))(G

(0)
i +G

(1)
i ) = (ρ(0) + ρ(1))(DtV

(1)
i + V

(1)
j V

(1)
i,j ), (6.55)

−P (0)δij + T
(1)
ij = −(Π(0) +Π(1))δij + χD

(1)
kk δij + 2ηD

(1)
ij , (6.56)

Π(0) +Π(1) = Π(ρ(0)) +Kρ(1), (6.57)

where the fluid bulk modulus, K = (dΠ/dρ)
ρ(0) , has been used in the last equation. Since

these equations must be satisfied in the hydrostatic initial state, we may equate the zeroth-order

terms, giving P
(0)
,i = ρ(0)G

(0)
i , Π(0) = P (0) and Π(0) = Π(ρ(0)). If we observe the zeroth-order

equations and neglect the second-order terms, the linearized field equations of viscodynamics are

D
(1)
ij = 1

2(V
(1)
i,j + V

(1)
j,i ), (6.58)
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Dtρ
(1) + ρ(0)V

(1)
i,i = 0, (6.59)

T
(1)
ij,j + ρ(0)G

(1)
i + ρ(1)G

(0)
i = ρ(0)DtV

(1)
i , (6.60)

T
(1)
ij = −Π(1)δij + χD

(1)
kk δij + 2ηD

(1)
ij , (6.61)

Π(1) = Kρ(1). (6.62)

Assuming that G
(0)
i , G

(1)
i , K, χ and η are prescribed fields, these equations represent 17

scalar equations for 17 scalar unknowns (six components of T
(1)
ij , six components of D

(1)
ij , three

components of V
(1)
i , Π(1) and ρ(1)). If K, χ and η are constant, we obtain, upon elimination

of D
(1)
ij , T

(1)
ij and Π(1), the relations

Dtρ
(1) + ρ(0)V

(1)
i,i = 0, (6.63)

−Kρ
(1)
,i + (χ + η)V

(1)
j,ij + ηV

(1)
i,jj + ρ(0)G

(1)
i + ρ(1)G

(0)
i = ρ(0)DtV

(1)
i , (6.64)

which represent four scalar equations for four scalar unknowns (three components of V
(1)
i

and ρ(1)).

Assuming time-independent spatial domains, n r+
i = n

(0) r+
i and the interface conditions

(6.50) and boundary conditions (6.51), respectively, can be expanded into

[V
(1)
i ]+− = 0 and [−P (0)δij + T

(1)
ij ]+− n

(0) r+
j = (Σ(0) +Σ(1))(dtV

(1)
i −G

(0)±
i −G

(1)±
i ), (6.65)

[V
(1)
i ]− = Ci or [−P (0)δij + T

(1)
ij ]− n

(0) r+
j = −(Σ(0) +Σ(1))(dtV

(1)
i −G

(0)±
i −G

(1)±
i ). (6.66)

With [P (0)]+− = Σ(0)ρ(0) and [P (0)]− = −Σ(0)ρ(0) in the hydrostatic initial state and the second-

order terms neglected, the linearized interface and boundary conditions take the forms

[V
(1)
i ]+− = 0 and [T

(1)
ij ]+− n

(0) r+
j = −Σ(0)G

(1)±
i −Σ(1)G

(0)±
i , (6.67)

[V
(1)
i ]− = Ci or [T

(1)
ij ]− n

(0) r+
j = Σ(0)G

(1)±
i +Σ(1)G

(0)±
i . (6.68)

After linearization of the field equations, interface conditions and boundary conditions

and with the spatial domains fixed, the superposition principle can be applied as discussed for

linearized elastostatics (Sec. 6.2.2).

6.3.3 Uniqueness theorem of linearized quasi-static viscodynamics

If the acceleration is sufficiently small and the fluid incompressible, ρ(0)DtV
(1)
i = 0, ρ(1) = 0

and Π(1) = P (1). Dropping the superscripts, (6.58)–(6.62) then simplify to

Dij = 1
2(Vi,j + Vj,i), (6.69)

Vi,i = 0, (6.70)
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Tij,j + ρGi = 0, (6.71)

Tij = −Pδij + 2ηDij, (6.72)

which are the linearized field equations of quasi-static viscodynamics for incompressibility.

We now assume that the fields are continuously differentiable everywhere on R ∪ ∂R(2).

We also recall (5.62), i.e. the definition of the stress power per spatial unit volume, which, for

an incompressible fluid, is purely dissipative and, therefore, non-negative (Sec. 5.3.6):

Z := TijDij ≥ 0. (6.73)

The uniqueness theorem of quasi-static viscodynamics maintains that the solution to (6.69)–

(6.72) is unique in R if Gi is prescribed in R and Vi := [V
(1)
i ]− or Ti := [T

(1)
ij ]−n

(0)+
j is prescribed

on ∂R(2). To prove the theorem, we consider two solutions, D
(1)
ij , T

(1)
ij , V

(1)
i and D

(2)
ij , T

(2)
ij , V

(2)
i ,

corresponding to the same volume forces in R and to the same boundary conditions on ∂R(2).

By the superposition principle, the solution Dij = D
(2)
ij −D

(1)
ij , Tij = T

(2)
ij −T

(1)
ij , Vi = V

(2)
i −V

(1)
i

then corresponds to Gi = 0 in R and to TiVi = 0 on ∂R(2). Upon integration over ∂R(2), we get

∫

∂R(2)
TiVi d

2r = 0, (6.74)

which, using (2.30), (3.17) and (4.1), becomes

∫

R

(TijVi),j d
3r = 0. (6.75)

In view of (6.71), this reduces to ∫

R

TijVi,j d
3r = 0. (6.76)

From (2.112)–(2.114), we have Vi,j = Dij +Ωij . Exploiting the symmetry properties of Tij, Dij

and Ωij , we get ∫

R

TijDij d
3r = 0. (6.77)

On account of (6.73) this is possible only if

TijDij = 0 (6.78)

everywhere in R. Since Z = 0 is valid only in the hydrostatic state, even Tij = Dij = 0 applies

and, therefore,

D
(1)
ij = D

(2)
ij , (6.79)

T
(1)
ij = T

(2)
ij . (6.80)

In view of (6.69), we also have, except for a uniform motion,

V
(1)
i = V

(2)
i . (6.81)
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The last three equations confirm that, for incompressible Newtonian viscosity, Gi prescribed in

R and Vi or Ti prescribed on ∂R(2), the solution to the linearized field equations of quasi-static

viscodynamics is unique. The uniqueness theorem, here proved only for incompressibility, can

be generalized in several ways and, in particular, may be shown to be valid also in the case of a

discontinuity on ∂R(1).

6.4 Viscoelastodynamics

Since the constitutive behaviour of viscoelastic bodies is intermediate between that of solids

and fluids, both the Lagrangian and the Eulerian representations may profitably be employed.

In this section, we suppose the existence of an undeformed state and adopt the Lagrangian

representation, with this state serving as the initial state. Hence, the domains of definition

used in the Lagrangian representation of the field equations, interface conditions and boundary

conditions of elastodynamics (Fig. 6.1) continue to apply. As in Sec. 5.4.1, the initial conditions

are eG
ij (t− τ) = 0 for τ ≥ t.

6.4.1 Non-linear theory

From (2.4), (2.105), (3.23), (3.35), (4.28), (4.43) and (5.70), respectively, the field equations of

viscoelastodynamics in the Lagrangian representation are

jX := det ri,j , (6.82)

eG
ij := 1

2 (rk,irk,j − δij), (6.83)

tP
ij := jXr−1

j,ktik, (6.84)

tK
ij := jXr−1

i,k r
−1
j,l tkl, (6.85)

jXρ = ρ(0), (6.86)

tP
ij,j + ρ(0)gi = ρ(0) d 2

t ri, (6.87)

tK
ij =

∫ t

0
mijkl(t− t′) dt′e

G
kl (t

′) dt′, (6.88)

where Xi ∈ X (1) ∪ X (2). With gi, mijkl(t − t′) and ρ(0) prescribed fields, these are 26 scalar

equations for 26 scalar unknowns (nine components of t P
ij , six components of tK

ij , six components

of eG
ij , three components of ri, j

X and ρ).

From (4.3), we have

σ P
i = jXr−1

i,j σj, (6.89)
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and, from (4.125), (4.126), (4.130) and (4.131), the interface and boundary conditions applying

to Xi ∈ ∂X (1) and Xi ∈ ∂X (2), respectively, have the forms

[ri]
+
− = 0 and [tP

ij ]
+
−N

X+
j = σ P(d 2

t ri − g±
i ), (6.90)

[ri]
− = ci or [tP

ij ]
−N X+

j = −σ P(d 2
t ri − g±

i ), (6.91)

with σ P := σ P
i N

X+
i and ci prescribed.

6.4.2 Linearized theory

We consider ri = Xi + ui, d
2
t ri = d 2

t ui and employ the same approximations used in Sec. 6.2.2.

Then, (6.11)–(6.14) apply and (6.82)–(6.88) take the linearized forms

eij = 1
2(ui,j + uj,i), (6.92)

tij,j + ρgi = ρ d 2
t ui, (6.93)

tij =

∫ t

0
mijkl(t− t′) dt′ekl(t

′) dt′, (6.94)

which represent 15 scalar equations for 15 scalar unknowns (six components of tij, six compo-

nents of eij and three components of ui). Assuming isotropy, the last equation simplifies to

tij =

∫ t

0
m1(t− t′) dt′ekk(t

′) δij dt
′ + 2

∫ t

0
m2(t− t′) dt′eij(t

′) dt′. (6.95)

The number of unknowns can be reduced by eliminating eij and tij from (6.92)–(6.94). Assuming

that mijkl(t− t′) is spatially constant, we obtain

1
2

∫ t

0
mijkl(t− t′) dt′ [uk,jl(t

′) + ul,jk(t
′)] dt′ + ρgi = ρ d 2

t ui, (6.96)

which, for isotropy, becomes

∫ t

0
[m1(t− t′) +m2(t− t′)] dt′uj,ij(t

′) dt′ +

∫ t

0
m2(t− t′) dt′ui,jj(t

′) dt′ + ρgi = ρ d 2
t ui. (6.97)

Either equation represents three scalar equations for the three components of ui.

With ri = Xi+ui and the magnitudes of the components of ui,j sufficiently small that only

the lowest-order terms be retained, t P
ij = tij and σ P = σ continue to apply and the linearized

forms of the interface and boundary conditions (6.90) and (6.91), respectively, reduce to

[ui]
+
− = 0 and [tij]

+
−N

X+
j = σ(d 2

t ui − g±
i ), (6.98)

[ui]
− = ci or [tij]

−N X+
j = −σ(d 2

t ui − g±
i ). (6.99)

We note that, except for the constitutive equation, the field equations, interface condi-

tions and boundary conditions of viscoelastodynamics are identical to those of elastodynamics.
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Another way of displaying the formal relationship between the two systems of equations is to

consider the Laplace transforms with respect to the time, t, of the field equations, interface con-

ditions and boundary conditions of viscoelastodynamics. Here, we only discuss this relationship

for the linearized equations. Assuming that the perturbations are quasi-static, d 2
t ui = 0, and

that the volume-mass density is time-independent, ρ = ρ(0), and denoting the Laplace trans-

form of fij... with respect to t by f̃ij..., the Laplace transforms of (6.92)–(6.94) take the forms

(App. A.1)

ẽij = 1
2(ũi,j + ũj,i), (6.100)

t̃ij,j + ρg̃i = 0, (6.101)

t̃ij = sm̃ijklẽkl. (6.102)

The Laplace transforms of (6.98) and (6.99) are

[ũi]
+
− = 0 and [t̃ij]

+
−N

X+
j = −σ̃g̃±

i , (6.103)

[ũi]
− = c̃i or [t̃ij ]

−N X+
j = σ̃g̃±

i . (6.104)

In these equations, the inverse Laplace time, s, of Laplace-transformed fields and the relax-

ation tensor has been suppressed as the argument. We note that the expressions are formally

identical to the field equations, interface conditions and boundary conditions of elastostatics,

provided that the Laplace-transformed viscoelastic fields are associated with the correspond-

ing elastic field quantities and provided that sm̃ijkl is associated with the elasticity tensor,

mijkl. For a particular problem in quasi-static viscoelastodynamics, the Laplace-transformed

solution is therefore obtained from the solution of the corresponding elastostatic problem if

mijkl is replaced by sm̃ijkl. To find the solution to the viscoelastic problem in the time domain,

the inverse Laplace transform (App. A.2) must be taken. The formal agreement between the

Laplace-transformed viscoelastic solution and the corresponding elastic solution is called elastic–

viscoelastic correspondence principle. Note that the assumption of quasi-staticity is essential to

this correspondence.

6.4.3 Uniqueness theorem of linearized, quasi-static viscoelastodynamics

Assuming isotropy and with the acceleration sufficiently small, (6.92)–(6.94) reduce to

eij = 1
2(ui,j + uj,i), (6.105)

tij,j + ρgi = 0, (6.106)

tij =

∫ t

0
m1(t− t′) dt′ekk(t

′) δij dt
′ + 2

∫ t

0
m2(t− t′) dt′eij(t

′) dt′, (6.107)

which are the field equations of linearized, isotropic, quasi-static viscoelastodynamics.
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We now suppose that the fields are continuously differentiable everywhere on X ∪ ∂X (2).

The uniqueness theorem of the restricted form of viscoelastodynamics considered maintains

that the solution to (6.105)–(6.107) is unique in X if gi is prescribed in X and ui := [ui]
− or

ti := [tij ]
−N X+

j is prescribed on ∂X (2). To prove the theorem, we follow Sec. 6.2.3 and consider

two solutions, e
(1)
ij , t

(1)
ij , u

(1)
i and e

(2)
ij , t

(2)
ij , u

(2)
i , corresponding to the same volume forces in X

and to the same boundary conditions on ∂X (2). By the superposition principle, the solution

eij = e
(2)
ij − e

(1)
ij , tij = t

(2)
ij − t

(1)
ij , ui = u

(2)
i −u

(1)
i then corresponds to gi = 0 in X and to tiui = 0

on ∂X (2). Integration over ∂X (2) gives

∫

∂X (2)
tiui d

2X = 0, (6.108)

which, repeating the steps shown in Sec. 6.2.3, leads to

∫

X

tijeij d
3X = 0 (6.109)

everywhere in X . Substituting (6.107), this can be rewritten as

∫

X

[∫ t

0
m1(t− t′) dt′ekk(t

′) δij dt
′ + 2

∫ t

0
m2(t− t′) dt′eij(t

′) dt′
]
eij(t) d

3X = 0, (6.110)

where, for clarity, the arguments t and t′ are reintroduced. Consideration of (5.82) and the

initial condition eij(0) = 0 followed by integration by parts leads to

∫

X

[
m3(0) eii(t) ejj(t) + 2m2(0) eij(t) eij(t) +

∫ t

0
dt′m3(t− t′) eii(t) ejj(t

′) dt′ + 2dt′m2(t− t′) eij(t) eij(t
′) dt′

]
d 3X = 0. (6.111)

This equation simplifies if we introduce the following notational changes:

fn(t) :=





[m3(0)]
1
2 eii(t), n = 1

[2m2(0)]
1
2 eij(t), n = 2, ..., 10, i, j = 1, 2, 3

, (6.112)

gn(t− t′) :=





−
d

t′
m3(t−t′)
m3(0) , n = 1

−
d

t′
m2(t−t′)
m2(0) , n = 2, ..., 10, i, j = 1, 2, 3

, (6.113)

where fn(t) and gn(t− t′) are auxiliary functions. With these definitions and after some manip-

ulations, (6.111) becomes

∫

X

10∑

n=1

[
fn(t) fn(t) +

∫ t

0
gn(t− t′) fn(t) fn(t′) dt′

]
d 3X = 0. (6.114)

It can be shown that, with fn(t) continuous in X and gn(t− t′) > 0, it follows from (6.114) that

fn(t) = 0 for n = 1, ..., 10. Considering m2(0) > 0, m3(0) > 0 according to (5.109) and using

(6.112), this implies that eij = 0 and, with (6.109), also that tij = 0. We therefore obtain
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e
(1)
ij = e

(2)
ij , (6.115)

t
(1)
ij = t

(2)
ij (6.116)

and, with (6.105) and except for a possible rigid-body displacement, also

u
(1)
i = u

(2)
i . (6.117)
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A Laplace transform

A.1 Forward transform

The forward Laplace transform, L[f(t)], of a function, f(t), is defined by

L[f(t)] :=

∫
∞

0
f(t) e−stdt, s ∈ C, (A.1)

where L is the Laplace-transform functional, s the inverse Laplace time and C the complex

domain. We here assume that f(t) is continuous for all t ∈ [ 0,∞) and of exponential order as

t → ∞, which are sufficient conditions for the convergence of the Laplace integral in (A.1) for

Re s larger than some value, sR. Defining f̃(s) := L[f(t)] and assuming the same properties for

g(t), elementary consequences of (A.1) are

L[a f(t) + b g(t)] = a f̃(s) + b g̃(s), a, b = constant, (A.2)

L[dtf(t)] = s f̃(s) − f(0), (A.3)

L

[ ∫ t

0
f(t′) dt′

]
=
f̃(s)

s
, (A.4)

L

[ ∫ t

0
f(t− t′) g(t′) dt′

]
= f̃(s) g̃(s), (A.5)

L[1] =
1

s
, (A.6)

L[e−s0t] =
1

s+ s0
, s0 = constant. (A.7)

A.2 Inverse transform

If L[f(t)] is the forward Laplace transform of f(t), then f(t) is called the inverse Laplace

transform of L[f(t)]. This is expressed by L−1{L[f(t)]} ≡ f(t), with L−1 the inverse Laplace-

transform functional. Since f̃(s) := L[f(t)], it follows that

L−1[f̃(s)] = f(t), t ∈ [ 0,∞), (A.8)

which admits the immediate inversion of the forward transforms listed above.
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B List of important symbols

The entries in the third column denote the section numbers of the first reference to the corre-

sponding symbols. Except for the arbitrary Cartesian tensor field, for which all quantities are

given both in the Eulerian representation and in the Lagrangian representation, all other fields

are given only in the kinematic representation of their first reference.

B.1 Latin symbols

Symbol Name Reference

A current area of thin disk 4.11.1

a(k) kth invariant of eij 2.7.1

B entropy-production rate per unit mass 4.8.1

B(k) kth invariant of Tij 3.6.1

C heat-production rate per unit mass 4.7.1

C complex domain A.1

c1 first creep function 5.4.2

c2 second creep function (shear-creep function) 5.4.2

c3 bulk-creep function 5.4.3

cijkl(τ) creep tensor 5.4.1

D dissipation function 4.10

Di strain-rate vector 2.6

Dij strain-rate tensor 2.6

E total energy 4.7.1

E K integral kinetic energy 4.7.1

E U integral internal energy 4.7.1

δtE
Q integral heat-input rate 4.7.1

δtE
W integral work-input rate 4.7.1

E C
ij Cauchy strain 2.5.1

e 2.71828. . . —

ei infinitesimal strain vector 2.4

e(k) principal value of eij 2.7.1

eij infinitesimal strain tensor 2.4
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Symbol Name Reference

e(ij) spherical part of eij 2.7.2

e[ij] deviatoric of part of eij 2.7.2

eii dilatation 2.7.2

eG
ij Green strain 2.5.2

Fi force per spatial unit volume 3.2.1

dF S
i (actual) differential surface force for fixed t 3.3

dF̂ S
i fictious differential surface force for fixed t 3.5.2

Fi integral force 3.2.1

F S
i integral surface force 3.2.1

F V
i integral volume force 3.2.1

Fij... Eulerian representation of Cartesian tensor field on R∪ ∂R 2.2.1

F−
ij... Eulerian representation of Cartesian tensor field in R(1) 4.11.1

F+
ij... Eulerian representation of Cartesian tensor field in R(2) 4.11.1

[Fij...]
− internal limit of Fij... 4.11.1

[Fij...]
+ external limit of Fij... 4.11.1

[Fij...]
+
− jump of Fij... 4.11.1

F±
ij... arithmetic mean of [Fij...]

− and [Fij...]
+ 4.11.1

F
(0)
ij... initial part of Fij... 4.4.2

F
(1)
ij... incremental part of Fij... 6.3.2

Fij... integral of Fij... over R or integral of fij... over X 2.2.4

dFij... differential of Fij... for fixed t 2.2.4

Fij...,k gradient of Fij... with respect to rk 2.2.2

fn auxiliary function 6.4.3

fij... Lagrangian representation of Cartesian tensor field on X ∪ ∂X 2.2.1

f−ij... Lagrangian representation of Cartesian tensor field in X (1) 4.11.2

f+
ij... Lagrangian representation of Cartesian tensor field in X (2) 4.11.2

f̃ij... Laplace transform of fij... 6.4.2, A.1

[fij...]
− internal limit of fij... 4.11.2

[fij...]
+ external limit of fij... 4.11.2

[fij...]
+
− jump of fij... 4.11.2

f±ij... arithmetic mean of [fij...]
− and [fij...]

+ 4.11.2

f
(0)
ij... initial part of fij... 4.4.2

dfij... differential of fij... for fixed t 2.2.4

fij...,k gradient of fij... with respect to Xk 2.2.2

f P
ij... Cartesian tensor field per material unit area (Piola field) 4.2.2
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Symbol Name Reference

f∗ij... spatial mean of fij... 3.4.1

G integral entropy-input rate 4.8.1

Gij... Fij... per unit mass 4.4.1

gn auxiliary function 6.4.3

gi force per unit mass (gravity) 3.2.1

H+ right-handed Heaviside step function 5.4.5

Hi entropy flux per spatial unit area (entropy-flux density) 4.8.1

H C
ij Cauchy deformation 2.5.1

h thickness of thin disk 4.11.1

h′ coordinate normal to ∂R(1) 4.11.1

hP
i entropy flux per material unit area (Piola enropy-flux density) 4.8.2

hG
ij Green deformation 2.5.2

J r spatial Jacobian determinant 2.2.1

jX material Jacobian determinant 2.2.1

K fluid bulk modulus 6.3.2

k elastic bulk modulus 5.2.5

L Laplace-transform functional A.1

L−1 inverse Laplace-transform functional A.2

M integral mass 4.4.1

m1 first relaxation function 5.4.2

m2 second relaxation function (shear-relaxation function) 5.4.2

m3 bulk-relaxation function 5.4.3

mijkl elasticity tensor 5.2

mijkl(τ) relaxation tensor 5.4.1

N X

i material unit vector collinear with d 2Xi 2.2.4

N X+
i outward material unit vector collinear with d 2Xi 4.11.2

Nijkl viscosity tensor 5.3.2

n r

i spatial unit vector collinear with d 2ri 2.2.4

n r+
i outward spatial unit vector collinear with d 2ri 3.3

n
r(k)
i principal direction of Tij 3.6.1

o origin of ri coordinate system 3.4.1

Pi integral linear momentum 4.5.1

P X

i material unit vector collinear with dXi 2.2.4

P
X(k)

i principal direction of eij 2.7.1

p mechanical pressure 3.6.2

91



Symbol Name Reference

p r

i spatial unit vector collinear with dri 2.2.4

Qi heat flux per spatial unit area (heat-flux density) 4.7.1

QX

i material unit vector collinear with dXi 2.4

q P
i heat flux per material unit area (Piola heat-flux density) 4.7.2

q r

i spatial unit vector collinear with dri 2.6

R spatial 3-D domain (spatial volume) 2.2.1

∂R spatial spatial 2-D domain (spatial boundary) confining R 3.2.1

R(1) internal spatial 3-D domain (internal spatial volume) 6.3

∂R(1) spatial interface between R(1) and R(2) 6.3

R(2) external spatial 3-D domain (external spatial volume) 6.3

∂R(2) spatial boundary confining R(2) 6.3

r spatial position 2.2.1

ri Lagrangian representation of r (current position) 2.2.1

r−1
i,j inverse of ri,j 2.2.3

dr magnitude of dri 2.2.4

dri spatial 1-D differential (spatial differential length) 2.2.4

d 2r magnitude of d 2ri 2.2.4

d 2ri spatial 2-D differential (spatial differential area) 2.2.4

d 3r spatial 3-D differential (spatial differential volume) 2.2.4

S entropy per unit mass 4.8.1

S integral entropy-increase rate 4.8.1

s inverse Laplace time 6.4.2, A.1

Ti force per spatial unit area (Cauchy traction) 3.2.1

T
(j)
i Cauchy traction across plane normal to rj coordinate 3.3

T
(n)
i Cauchy traction across plane normal to ni 3.3

T
(k)
i principal value of Tij 3.6.1

Tij Cauchy stress 3.4.1

T(ij) spherical part of Tij 3.6.2

T[ij] deviatoric part of Tij 3.6.2

T C
ij conservative Cauchy stress 4.10

T D
ij dissipative Cauchy stress 4.10

T K
ij Kirchhoff stress 3.5.3

t current time epoch 2.2.1

t′ excitation time epoch 5.4.1

D/Dt spatial time-derivative operator 2.3.1
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Symbol Name Reference

Dt spatial time-derivative operator 4.3

d/dt material time-derivative operator 2.3.1

dt material time-derivative operator 4.3

δt material time-derivative operator applied to work or heat 4.7

tP
i force per material unit area (Piola traction) 3.2.2

tF
ij Finger stress 3.5.2

tP
ij Piola stress 3.5.1

U internal energy per unit mass 4.7.1

ui displacement 2.2.1

V current volume of thin disk 4.11.1

vi velocity 2.3.1

w strain energy per material unit volume 5.2.3

X material 3-D domain (material volume) 2.2.1

∂X material 2-D domain (material boundary) confining X 2.2.1

X (1) internal material 3-D domain (internal material volume) 6.2

∂X (1) material interface between X (1) and X (2) 6.2

X (2) external material 3-D domain (external material volume) 6.2

∂X (2) material boundary of X (2) 6.2

X material position 2.2.1

Xi Eulerian representation of X (initial position) 2.2.1

X−1
i,j inverse of Xi,j 2.2.3

dX magnitude of dXi 2.2.4

dXi material 1-D differential (material differential length) 2.2.4

d 2X magnitude of d 2Xi 2.2.4

d 2Xi material 2-D differential (material differential area) 2.2.4

d 3X material 3-D differential (material differential volume) 2.2.4

Z stress power per spatial unit volume 5.3.6

B.2 Greek symbols

Symbol Name Reference

αi infinitesimal rotation vector 2.4

αij infinitesimal rotation tensor 2.4

δ Dirac delta function 4.11.1
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Symbol Name Reference

δij Kronecker symbol 2.2.3

∂ partial-derivative operator 2.2.1

η second viscosity parameter (shear viscosity) 5.3.2

Θ thermodynamic temperature 4.8.1

κ bulk viscosity 5.3.3

λ first Lamé parameter 5.2.4

µ second Lamé parameter (elastic shear modulus) 5.2.4

εijk Levi–Civita symbol 2.2.3

ρ mass per spatial unit volume (volume-mass density) 3.2.1

τ lapse time interval 5.4.1

π 3.14159. . . —

Π thermodynamic pressure 5.3.1

Σ mass per spatial unit area (interface-mass density) 4.11.1

σ P mass per material unit area (Piola interface-mass density) 4.11.2

χ first viscosity parameter 5.3.2

Ψ Helmholtz free energy per unit mass 4.9.1

Ω angular speed 2.6

Ωi vorticity vector 2.6

Ωij vorticity tensor 2.6
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