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Preface to the Printing of These Two Papers on GPS

This report consists of the unaltered versions of the two papers written in 1994 and 1995 by P. Xu,
E. Cannon and G. Lachapelle. The first paper was presented at the IUGG95, Boulder, Colorado,
July 2–14, 1995; the second paper was submitted to a geodetic journal but, due to reasons, was
withdrawn by the authors after almost 24 months of review. Although some years have passed,
and the papers have been sent to those who requested for a copy from time to time, the new results
in these papers have not been known by quite many geodesists working on GPS and are still new
today to them. Thus on the invitation of Prof. Erik W. Grafarend, we are pleased to see them in
printing in the series of technical report of his Geodetic Institute. Thank you very much, Erik, for
suggesting publishing the papers this way.
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Mixed integer programming for the
resolution of GPS carrier phase ambiguities

Abstract
Ambiguity resolution of GPS carrier phase observables is crucial in high pre-
cision geodetic positioning and navigation applications. It consists of two
aspects: estimating the integer ambiguities in the mixed integer observation
model and examining whether they are sufficiently accurate to be fixed as
known nonrandom integers. We shall discuss the first point in this paper from
the point of view of integer programming. A one-step nonexact approach
is proposed by employing minimum diagonal pivoting Gaussian decomposi-
tions, which may be thought of as an improvement of the simple rounding-off
method, since the weights and correlations of the floating-estimated ambi-
guities are fully taken into account. The second approach is to reformulate
the mixed integer least squares problem into the standard 0-1 linear integer
programming model, which can then be solved by using, for instance, the
practically robust and efficient simplex algorithm for linear integer program-
ming. It is exact, if proper bounds for the ambiguities are given. Theoretical
results on decorrelation by unimodular transformation are given in the form
of a theorem.

1 Introduction

Three types of observables may be derived from tracking GPS satellites: pseudorange (code) mea-
surements, raw Doppler shifts (or equivalently range rates) and carrier phases. They are used
at different levels of accuracy for different purposes of applications (see e.g Wells et al. 1986;
Leick 1990; Hofmann-Wellenhof et al. 1992; Seeber 1993; Melbourne 1985). The carrier phase
measurements, together with the accurate code observables (if available), have been dominating
in high precision geodetic positioning and navigation applications. The mathematical model can
symbolically be written below

R = fR(X) + BRλ + εR (1a)

Φ = fΦ(X) + BΦλ + BZZ + εΦ. (1b)

Here R and Φ are respectively the observables of pseudoranges and carrier phases, εR and εΦ

are the random errors of the observables, X is the coordinate vector to be estimated, and fR(.)
and fΦ(.) are nonlinear functionals of X. BR, BΦ and BZ are the coefficient matrices. λ is the
vector of nuisance parameters such as the synchronization errors of receiver and satellite clocks and
ionospheric corrections. If overparametrization occurs to λ, it is generally not estimable (Wells et
al. 1987). Thus we shall assume that proper reparametrization has been made by, for instance,
choosing proper datum parameters (Wells et al. 1987) or using differencing and nuisance parameter
elimination techniques (see e.g. Goad 1985; Schaffrin & Grafarend 1986), to ensure that the
remaining nuisance parameters are estimable. Z is the vector of integral ambiguities inhered in the
carrier phase observables.

Accurate and reliable resolution of the integral ambiguity vector has been playing a crucial role
in high precision positioning. There are currently many approximate proposals available to resolve
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Z. They may be treated in two categories: simple (sequential) rounding-off of a real number
to its nearest integer with and/or without using constraint criteria (Blewitt 1989; Talbot 1991;
Hwang 1991; Seeber 1993; Hofmann-Wellenhof et al. 1992), and searching methods by employing
the information on the prior statistics and geometry (nonlinear functionals and design matrices)
of the observables (Counselman et al. 1981; Remondi 1990, 1991; Frei & Beutler 1990; Mader
1990; Mervart et al. 1994). Betti, Crespi & Sansò (1993) recently proposed a Bayesian approach
to resolution of ambiguity. Chen & Lachapelle (1994) proposed a fast ambiguity search filtering
approach to reducing the number of possible candidates in the searching area. It may be worth
noting that the fast rapid ambiguity resolution method proposed by Frei & Beutler seems to have
enjoyed its wide approval. A key element of the method is the use of some formal statistics to pick
up a solution. It may be proved that the statistic used for selecting the candidates of ambiguities is
not mathematically rigorous, since the ambiguity-free and ambiguity-fixed solution vectors are both
derived by using the same set of carrier phase observations. The method seems quite successful in
practice, however.

Recent progress in resolving the integral ambiguity vector has been made by Teunissen (1994).
His approach consists of three steps: (1) decorrelation of the floating-estimated ambiguities by
Gaussian transformation, which may be said to characterize the novelty of the new approach, (2)
searching for the solution to the transformed integer least squares problem within a superellipsoid
corresponding to a certain level of confidence, and (3) back-substituting the solution just derived
for the ambiguity vector in the original model. The success of the approach will depend, to a great
extent, on the first two steps. Testing results of the approach can be found in Teunissen (1994)
and de Jonge & Tiberius (1994). Decorrelation techniques may be also well suited to explain an
important finding by Melbourne (1985), that the widelane ambiguity is easier to solve, based on
the one epoch dual frequency carrier phase and code-derived pseudorange model.

The purpose of this paper is to further study the GPS ambiguity resolution as a mixed integer
least squares (LS) mathematical programming problem. Unimodular integer transformation is
used to statistically decorrelate the floating-estimated ambiguities, which summarizes the first
two conditions of transformation proposed by Teunissen (1994). Two methods for solving the
transformed integer LS problem are then proposed. The first one is to decompose the transformed
positive definite matrix into a lower and an upper triangle by choosing the minimum diagonal
elements. In this way, we are sure that a wrongly selected ambiguity will be penalized. No iterations
are required, thus it should improve the sum of square of the residuals derived by rounding the
transformed real values to their nearest integers. The second one is to reformulate the transformed
integer LS problem to a quadratic 0-1 nonlinear programming, and then further to a 0-1 linear
integer programming. Thus simplex algorithms can be employed to efficiently solve the linear
integer programming problem, with which one need not test every point in the feasible solution set.

2 Integer and mixed integer least squares models

In the application of the GPS system to high precision positioning and navigation, the GPS satellites
have been treated as space targets with known positions, unless the determination of the satellite
orbits is of interest. In this paper, we assume that the coordinates of the satellites are given,
which can be computed, for instance, from the (precision) ephemerides. Furthermore, given a set
of approximate coordinates of the stations, we can linearize the observation equations (1a) and (1b)
as

yR = AR∆X + BR∆λ + εR (2a)

yΦ = AΦ∆X + BΦ∆λ + BZ∆Z + εΦ (2b)

where
yR = R− fR(X0)−BRλ0 (3a)

yΦ = Φ− fΦ(X0)−BΦλ0 −BZZ0 (3b)
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∆X = X−X0; ∆λ = λ− λ0 (3c)

∆Z = Z− Z0. (3d)

X0 and λ0 are the approximate values of X and λ, respectively. Z0 are integer approximate values
of Z, and thus ∆Z remain integral.

Rewriting the linearized observation equations (2a) and (2b) in matrix form, together with the
statistical information on the observables, we have[

yR

yΦ

]
=

[
AR

AΦ

]
∆X +

[
BR

BΦ

]
∆λ +

[
0
BZ

]
∆Z +

[
εR

εΦ

]
(4a)

D

[
yR

yΦ

]
=

[
PR 0
0 PΦ

]−1

σ2. (4b)

Here PR and PΦ are respectively the weight matrices of the observables yR and yΦ, σ2 is the scalar
variance component.

Since the main interest of this paper is to discuss the mixed integer LS problem, we do not need
to discriminate between the position unknowns X and the nuisance parameters λ. Without loss
of generality, therefore, we can simplify the model (4) as the following standard mixed real-integer
(or simply integer in the rest of the paper) observation equations,

y = Aβ + Bz + ε (5a)

D(y) = P−1σ2 (5b)

where

y =

[
yR

yΦ

]
; ε =

[
εR

εΦ

]

A =

[
AR BR

AΦ BΦ

]
; β =

[
∆X
∆λ

]

B =

[
0
BZ

]
; z = ∆Z

P =

[
PR 0
0 PΦ

]
.

The matrices A and B are full of column rank, respectively.
Applying the least squares criterion to (5), we have

min : F = (y −Aβ −Bz)TP(y −Aβ −Bz), (6)

which is the mixed integer LS problem. (6) was also called the constrained LS problem by Teunissen
(1994). Since the variables z are discrete, we cannot use the conventional method by differentiating
the objective function F with respect to the variables β and z in order to form the normal equation
and then solve for them. Instead, however, we differentiate F with respect to β and let it equal
zero, leading to

∂F

∂β
= −2ATP(y −Aβ −Bz) = 0

or
ATPAβ = ATP(y −Bz).

Hence
β = (ATPA)−1ATP(y −Bz). (7)

3



Substituting (7) into (5) and rearranging it yield

y1 = QPBz + ε1 (8a)

D[y1] = [P−1 −A(ATPA)−1AT ]σ2 = Qσ2 (8b)

where
y1 = [I−A(ATPA)−1ATP]y = QPy

Q = P−1 −A(ATPA)−1AT .

Applying the LS method to (8), we have

min : F1 = (y1 −QPBz)TQ−(y1 −QPBz)
= (y −Bz)TPQQ−QP(y −Bz)
= (y −Bz)TPQP(y −Bz)
= yTPQPy − 2yTPQPBz + zTBTPQPBz. (9)

The objective function F1 can further be rewritten as

min : F1 = (z− ẑ)TH(z− ẑ) + yTPQ[Q− −PBH−1BTP]QPy (10)

where
ẑ = H−1BTPQPy

H = (BTPQPB).

Here ẑ can readily be proved to be the floating LS estimate of the ambiguity vector ∆Z with
covariance matrix H−1σ2. Since yTPQ[Q−−PBH−1BTP]QPy is constant, the objective function
(10) is equivalent to (Teunissen 1994; de Jonge & Tiberius 1994)

min : F2 = (z− ẑ)TH(z− ẑ), (11)

which is the standard integer LS problem.
It is now clear that the solution to the original mixed integer LS problem (6) depends solely on

that of the standard integer LS problem (11). Denote the integer solution of z to (11) by ẑIN .
Substituting it into (7), we can then obtain the LS estimates of the real parameters β without
much effort.

3 Unimodular transformation

In resolution of GPS carrier phase ambiguities, one of the most difficult points is to handle strong
correlation of the matrix H. Searching for an acceptable (and/or hopefully optimal) solution of z
is arduous, if it is solely based on the strong correlation matrix H, since testing a large number of
combinations would have to be done. Roughly speaking, the total number of combinations required
is computed by

∏
ni, where ni is the number of integer points on an interval of line for the ith

ambiguity, centred at the ẑi and corresponding to a significance level (see e.g Frei & Beutler 1990).
However, if the matrix H is diagonal, one can simply round the floating values ẑ off to the nearest
integers, which are the integer solution of z. Therefore, an idea would emerge naturally, that one
works with a decorrelated weight matrix instead of H.

Such a technique was proposed recently by Teunissen (1994) (see also de Jonge & Tiberius 1994).
His basic idea is to transform the “observables” ẑ by G into the new ones ẑ1 = (GT ẑ), and then
work with the LS integer problem

min : F3 = (z1 − ẑ1)TH1(z1 − ẑ1). (12)
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Here H = GH1GT . The transformation matrix G has to satisfy the following three conditions:
(1) integer elements; (2) volume preservation; and (3) decorrelation of H into H1. More details
can be found in Teunissen (1994).

Before proceeding, we shall define the unimodular matrix (see e.g. Nemhauser & Wolsey 1988).
Definition 1. A square matrix G is said to be unimodular if it is integral and if the absolute

value of its determinant is equal to unity, i.e. |det(G)| = 1.
The inverse of a unimodular matrix is also unimodular, since |det(G−1)| = 1/|det(G)| = 1, and

because
G−1 = Ḡ/det(G) = ±Ḡ.

Here Ḡ is the adjoint matrix of G, whose elements are derived only by using the operations of
integer multiplication, substraction and addition, and thus integer. The sign before Ḡ depends
on the determinant of G. The second property of unimodular matrices is that the product of
two unimodular matrices is unimodular. It is also clear that any unimodular transformation of an
integer vector is an integer vector, too.

By employing the concept of the unimodular matrix, we can summarize the first two conditions
suggested by Teunissen (1994) by stating that the transformation G is unimodular. It should be
noted that there was a misunderstanding of Teunissen’s second condition of volume preservation.
Volume preservation does not imply the preservation of the number of grid points. A simple
example is that a unit circle centred at the origin has five grid points, while an ellipse of the same
center with major axis 1.5 and minor axis 2/3 encloses only three grid points.

Integer Gaussian decomposition was employed by Teunissen (1994), that indeed decorrelates the
matrix H. What now seems to be done is to mathematically prove that we can always decorrelate
the matrix H by using a finite number of unimodular transformations to the extent that the
correlation coefficient of any two random variables is always less than or equal to 1/2. In order to
do so, we need the following lemma on the inequality of matrix determinant.

Lemma 1: For any positive definite matrix A, the following inequality

det(A) ≤
∏

aii (13)

holds true. Here aii are the diagonal elements of A.
Proof. A positive definite matrix A can be written by Choleski decomposition as

A = LLT

where lii = (aii −
i−1∑
j=1

l2ij)
1/2 > 0. Thus we have

det(A) =
∏

l2ii

=
∏

(aii −
i−1∑
j=1

l2ij)

≤
∏

aii,

since
i−1∑
j=1

l2ij ≥ 0. 2

Theorem 1: For any positive definite matrix A, there exists a unimodular matrix G such that

A = GHGT . (14)

Here H is positive definite, too, and satisfies

|hij | ≤
1
2

min(hii, hjj) ∀ i, j & i 6= j. (15)
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Proof. Suppose, without loss of generality, that for any three elements aii, ajj and aij of the
positive definite matrix A, we have |aij |/min(aii, ajj) > 1/2. Then construct the unimodular
matrix

G1 =



1
. . .

1
...

. . .
−[aij/aii]in · · · 1

. . .
1


(16a)

if aii ≤ ajj , or

G1 =



1
. . .

1 · · · −[aij/ajj ]in
. . .

...
1

. . .
1


(16b)

if ajj < aii. Here [ x ]in is the operation to round the floating number x to its nearest integer.
Upon left- and right-multiplying A by the unimodular matrix G1 and its transpose respectively,

the larger diagonal element is then reduced to

max(aii, ajj)− 2[aij/amin]inaij + amin[aij/amin]2in (17)

where amin = min(aii, ajj). Repeating the same procedure to any pair of diagonal elements, we
have

An = Gn...G1AGT
1 ...GT

n . (18)

Now suppose that we cannot reach the equation (14) and the inequality (15) by employing a
finite number of unimodular matrices of the form (16), then we keep applying the same procedure
to An. By expression (17), it is clearly true that the minimum diagonal element of the reduced
matrix, say Am now, has no lower bound. It means that the minimum element can be arbitrarily
small, which further implies by Lemma 1 that

det(Am) ≤
∏

am
ii < const, (19)

where am
ii are the diagonal elements of Am, const is any positive constant. Since unimodular

transformation does preserve the determinant, we have det(Am) = det(A) — a finite constant,
which clearly contradicts (19). Therefore, we must be able to reach the condition (15). On the
other hand, all the transformation matrices involved are unimodular, their product is unimodular,
too. Denoting the final reduced matrix by H, which satisfies the condition (15), and the product
of all the unimodular matrices by Gt, we have

H = GtAGT
t (20)

or
A = GHGT . (21)

Here G(= G−1
t ) is unimodular. The proof that the matrix H is positive definite is trivial. 2
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4 Two approaches to the integer LS problem

The integer LS problem is simply an integer quadratic programming issue. One can use any
advanced integer programming algorithm (Parker & Rardin 1988) to solve this problem. Essentially,
no bounds for the integer unknowns are required and no statistical techniques needed to reduce the
number of possible candidates. More on these aspects and proper validation criteria for fixing the
carrier phase ambiguities will be presented in a future paper.

Though the techniques to be presented below require no decorrelation as an assumption, and
consider that the original and the transformed LS integer problems are of the same form, the follow-
ing discussion will be based on the transformed model, without loss of generality. After the weight
matrix of the floating-estimated ambiguity vector is decorrelated, one can either simply round the
transformed floating numbers off to their nearest integers, or employ searching techniques to find
the “optimal” solution within a superellipsoid under a certain level of confidence (Teunissen 1994).
In what follows, we shall develop two approaches to resolve the ambiguities of the transformed
integer LS problem.

4.1 A one-step nonexact approach by minimum diagonal pivoting Gaussian
decomposition

Instead of directly applying the simple rounding-off method to (12), which ignores any correlation
information on the floating-estimated ambiguities, we propose an alternative one-step approach,
based on the weights and correlations of the transformed ambiguities. The basic idea is to resolve
the integer ambiguities according to their weights and correlations. As long as some of ambiguities
are resolved, their correlations with other unfixed floating ambiguities are employed and the next
ambiguity corresponding to the large weight is to be determined.

In order to realize the above procedure, we have to decompose the positive definite matrix H1

carefully. Here we employ Gaussian decomposition by selecting the minimum diagonal element.
The decomposition procedure consists of the following steps:

• Selecting the minimum element among all the undecomposed diagonal elements;

• Exchanging the rows and the columns;

• Performing Gaussian decomposition;

• Replacing the square root of the decomposed element h′1(ii) at the corresponding position
of the factor matrix L; If the decomposition is not completed, then go to the first step.
Otherwise, the decomposition is finished.

In mathematical language, we can express the matrix H1 as

H1 = PhLLTPT
h (22)

where Ph is the permutation matrix which represents the exchange of the rows and columns dur-
ing the decomposition. A significant characteristic of this decomposition is to keep the diagonal
elements of the lower triangular matrix L in the increasing order as far as possible.

Inserting H1 in (22) into (12), we have the objective function

min : F3 = (z1 − ẑ1)TPhLLTPT
h (z1 − ẑ1)

= (z2 − ẑ2)TLLT (z2 − ẑ2) (23)

where
z2 = PT

h z1; ẑ2 = PT
h ẑ1. (24)
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Since the factor matrix L is lower triangular, we can rewrite (23) as

min : F4 =
tz∑

i=1

[
tz∑

j=i

lji(z2(j) − ˆz2(j)) ]2. (25)

Here tz is the dimension of the ambiguity vector z (or z2). The solution to the objective function
F2 can now be derived by minimizing

|
tz∑

j=i

lji(z2(j) − ẑ2(j))|, ∀ i. (26)

Hence the one-step nonexact integer ambiguity solution is immediate

ẑIN
2(i) =

 liiẑ2(i) −
∑tz

j=i+1 lji(ẑIN
2(j) − ẑ2(j))

lii


in

(27)

for all i.
By back substituting the integer solution ẑIN

2 = (ẑIN
2(1), ẑ

IN
2(2), ..., ẑ

IN
2(tz))

T , we have the final solution
of the integer ambiguities z, which is denoted by ẑIN ,

ẑIN = G−TPh ẑIN
2 . (28)

4.2 0-1 quadratic integer programming

An obvious aim of applying the decorrelation technique to the original integer LS problem is the
alleviation of the computational burden for finding the optimal ambiguity solution. When it is
translated into the case of searching techniques, we expect that the total number of candidate grid
points to be tested should be significantly reduced. Suppose that for the transformed integer LS
problem (12) (H1 satisfies the conditions of Theorem 1), we have to search for the optimal integer
ambiguity resolution within the hard bounds

m0
i ≤ z1(i) ≤ m1

i , ∀ i (29)

or in another form,
z1(i) ∈ [m1i(= m0

i ), m2i, ..., m1si(= m1
i )]. (30)

Here z1(i) is the ith integer component of the integer vector z1, m1i, m2i, .., and m1si are the
contiguous integers — the candidate points of z1(i) with the lower integer bound m0

i and the upper
integer bound m1

i . Thus our mixed integer LS problem has been reduced to a quadratic integer
programming problem with simple integer constraints.

In what follows we shall further reformulate it by a 0-1 quadratic integer programming model.
It has been shown by Parker & Rardin (1988) that the integer variable z1(i) can be represented
with ri 0-1 variables, i.e.

z1(i) = m0
i +

ri−1∑
j=0

2j bi(j), ∀ i (31)

where bi(j) are 0-1 integer (binary) variables, ri = [log2(m1
i − m0

i )]s + 1, and [ . ]s stands for the
integer not larger than the positive number in brackets.

Rewriting all the integer variables z1(i) in matrix form, we have

z1 = m0 + A1b (32)

where the matrix A1 is integral with elements 2k,

m0 = (m0
1, m0

2, ..., m0
tz)

T
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b = (bT
1 , bT

2 , ..., bT
tz)

T

bi = (bi(0), bi(1), ..., bi(ri−1))
T .

Furtheron, inserting (32) into the objective function (12) yields

min : F3 = (A1b + m0 − ẑ1)TH1(A1b + m0 − ẑ1) (33)

subject to bk = 0 or 1 for all k.
The objective function (33) is equivalent to

min : F3 = (m0 − ẑ1)TH1(m0 − ẑ1) + 2(m0 − ẑ1)TH1A1b

+bTAT
1 H1A1b. (34)

4.3 0-1 linear integer programming

In this subsection, we shall further reformulate the 0-1 quadratic programming (34) into a 0-1
linear integer programming problem by using the linearization technique. The basic idea of the
linearization technique is to introduce a new variable to replace the nonzero quadratic term bibj .
Thus the 0-1 quadratic programming problem becomes linear. Since the new variables are obviously
binary, all the variables in the linear programming model to be reformulated below are binary, too.

Denoting
vk = bibj , k = (i− 1)i/2 + j, i ≥ j

and taking the following relations
b2
i = bi

into account, we have

min : F4 = (m0 − ẑ1)TH1(m0 − ẑ1) +
tv∑

i=1

civi (35a)

subject to the following constraints,
vi = 0 ∨ 1 (35b)

vk ≥ vki + vkj − 1 (35c)

vk ≤ vki (35d)

vk ≤ vkj (35e)

ki = i(i + 1)/2; kj = j(j + 1)/2.

Here tv is the dimension of the 0-1 integer vector

v = (v1, v2, ..., vtv)
T .

Since the first term in the objective function (35a) is constant, it is equivalent to

min : F4 =
tv∑

i=1

civi (36a)

subject to the constraints (35b ∼ e). (36) is obviously of the standard form of the 0-1 linear integer
programming. It can be solved by using any standard algorithms for 0-1 linear programming
(Pardalos & Li 1993; Nemhauser & Wolsey 1988; Parker & Rardin 1988; The People University of
China 1987). However, the algorithm aspects for the program (36) will not be discussed here.
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5 Concluding remarks

GPS carrier phase and pseudorange observables are essentially a nonlinear mixed integer observation
model. If the GPS satellites are treated as space known targets, the model is regular. Given a
set of approximate values of the unknown parameters such as the position coordinates and integer
ambiguities, the nonlinear model is linearized. Estimating the parameters in the linearized mixed
integer model is equivalent to solving a mixed integer LS problem (if the LS principle is employed),
which can be further reduced into a standard integer LS programming.

It has been recognized that one of the difficulties in correctly estimating the integer ambiguities
is due to the correlations of the floating-estimated ambiguities. A decorrelation technique has
been proposed by Teunissen (1994), based on Gaussian decomposition. We have further proved
mathematically that there exists a unimodular matrix such that (14) and (15) hold true, which
may be thought of as a theoretical summary (and extension) of some of the results in Teunissen
(1994).

Two approaches are then proposed to solve the standard linear integer LS problem (12) from the
point of view of integer programming theory. The first approach is to Gauss-decompose the matrix
H1 by selecting the minimum diagonal elements. In other words, we are estimating the integer
ambiguities according to the magnitudes of the weights of the floating-estimated ambiguities and
their correlations (as far as possible). It may be thought to be an improvement of the simple
rounding-off method. No iterations are required. It should be noted, however, that this method
is one-step nonexact. The extent of approximation should be further investigated. The second
approach is to reformulate the mixed integer LS problem into a 0-1 linear integer programming
model. Thus any standard algorithms for linear integer programming problems can be employed.
The method will result in the exact integer solution of the ambiguities to the original mixed integer
problem, if proper bounds for the integer unknowns in the transformed model (12) are given.
Testing of the techniques with real data is under way.
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research fellow of Alexander von Humboldt foundation at Stuttgart University with Prof. Dr. Erik
Grafarend as his host. The support from the foundation and the very friendship of his host are
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GPS ambiguity resolution by integer
quadratic programming

Abstract This paper is to further investigate
the applicability of integer programming to re-
solve GPS ambiguities with real data and thus
also complements earlier theoretical results on
this topic. The purposes of this study are
twofold. One is to discuss the GPS ambiguity
problem from the point of view of integer pro-
gramming, and then implement the branch and
bound method to quickly solve the integer am-
biguities. The advantages of using integer pro-
gramming include: (1) searching for the solu-
tion is smartly carried out automatically so that
many non-promising points will not be tested;
and (2) a searching bounded box is not required
so that the possibility of excluding the correct
solution from the pre-selected bounded box is
completely avoided. The other is to discuss val-
idation criteria for assessment of the correctness
of the ambiguities obtained. A shipborne data
set is used to demonstrate how the approach
works.

Key words: GPS ambiguity resolution, mixed
integer observation models, integer program-
ming.

1 Introduction

High precision geodetic positioning and navi-
gation has been an important aspect of GPS
applications. In deformation measurement, it
has been demonstrated that GPS can be used
to detect (relative) displacements in seismically
active areas at the millimetre level (Feigl et al.
1993). Aeroplane landing supported by GPS
with the aid of pseudolites has been extensively

investigated, especially by a group of scientists
at Stanford University, and the results have
shown the promising potential to satisfy FAA
(Federal Aviation Adminstration) Category III
landing requirements (Pervan et al. 1994; Co-
hen et al. 1995; van Graas et al. 1995). The
attitude of a platform can be determined at the
level of within one or two arc minutes by a GPS
multiantenna system, depending on the sepa-
rations and configuration of the antennas (Lu
1995; Cannon & Sun 1996). Another appli-
cation is precise farming, such as soil salinity
measurements, combine harvester guidance and
fertilier spreading (see e.g. Cannon et al. 1994;
Lachapelle et al. 1994; Cannon et al. 1997).

High precision applications of GPS depend
essentially on the use of carrier phase observ-
ables, which are, however, inherent to unknown
integer ambiguities. Thus one GPS research in-
terest has been to solve for these integer ambi-
guities in order to fully exploit the advantages
of precise carrier phase observables. There are
a number of techniques proposed in the GPS
literature. In terms of searching space, these
techniques may be classified into two classes:
ambiguity-space based searching methods and
coordinate-space based searching methods. The
latter is characterized by the ambiguity function
method, which was originated from Counselman
& Gourevitch (1981) and then applied by Re-
mondi (1990) and Mader (1990), among others.

The former received most extensive and in-
tensive investigations. A number of methods
have been presented and tested. The common
points of ambiguity-space and coordinate-space
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based techniques may be summarized as follows:
(1) Solving the floating ambiguity solution by
treating all the integer variables in the mixed in-
teger least squares (LS) problem as simple real
numbers; One can then straightforwardly ob-
tain the floating solution by solving the linear
normal equations. (2) Setting up lower and up-
per bounds for the integer ambiguities, by using
the statistical information from the floating so-
lution, for instance; Very often, a scaling factor
of 3 to 15 is employed (see, e.g. Frei & Beut-
ler 1990; Seeber 1993; Hofmann-wellenhof et al.
1992). Further constraints may be applied as in
Abidin (1993). Then one will search over the
bounded area for the optimal integer ambigu-
ity solution. (3) Reducing nonpromising candi-
dates within the searching area; In this aspect,
Frei & Beutler (1990) suggested using statisti-
cal testing to eliminate nonpromising gridding
points. Recently, Teunissen proposed to apply a
decorrelation technique to the original set of am-
biguities in order to derive a better shaped error
ellipsoid (Teunissen 1994, 1995, 1996; de Jonge
& Tiberius 1994). Based on the concept of con-
ditional variance to some extent, a fast ambigu-
ity search filtering (FASF) algorithm was pro-
posed by Chen (1994) and Chen & Lachapelle
(1994) to reduce the number of possible can-
didates to be tested. Other possible techniques
may be inferred from, e.g. Hatch (1990), Hwang
(1990), Talbot (1990), Hein & Werner (1995)
and Martin-Neira et al. (1995). (4) Validat-
ing the integer ambiguity solution obtained af-
ter the first three steps (see, e.g. Abidin 1993;
Frei & Butler 1990; Teunissen 1994); A crite-
rion used most frequently is based on the min-
imum and second minimum sums of squares of
the computed residuals of the carrier phase ob-
servables. An empirical constant will dominate
the success of this criterion, since the ratio of
the second minimum to the minimum is essen-
tially not F-distributed.

Integer programming techniques, aimed at
solving an optimization problem with all vari-
ables of integer nature, seem to have been al-
most completely ignored in the resolution of
GPS carrier phase ambiguities, though, the am-
biguities are of integer nature. Recently, Xu
et al. (1995) started investigating this prob-
lem. They defined the mixed integer observa-
tion model and the mixed integer LS problem

from the view point of integer programming,
and then further formulated the GPS ambiguity
problem into a few integer programming mod-
els. The basic idea of solution is different from
the current approaches. The second and third
steps, as summarized above, have no role to
play. No bounds for the ambiguities (even in
the form of an ellipsoid) are required and no
statistical testing is needed in order to reduce
nonpromising gridding points. Similar work was
done by Wei & Schwarz (1995), who, together
with these authors, are among the first to inves-
tigate potential applications of integer program-
ming to geomatics, in particular to GPS ambi-
guity resolution. Although the work by Wei &
Schwarz (1995) and the present paper are based
on integer programming to solve the GPS ambi-
guity problem, they are mainly different in the
employment of solution algorithms and valida-
tion criteria.

The purpose of this paper is twofold. One
is to discuss the GPS ambiguity problem from
the point of view of integer programming, and
then implement the branch and bound method
to quickly solve the integer ambiguities. The
other is to discuss validation criteria for assess-
ment of the correctness of the ambiguities ob-
tained. Consider that the ratio of the second
minimum and minimum sums of squared resid-
uals has been connected with some empirical
constants and, to some extent, can control the
correctness of the resolved ambiguities globally,
we will propose a simple validation criterion of
ambiguity repeatability over time. Section 2
will briefly discuss the mixed GPS integer ob-
servation model and the GPS integer quadratic
objective. Section 3 will implement the branch
and bound method to solve the integer con-
vex quadratic programming model formulated
in section 2. Section 4 will focus on validating
the solved ambiguities, which follows by section
5 on computation of a real data set.
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2 Defining mixed integer ob-
servation models and integer
LS problems

2.1 The classical (real-valued) obser-
vation model and LS method

Given a number of real-valued measurements
y and a real-valued model f(X) (X ∈ Rn),
and assume that the measurements are related
to the model through the (linear or nonlinear)
functional relationship:

y = f(X) + ε (1)

Here ε is the random vector, whose first mo-
ment is assumed zero and whose second central
moment P−1σ2. Equation (1) is the conven-
tional (real-valued) observation model and often
is summarized as follows (see, e.g. Krakiwsky
1990)

y = f(X) + ε, E(y) = f(X)
D(y) = D(ε) = P−1σ2

}
(2)

Applying the least squares criterion to (2), we
have the minimization problem:

min : [y − f(X)]TP[y − f(X)], (3)

which is actually the classical (real-valued) LS
method.

2.2 Mixed integer observation mod-
els and integer LS problems

A fundamental characteristic of the classical ob-
servation model and LS problem is that both
the measured quantities and the parameters to
be estimated are real-valued. This set-up is no
longer sufficient in the GPS era, since some of
the parameters in a model can only take on in-
teger values. As is well known, carrier phase
observables are crucial for high precision posi-
tioning and navigation. However, an ambiguity
of full cycles is inherited in them. As a simpli-
fication, one may treat the integer unknowns as
real variables and then apply the classical LS
method to estimate the quantities of interest.
This is unfortunately proved to be not viable
for high precision application of GPS signals.
Therefore, we have to deal with this new types

of observation models of continuous real-valued
and discontinuous integer variables.

Given a number of real-valued measurements
and a (linear or nonlinear) functional of two
types of variables: continuous and discrete, we
have the following relationship:

y = f(X, z) + ε (4)

where y is a real-valued observation vector, X is
a real-valued parameter vector to be estimated
from y, z is an unknown integer vector, ε is the
random vector, f(.) is a functional. In order to
complete the description of model (4), we will
further assume that the first moment of ε is zero
and its second central moment P−1σ2. Thus
the mixed integer observation model can now
be given below

y = f(X, z) + ε, E(y) = f(X, z)
D(y) = D(ε) = P−1σ2

}
(5)

where X ∈ Rn, z ∈ Zm, and Rn and Zm are
respectively an n-dimensional real-valued space
and an m-dimensional integer space.

In terms of mixed integer model (5), the LS
minimization objective function becomes

min : [y − f(X, z)]TP[y − f(X, z)], (6)

By comparing (5) with (2), it is immediately
obvious that the difference between them is in
the introduction of integer variables into (5).
This is, however, fundamental and invites much
complexity to the mixed model (5), computa-
tionally and statistically. In the case of linear
real-valued LS models, the LS problem is simply
equivalent to solving a system of linear equa-
tions, and the accuracy measure can be directly
derived from the inversion of the normal matrix
as a by-product of the solution. There is no
easy way, however, to solve the mixed integer
LS problem (6) numerically. In order to esti-
mate the integer parameters, one has to resort
some sophisticated algorithms in integer pro-
gramming and the burden of computation in-
creases substantially. On the other hand, sta-
tistical aspects of the estimate are no longer ob-
vious and it is even difficult to get a realistic
accuracy indicator for the estimate, as is the
situation in applying GPS to precise position-
ing and navigation today. Further research is
required.
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In what follows, we assume that the func-
tional relationship is linear. Then we will fur-
ther define a number of linear mixed integer ob-
servation models.

Case (A): The linear mixed integer observation
model

Assume that the functional relationship in (5)
is linear with respect to the variables X and z.
Then (5) can be rewritten as follows:

y = AX + Bz + ε, E(y) = AX + Bz
D(y) = D(ε) = P−1σ2

}
(7)

where A and B are nonzero design matrices,
X ∈ Rn, z ∈ Zm, and Rn and Zm are respec-
tively an n-dimensional real-valued space and an
m-dimensional integer space. The other quan-
tities have been defined in (5). When the LS
method is applied to (7), it is correspondingly
called the mixed integer LS problem.

Case (B): The linear integer observation model
Let A = 0 in (7). Then we have the linear

integer observation model

y = Bz + ε, E(y) = Bz
D(y) = D(ε) = P−1σ2

}
(8)

whose parameters to be estimated are all in-
tegral. The corresponding LS minimization is
called the linear integer LS problem.

Case (C): The mixed linear 0− 1 observation
model

Case (C) is different from Case (A) in that
the integer variables of Case (C) can take on
either one or zero. The model becomes

y = AX + Bz + ε, E(y) = AX + Bz
D(y) = D(ε) = P−1σ2

}
,

(9)
where zi ∈ {0, 1}. The other quantities have
been defined as in (7).

Case (D): The linear 0− 1 observation model
Assume that all the integer variables in (8)

are Boolean (or 0-1) variables. Then we have
the following linear 0− 1 observation model

y = Bz + ε, E(y) = Bz
D(y) = D(ε) = P−1σ2

}
, (10)

where zi ∈ {0, 1}.

The LS problem with respect to this model is
a 0− 1 quadratic programming model, i.e.

min : (y −Bz)TP(y −Bz) (11)

Case (E): The linear 0− 1 programming
model

Since any integer bounded from below and
above can be expressed in a finite number of
Boolean variables, all the integer-related LS
problems can always be transformed into the
following linear 0− 1 programming problem:

min : F = aT b
s.t. bi = 0, 1. ∀ i.

(12)

GPS ambiguity parameters are integral. If
they are bounded (see e.g. Abidin 1993; Teu-
nissen 1996), we can then express GPS integer
ambiguities by using Boolean variables. Thus
Cases (C), (D) and (E) could also be used to
deal with the GPS ambiguity resolution prob-
lem (if necessary). More details can be found in
Xu et al. (1995).

3 The branch and bound ap-
proach to GPS ambiguity
resolution

The determination of interested positions and
GPS integer ambiguities from carrier phase ob-
servables is, in principle, to solve a mixed inte-
ger LS problem (1). It has been shown, how-
ever, that any mixed GPS integer ambiguity LS
problem can be transformed into an integer LS
quadratic programming model (see, e.g. Teunis-
sen 1994; Xu et al. 1995). Thus we will confine
ourselves to the solution to the GPS integer am-
biguity LS problem of model (8), i.e.

min : (y −Bz)TP(y −Bz) (13)

where z ∈ Zm.
There may be several techniques in linear in-

teger programming that could be employed to
solve the integer LS problem (13). If the in-
teger variables are all bounded, then one can
use the enumeration technique to find the op-
timal solution to the quadratic programming
(13). Since we do not have any such prior infor-
mation on the integer variables, it is impossible
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to directly implement it for the solution to (13).
One may argue that the matrix P has been used
to bound GPS ambiguities in the form of an el-
lipsoid (Wuebenna 1991; Abidin 1993; Tennis-
sen 1994). We should like to note: (1) that the
use of P to set up the bounds for z is actu-
ally based on the information in (13) but not
on independent prior information; and (2) that
one should be careful in using P to bound z,
since there might exist a possibility to single
out the correction solution from the bounded
box. It can be proven, fortunately, that if the
objective function is globally convex, then we
can still use the idea of enumeration to solve
an unconstrained optimization problem (see e.g.
Taha 1975). One of such techniques to solve an
unconstrained but globally convex optimization
problem such as (13) is to use the branch and
bound method in integer programming. Since
the quadratic objective function is strictly con-
vex, the optimal solution is unique in probabil-
ity. Although the uniqueness of the solution to
the LS integer problem can be guaranteed in
probability, its correctness will depend on the
probability of the solution and thus has to be
checked (or validated) further. In what follows,
we will discuss the principle of the branch and
bound method and its solution strategy. More
details on integer programming can be found
in Garfinkel & Nemhauser (1972), Nemhauser
& Wolsey (1988), Parker & Rardin (1988), and
Taha (1975).

3.1 The branch and bound method
for GPS ambiguity resolution

GPS ambiguity resolution can be generalized by
the following integer optimization problem:

min : g(z), z ∈ Zm (14)

where g(.) is a convex function, z is a GPS in-
teger ambiguity vector.

The solution approach to (14) can be solved
by branching and bounding, which involves two
important steps: computing the lower bound
(upper bound in case of maximization) and fath-
oming. Suppose that the optimization prob-
lem (14) has been currently fathomed into j op-
timization problems with different constraints
and arranged in a basic tree enumeration. The

problem to be considered now is

min : g(z), z ∈ Zm
j (15)

Then there will be three possibilities that hap-
pen to (15): (a). There are no feasible solu-
tions in Zm

j ; (b). The objective value at the
solution point is unbounded, i.e. g(z∗j ) = −∞;
(c). There is a unique solution that solves (15),
which is denoted by z∗j . In case (a), there is no
need to fathom further and the tree branch can
be cut off here. Then go to a new problem (or
the end of a branch of the enumeration tree)
and repeat the procedure described. Case (b)
indicates that (15) is unbounded from below.

Now we will further consider case (c). Com-
pare g(z∗j ) with the current optimal objective
value, which is denoted by g0. If g(z∗j ) ≥ g0,
no further fathoming is necessary. Go to a new
problem and repeat the procedure as for the jth
problem. If g(z∗j ) < g0, and if z∗j is a feasi-
ble solution, then replace g0 by g(z∗j ), go to a
new problem and repeat. Otherwise, we have
to fathom Zm

j into two disconnected subspaces,
say Zm

j1 and Zm
j2. Thus two new branches grow

from the current vertex j. Choose one of the
ends of the tree branches and repeat the branch-
ing and bounding procedure.

The procedure of branching and bounding de-
scribed above can be summarized algorithmi-
cally as follows:
Step 1: (Initialization.) Start with a feasible

solution (say z0) and compute the ob-
jective value which is denoted by g0.
Treat all the integer variables as real
variables. Then solve the real-valued
version of the optimization problem
(14). If the solution is of integer na-
ture, go to Step 7; otherwise select
an element of the real-valued solution
zr to branch the original problem into
two equivalent problems and put them
in the problem list, then go to Step 2.

Step 2: (Solving a problem in the problem
list.) Check whether there are any
problems in the problem list that were
not solved yet. If the answer is neg-
ative, go to Step 7; otherwise solve a
problem in the list that was not solved
yet and go to Step 3.
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Step 3: (Fathoming, case a.) If there is no so-
lution to the problem selected in Step
2, delete it from the problem list and
go to Step 2. Otherwise go to Step 4.

Step 4: (Fathoming, case b.) If the solution
is feasible and if the objective value is
equal to −∞, go to Step 7. Otherwise
go to Step 5.

Step 5: (Fathoming, case c.) Let the objec-
tive value be g(z∗j ). If g(z∗j ) ≥ g0, no
further fathoming is necessary. Thus
go to Step 2. Otherwise go to Step 6.

Step 6: (Determining new lower bounds and
further fathoming.) Check if the so-
lution is of integer nature. If the an-
swer is positive, replace g0 and z0 by
g(z∗j ) and z∗j , respectively. Go to Step
2. Otherwise select the element of z∗j
that is not integral to branch and add
the two new problems into the prob-
lem list, then go to Step 2.

Step 7: (Termination.) If g0 = −∞, there is
no feasible solution to the original op-
timization problem. If g0 > −∞, z0

is the optimal solution and g0 is the
minimum objective value.

3.2 Linear least squares solutions
with equality and inequality con-
straints

When the branch and bound method is em-
ployed to solve the GPS integer ambiguity LS
problem (13) or (14), an equivalent set of prob-
lems with inequality and/or equality constraints
are generated, though the original LS objective
is unconstrained. Thus solving a linear LS prob-
lem with equality and/or inequality constraints
plays a role in solving the original problem (13),
which is to be discussed in this subsection.
A linear LS problem with equality and inequal-
ity constraints can be stated as follows:

min : (y −Bzr)TP(y −Bzr)
s.t. Dzr = e

Gzr −w ≥ 0,
(16)

where zr ∈ Rm, D and G are real coefficient
matrices, and e and w are constant vectors.
Since for the inequality constraints there exists
a positive vector (say h) that can make them
become equality constraints, we can rewrite (16)

as follows:

min : (y −Bzr)TP(y −Bzr)
s.t. Dzr = e

Gzr −w − h = 0,
(17)

Define the extended objective by

f(zr,p, q,h) =
1
2
(y −Bzr)TP(y −Bzr)

−pT(Dzr− e)
−qT(Gzr−w − h).

(18)

Here we require that h ≥ 0 and q ≥ 0 (see, e.g.
Golub & Saunders 1970).
Differentiating f(.) with respect to zr, p and q,
and then equating them to zero, we get

BTPBẑr −DT p−GT q = BTPy
Dzr = e

Gẑr − h = w


.

(19)

Here a hat is put over zr to signify its estimate
nature, since the observation vector y is ran-
dom.
On the other hand, it has been shown by Golub
& Saunders (1970) that h and q must satisfy
the following condition:

qT h = 0, q, h ≥ 0. (20)

From the first equality of (19), we have

ẑr = (BTPB)−1BTPy + (BTPB)−1DT p

+(BTPB)−1GT q

= N−1BTPy + N−1DT p + N−1GT q

= ẑ0
r + N−1DT p + N−1GT q, (21)

where
N = BTPB

and
ẑ0

r = N−1BTPy,

which is actually the floating solution of the
original LS problem (14).
Inserting (21) into the last two equations of (19)
yields

Dẑ0
r + DN−1DT p + DN−1GT q = e

Gẑ0
r + GN−1DT p + GN−1GT q = h + w

}
.

(22)
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Hence p can be further expressed as

p = M−1(e−Dẑ0
r)−M−1DN−1GT q, (23)

where M = DN−1DT .
Substituting p of (23) in the second equation of
(22), we have

G1q + w1 = h, (24)

where

G1 = GN−1GT −GN−1DTM−1DN−1DT ,

w1 = Gẑ0
r + GN−1DTM−1(e−Dẑ0

r)−w.

Equation (24) is a linear complementarity prob-
lem, together with the zero constraint of (20).
Solution methods for (24) can be found in van
de Panne (1975) or Kojima et al. (1991). It is
thus omitted here.

4 Validating the solved GPS
carrier phase integer ambi-
guities

In previous sections, we have discussed the solu-
tion methods to a variety of integer and mixed
integer observation models. The purpose is to
obtain the global optimal solution of the inte-
ger ambiguities. If the observations contained
no (random or systematic) errors (in an ideal-
ized environment), the global solution would be
thus the “correct” or true one and no further
validation would be required. In reality, how-
ever, GPS observables are affected by a num-
ber of (random and systematic) errors (see e.g.
Lachapelle 1990). These errors will all con-
tribute to the estimated global solution of the
integer variables, and make it biased and uncer-
tain. On the other hand, precise positioning
and navigation at the accuracy of centimetre
level allows almost no bias nor uncertainty in
integer ambiguities. Therefore, much effort has
been made to reduce to a maximum degree the
biases and uncertainty of the ambiguities.
Random errors in GPS observables will be prop-
agated into the uncertainty of the estimated
GPS integer ambiguities. Increasing the num-
ber of observations by tracking to more satellites
or collecting data for a longer period of time will
reduce the uncertainty significantly. In other

words, the dispersion of the estimated GPS inte-
ger ambiguities will become smaller and smaller.
If there were no systematic errors, the global so-
lution to (13) from the observations up to the
present epoch should be correct and no valida-
tion would be needed. GPS surveying has been
influenced by systematic errors in reality, how-
ever. For instance, significant error sources are
probably due to signal multipath and residual
ionosphere and troposphere effects, which be-
have systematically and can last for a period
of time. Various GPS systematic error sources
will result in the biases of the globally estimated
GPS ambiguities from the correct (true) values,
which can last for a certain period of time and
has been often experienced. In order to avoid
wrong ambiguities due to systematic and ran-
dom errors, the resolved ambiguities have to be
monitored and validated.
A number of criteria have been proposed to
validate the solved GPS carrier phase integer
ambiguities. They are mainly based on two
types of information: the residuals of the carrier
phase observables and position solutions from
the pseudoranges (see e.g. Frei & Butler 1990;
Chen & Lachapelle 1994; Abidin 1993; Landau
& Euler 1992). One criterion that is most widely
employed to validate the estimated ambiguities
is the so-called ratio statistic, which is the ratio
of the second minimum sum of squared resid-
uals to the globally minimum sum of squared
residuals, i.e.

F = σ̂2
2nd/σ̂2

min ≤ c.

This test quantity is simple and intuitive. Very
often, it is treated as if it were an F-statistic,
and applied with success in practice. The con-
stant c involved is selected more empirically
than theoretically, ranging from 1.5 to 5. It is
noted that the F quantity may be vulnerable to
systematic errors or blunders in observations.
The second residual-based statistic is the sum
of squared residuals, i.e.

VTPV/σ2
0 ≤ χ2(1− α),

where V is the residual vector of the carrier
phase observables, P is the weight matrix, σ2

0

is the empirical known variance of the carrier
phase observables, χ2(1 − α) is the percentile
value of the χ2 distribution at the significance
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Figure 1: The distance (km) from the ship to the reference station

level α. We know that VTPV can serve as an
accurate estimator of the variance component
of the carrier phase observables, only if there
exist a great number of redundant observations
and if the observations are contaminated only
by random errors. Thus one should use VTPV
to validate or reject any set of ambiguities, with
in mind that it may be significantly affected by
systematic multipath and residual atmosphere
errors.
The third criterion widely used is to compare
the position solution from pseudorange observ-
ables with that derived with potential sets of
ambiguities. If the accuracy of the pseudor-
anges is sufficiently good, it can be very helpful
in constraining the size of the searching win-
dow of the ambiguities and thus help sort out
the correct ambiguity solution. Since the accu-
racy of pseudoranges is much poorer than that
of carrier phase observables, the pseudorange-
derived position is mainly used to reject some
non-promising sets of ambiguities. Other crite-
ria can be found in Abidin (1993).
Almost all of the current criteria are designed
to validate or test globally the whole set of am-
biguities. As soon as a single ambiguity is con-
cerned, some techniques need to be developed.
A simple and intuitive criterion is the repeata-
bility of the ambiguities. Suppose that given
the pseudoranges and carrier phase observables
at each epoch, we can obtain the optimal (inte-

ger) solution of the ambiguities for every corre-
sponding epoch. It is reasonable to require that
the correct set of ambiguities be able to repeat
themselves for a period of time. By checking the
repeatability of each ambiguity epoch by epoch,
we are emphasizing the local test of each integer
component of an ambiguity vector (set), which
is actually the first validation criterion for our
experiments in section 5. The second criterion
used is that the maximum carrier phase resid-
ual should be smaller than a threshold. We set 4
cm to check the maximum L1 double differenced
carrier phase residual.

5 Experiments

The data were collected in November 1994 off
the coast of Vancouver. The ship used was a
research vessel of the Canadian Department of
National Defence. In this experiment, we will
use the dual frequency carrier phase and C/A
code pseudorange measurements from Ashtech
Z-12 receivers. The experiment lasted for more
than 4 hours. At the beginning of the exper-
iment, the ship was separated from the refer-
ence station by about 600 metres, and about 27
minutes of stationary data were collected with a
data sampling rate of 1 second. It then started
to move, and was about 80 kilometres from the
reference station at the end of the experiment,
as shown in Figure 1. Plotted in Figure 2 was
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Figure 2: The number of common satellites in view for computation

Figure 3: The number of epochs of observations for ambiguity resolution
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the number of satellites above a marking angle
of 10 degrees.
With this data set at hand, we have completed
the following experiments with the widelane ob-
servations: (1) reliability test of the algorithm;
For this purpose, we started the ambiguity res-
olution at the GPS time of 163700 seconds and
ran through the whole data set of more than 4
hours. After that, we shifted the starting time
from the previous one by 100 seconds and ran
the ambiguity resolution again. The same pro-
cedure was repeated. In total, there are 154
such experiments. Generally, ambiguity reso-
lution took a fraction of a second to complete
on our Pentium 90 PC. Unprecedented advance
in computer technology will further merit the
GPS community considerably. (2) sensitivity
analysis of the ambiguity resolution to carrier
phase noise; In this experiment, we set the noise
of code observables to 1.4 m and the noise of
carrier phase observables to 2, 3, 4, 7 and 10
cm, respectively, which are used here simply
to show how the standard deviation of double
differenced carrier phase observations influence
GPS ambiguity resolution. The procedure de-
scribed in the reliability test was then repeated
with each noise level.
Before talking about success rate, we have to
justify the correct set of resolved ambiguities.
In this experiment, we found and justified the
correct ambiguity set, because the residuals of
all the L1 double differenced carrier phase ob-
servables are small over 4 hours, as seen in
Figs.5 and 6. If one of the ambiguities had
been wrongly resolved, we should have wit-
nessed messy plots of the L1 residuals, because
a mistake in GPS ambiguities is actually equiva-
lent to a gross error in the corresponding obser-
vation. The success rates of the methodology,
defined as the ratio of the number of success
in resolving the ambiguity unknowns correctly
to the total experiment number of resolving the
ambiguity unknowns, is given for the data set
in Table 1. Given 2, 3 and 4 centimetres for
the accuracy of double difference phase observ-
ables, the success rates of correctly fixing the
ambiguities reach 100% if the separation of the
remote station to the reference station is less
than 65 km, but are still above 90% for the to-
tal of 154 trials. Further computation should
show that the use of the method will be risky

at these levels of accuracy, if the separation is
more than 65 km. If the accuracy is given of 7
cm, the method performs excellently. The suc-
cess rate reaches 98.7% for all the runs, and the
average number of epochs for fixing the ambi-
guities correctly is 249. The best performance
is 17 seconds (or epochs) for a baseline of over
60 km. The case of 10 cm is similar to the first
three levels of accuracy, however.
The numbers of epochs of observations for cor-
rectly fixing the ambiguities are plotted in Fig-
ures 3 and 4. The numbers of epochs of obser-
vations needed vary significantly. However, it
seems that the patterns for these four levels of
accuracy are very similar, which might be re-
lated to the quality of the data set. Figures 5
and 6 show the residuals of six L1 double dif-
ference phase observables, which are computed
after converting the widelane ambiguities into
the L1 frequency ambiguities. Generally speak-
ing, the observations are of good quality for the
first hour of journey and then become noisy and
probably contaminated by some periodical er-
rors. In particular, the number of satellites in
view remain five for a great part of the second
half voyage, which, together with the noisy ob-
servations, may well explain that a lot more
epochs of observations are needed to correctly
resolve the ambiguities.

6 Conclusions

This study has further investigated integer pro-
gramming for use in GPS ambiguity resolution
with real marine data and thus compliments
our earlier theoretical paper on this topic (Xu,
Cannon & Lachapelle 1995). A major advan-
tage of using integer programming techniques is
that a global solution is always guaranteed and
no bounds are necessary for the ambiguities to
be searched. Since systematic and random er-
rors may significantly deviate the global solu-
tion from the correct one, the resolved ambigu-
ities have to be subject to monitoring and vali-
dation. It should be noted, however, that good
prior information on the bounds for GPS car-
rier phase ambiguities will further speed up the
searching procedure by integer programming.
In the case of quadratic integer programming,
the solution will solely depend on the centre
and the shape of the ellipsoid, but not the size
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Figure 4: The number of epochs of observations for ambiguity resolution

Figure 5: The residuals of L1 double difference phase observables

Table 1: The success rates with the ship data set

σ∇∆Φ Numbers of trials Rate
Numbers of trials
(below 65 km)

Rate
(below 65 km)

2cm 154 90.260 136 100.000
3cm 154 90.260 136 100.000
4cm 154 90.260 136 100.000
7cm 154 98.701 135 100.000

10cm 154 88.961 135 98.519
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Figure 6: The residuals of L1 double difference phase observables

of it. With the help of validation criteria, we
have tested an integer programming algorithm
with a shipborne data set. The success rates
for correctly resolving the ambiguities are quite
high. However, the number of epochs of obser-
vations needed seems on the higher side, which
might be related to the noisy observations and
a relatively small number of satellites in view on
one hand, and to the validation criterion on the
other hand. The experiment also shows that the
accuracy of the carrier phase observables can
significantly influence the ambiguity resolution.
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