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Abstract

The aim of this report is twofold. At first, the general problem of linear approximation in

Hilbert spaces is presented. The formulation and the solution of this problem is made in a

very detailed way, illustrating important aspects which are often overlooked in many

textbooks and monographs found in the geodetic literature. A relatively recent mathematical

tool of functional analysis, called a frame, is also used to study the important issue of stability

for the solution of the linear approximation problem. The second, and most important, scope

of the report is to explore the relation between the choice of the Hilbert space in which we

perform the linear approximation, and the stability/convergence properties of the solution for

increasing data density. In particular, it will be shown that a constantly stable and convergent

(in the sense of infinitely dense data) linear approximation scheme in a Hilbert space H

requires the incorporation of a multiresolution structure of subspaces in H, similar to the well-

known dyadic subspace sequences in )(2 ℜL  that were introduced by Stephane Mallat a

decade ago and have created a new exciting alternative approach to wavelet theory.
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1.  Introduction

Before we study in rigorous mathematical terms the linear approximation problem in Hilbert
spaces and its associated stability and convergence issues, a descriptive overview of the
general collocation concept in Physical Geodesy will be first given in this section. Collocation
is widely known as an optimal linear estimation method used for gravity field modelling.
Behind this vague definition there are lying two fundamentally different viewpoints, with
correspondingly different mathematical/physical concepts and ideas associated with them.
Both approaches have certain advantages and drawbacks, and they have been the subject of
extensive debate in the geodetic scientific community over the past three decades.

1.1  Deterministic Collocation

The first approach, which will be called deterministic collocation, uses a Hilbert space setting
according to which the unknown field under consideration f  (e.g., the anomalous potential of
the Earth) is modelled as an individual element in a reproducing kernel Hilbert space (RKHS)
H. The available discrete observations for the unknown field are also modelled as continuous
linear functionals fLi , belonging in the dual Hilbert space H ′  of H . The optimally

approximated field f̂  is then defined as the smoothest function, in the topology of H, that
satisfies the given functionals. Such a linear approximation method is not of course an
exclusive privilege of Physical Geodesy problems, but it has been borrowed from other areas
of mathematics where it is often found under the name minimum-norm interpolation in RKHS
(see, e.g., Davis, 1975). The original idea of using such deterministic Hilbert space methods
for gravity field modelling is due to Torben Krarup, who in his famous publication (Krarup,
1969) developed a pioneering framework for solving discrete boundary value problems in
Hilbert spaces of harmonic functions outside a certain spherical approximation of the Earth.
The reformulation, however, of the gravity field determination problem as an
underdetermined discrete boundary value problem (bvp), instead of a continuous bvp (i.e.,
Stokes, Molodensky), whose solution should employ only the finite number of the available
discrete data in a certain optimal fashion, was made earlier than Krarup’s developments by
Bjerhammar (1964). The interpolatory character of the discrete bvp, along with the proposed
idea by Bjerhammar for the downward reduction of the discrete data on a certain reference
sphere, have contributed in many several ways to a clarification of the conceptual foundations
in modern Physical Geodesy; see also, Bjerhammar (1973, 1975, 1987). More details on the
deterministic aspects of collocation can also be found in Dermanis (1976), Leglemann (1979),
Meissl (1976), Moritz (1980), and Tscherning (1986).

Deterministic collocation ‘suffers’ from two important problems, one of which is the so-called
norm choice (or reproducing kernel choice) problem; see, e.g., Dermanis (1977). In order to
use the method, and to actually compute an approximation for the unknown field, we need to
know the reproducing kernel in the Hilbert space H, which in turn requires the prescription of
a specific norm (topology) for H. The choice of such norm H , or reproducing kernel, not

only does it affect the physical interpretation of the approximation, but it also influences other
important aspects like the stability and convergence properties of the solution algorithm, as
well as the admissible spatial configurations of the data needed to obtain such stable and
convergent solutions (Rummel et al., 1979). These issues will be further explored later in this
report. The second problem in deterministic collocation stems from the lack of efficient
measures to evaluate the accuracy of the minimum-norm interpolation. Although there do
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exist rigorous bound values for the approximation error 
H

f̂f −  that can characterize the

overall performance of the linear approximation in a given Hilbert space, their use is of
limited practical importance and their actual computation requires the complete knowledge of
the unknown field itself (see, e.g., Dermanis, 1976; Tscherning, 1986).

1.2  Stochastic Collocation

The second fundamental approach in linear approximation problems of Physical Geodesy
constitutes the stochastic version of collocation. According to this approach the unknown
field f  is modelled as a zero-mean stochastic process, and the available discrete observations
related to the field are considered as zero-mean random variables. The optimally

approximated (or more precisely, predicted) field f̂  is now defined as the one satisfying the

minimum mean square error (MMSE) principle, i.e. { } min)ˆ( 2 =− ffE , where E  denotes
the expectation operator in a probabilistic sense. The final solution is obtained by additionally

requiring that f̂  should be linearly related to the available discrete data. As in the
deterministic collocation case, this stochastic approximation framework has also been
borrowed from other areas of mathematics and applied sciences (communication engineering,
signal analysis) where it was originally developed. The underlying theory is formally known
as the Wiener-Kolmogorov (W-K) linear prediction theory, pointing to the pioneering work of
the two scientists back in the 1930s and 1940s. An excellent review paper on many different
aspects of W-K theory, with more than 350 relevant references on the subject, is Kailath
(1974). The original introduction of the W-K methodology in Physical Geodesy
approximation problems should be attributed to the work of Kaula (1959) and Moritz (1962).
For a detailed treatment of the stochastic principles in collocation theory and related
applications in gravity field modelling see, e.g., Dermanis (1976), Dermanis and Sanso
(1997), Bjerhammar (1982), Moritz (1980), Sanso (1986).

For the actual computation of the predicted field f̂  (or any other field of interest that is
linearly related to the original f ) in the W-K framework, it is only required to know the
covariance (CV) function )}()({),( QfPfEQPC =  of the unknown field, which describes the
stochastic behavior of f  between pairs of points in its domain. Often, in practical
applications, the unknown field is additionally modelled as a stationary and ergodic stochastic
process. The main benefit of such an assumption is that the estimation of the (generally)
unknown CV function becomes possible using the available realization of the unknown field
(i.e. discrete observations). Furthermore, in the stationary case it is particularly beneficial to
transform the approximation problem in the frequency domain using the Fourier transform,
since the computational effort of the solution algorithm is significantly reduced due to the de-
correlation (‘whitening’) properties of the Fourier transform over stationary stochastic signals;
for more mathematical details, see, e.g., Parzen (1967), Papoulis (1993), and for geodetic
applications of frequency domain collocation, see, Eren (1980), Schwarz et al. (1990), Sideris
(1995), Sanso and Sideris (1995), and Nash and Jordan (1978).

The main drawback in the stochastic viewpoint of collocation is that it is not physically
acceptable, since the gravity field of the Earth is definitely not a stochastic phenomenon as the
W-K theory requires. For an amusing, as well as interesting, discussion on this aspect, see
Sanso (1978) and Moritz and Sanso (1980). Furthermore, modelling the deterministic gravity
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field as a stochastic process creates important problems regarding the physical interpretation
of the accuracy measures that we often use to evaluate our linear prediction. The formalism of
variance-covariance propagation allows us to easily obtain the variances and covariances of

the prediction error, )(ˆ)()( PfPfPe −= , at the points where the prediction is applied. Such
accuracy information has a purely probabilistic nature that is physically meaningless for all of
our purposes. Note that all the discussions so far are referred to a noiseless data setting.

On the other hand, the exact equivalence between the final solution algorithms for both the
deterministic and stochastic collocation, which occurs when we identify the reproducing
kernel used in the former approach with the covariance function employed in the latter, makes
it possible to develop an intermediate ‘semi-stochastic’ viewpoint in collocation that can
eliminate, to some degree, most of the above pitfalls in the two individual formulations.

1.3  Statistical Collocation: A Compromise

According to the concept of statistical collocation, instead of using quantities defined through
‘experiment repetitions’ via the probabilistic expectation operator E , we employ certain
spatial statistics measures to describe the behavior of the unknown gravity field, as well as
the behavior of its prediction error. In this way, the CV function of an unknown signal is now
defined in a purely deterministic sense using a spatial averaging operator M . For example, in
the one-dimensional case, the CV function is defined as

{ } )()(     ),( τττ ++= QfPfMQPC                   (1.1)

where the subscript τ  means that the operator M  is applied to all the different spatial
locations of the pair )()( QfPf . A common choice for the operator M , which actually makes
also possible the efficient incorporation of Fourier methods in the statistical collocation
framework, is the classic integral

∫ ++= τττ dQfPfQPC  )( )(     ),(                   (1.2)

By a simple change of variables, it is easily seen that the last equation is reduced to the
‘stationary’ form

∫ +=−= dPPfPfQPCC  )( )(     )(    )( ξξ                   (1.3)

For multi-dimensional problems, we should additionally consider more translation (and
possibly directional-azimuth) parameters in the definition of the averaging operator M ,
instead of a single translation parameter τ . In such cases, a customary terminology calls for
homogeneous CV functions (translation parameters only in M ), or isotropic CV functions
(translation and azimuth parameters in M ).

As in the stochastic collocation case, the optimal approximation f̂  is again defined as the one
satisfying a MMSE principle which is now expressed through the spatial operator M . In the
1D case, the error principle takes the form
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{ } { } min     )],(ˆ)([    ),( 22 =−= ττ ττ PfPfMPeM                   (1.4)

The minimization principle (1.4) takes into account the fact that, if we translate by τ  the
available spatial configuration of the data points, we will generally obtain some new
observation values which will produce a different approximation for the unknown field. In
this way, the approximation error becomes also a function of the ‘position’ τ  of the given
data point configuration with respect to the reference system used to describe the unknown
field. The statistical collocation solution will minimize the mean square approximation error
over all possible positions of the given data point geometry. Two more conditions are also
taken into account in order to finally compute the solution, which are: (i) linearity of the

solution )(ˆ Pf  with respect to the available discrete observations, and (ii) translation-
invariance of the solution with respect to corresponding changes of the reference system. The

last property will ensure that, if )(ˆ Pf  is the optimal linear approximation for )(Pf , then

)(ˆ τ+Pf  should be the corresponding optimal linear approximation for )( τ+Pf . In the
multi-dimensional case, we should also assume approximation invariance under more general
affine transformations of the reference system, which may possibly include rotational-
invariance. The use of this spatio-statistical version of collocation was already proposed in
the classic book of Heiskanen and Moritz (1967), but it is actually Sanso (1978) who first
formulated a rigorous and complete mathematical setting for the method. A relevant and
extensive discussion can also be found in Moritz (1978, 1980).
The final solution formula for the approximated field under the statistical collocation concept
is similar to the ones obtained under either the deterministic or the stochastic approach, where
instead of a reproducing kernel or a CV function of a stochastic signal, we now use a spatio-
statistical CV function defined in a purely deterministic sense by eq.(1.1). In this way, the
MMSE principle (1.4) automatically gives also rise to a minimum-norm solution in a Hilbert
space with reproducing kernel equal to the deterministic CV function given by eq.(1.1). The
norm that corresponds to this ‘induced’ Hilbert space, however, will not be generally the same
with the norm used to quantify the approximation error in the optimal principle (1.4). For an
interesting topological paradox that exists during this identification procedure, see Tscherning
(1977).

1.4  Some Important Existing Problems

Regardless of which of the previous three approaches we adopt, the linear approximation of
an unknown field from discrete data always requires the inversion of an N×N symmetric
matrix, where N is the number of the available observations. Such a numerical task usually
creates important problems in terms of the required computational effort and the stability of
the solution algorithm. Although the computing time/storage requirements can be
significantly reduced via special algorithmic and modelling techniques (see, e.g., Bottoni and
Barzaghi, 1993; Sanso and Schuh, 1987) and/or Fourier transform methods (see, e.g., Sideris,
1995), the stability problem is not generally overcome by them. For example, if a very dense
data configuration is used relatively to the ‘spread’ of the selected CV function (or
reproducing kernel), then the resulting matrix will be highly ill-conditioned irrespectively of
the domain (space or frequency) in which we perform its inversion. In this way, the
establishment of convergence properties for the solution as the data density increases becomes
also very difficult, if not impossible.
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Apart from the stability/convergence problem, there exists one more issue of special
importance in collocation. The introduction of the deterministic optimal criterion (1.4) by
Sanso has been perceived by many geodesists only as an attempt for assigning a non-
stochastic interpretation to Moritz’s (or Wiener’s) prediction formulas, overcoming in this
way the non-existence of a stochastic gravity field. Along with this perception, however, it
has also remained the false belief that we still need to model the gravity field as a stationary
stochastic process because of the ‘stationary’ form of Sanso’s deterministic CV function. This
is believed to provide serious limitations in the whole approximation procedure of
collocation, since the actual behavior of the gravity field is ‘non-stationary’. Besides the fact
that the above claim is meaningless since the notion of stationarity is not defined at all for
deterministic signals (see also the related discussion in Sanso, 1978), we personally believe
that Sanso’s formulation is a very powerful and complete tool as it is, without having the need
to be considered as a ‘supplement’ to W-K theory for Physical Geodesy problems. It can
actually be shown that the use of ‘stationary’ CV functions, like (1.3), does not prohibit us
from studying the local irregular details of the gravity field individually in different parts of
its domain, thus overcoming any ‘stationarity-restriction’ concerns about its behavior; see
Kotsakis (1999a,b).

From the above two important problems in collocation theory (stability/convergence,
stationarity), we will deal only with the first one in this report. Its treatment, actually, will be
seen to open the way for wavelet-like approximation models, answering thus in an indirect
way the ‘stationarity’ problem as well. Our starting point will be the deterministic viewpoint
in collocation, from which throughout the report we will gradually arrive at a multiresolution
version, without the need of using the intermediate stochastic ‘burden’.

2.  The General Problem of Linear Approximation in Hilbert Spaces

An infinite-dimensional, separable Hilbert space H is given. For an unknown function H∈f ,

there are available ‘observations’ nb  which have a linear dependence on f , i.e.

ℑ∈><=             ,              ,       ngfb nn                   (2.1)

where < , > denotes the inner product in the Hilbert space H, and ng  are known elements of

the same space H. The index set ℑ  will be assumed a finite subset of the integers for the
moment, i.e. only a finite amount of observations is available. The problem is how to recover
the unknown f  using the observation values nb  and the ‘observational representers’ ng .

Let us denote by V the Hilbert subspace of H, defined as the closed linear span of the finite
sequence ℑ∈nng }{ . Then, the unknown function f  can be uniquely decomposed into two

orthogonal elements as follows:

⊥+=
VV         fff                   (2.2)
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where Vf  is the orthogonal projection of f  onto V, and ⊥V
f  is the orthogonal projection of

f  onto the Hilbert subspace ⊥V  (orthogonal complement of V in H, i.e., HVV =⊕ ⊥ ). In
this way, the observation equation (2.1) takes the following form:

  ,         

 ,      ,         

 ,     

V

VV

VV

><=

><+><=

>+<=

⊥

⊥

n

nn

nn

gf

gfgf

gffb

                         (2.3)

It is seen that the available observations (2.1) can only determine partially the unknown field
f . In fact, they can determine only its orthogonal projection Vf  onto the finite-dimensional

subspace V spanned by the known family }{ ng , and they contain no information at all about

the second component ⊥V
f . Since the observations do not supply any information on the

orthogonal complement of Vf , the desired approximation f̂  for the unknown field can be

expressed in the general linear form

∑
ℑ∈

==
n

nn gaff     ˆ
V                   (2.4)

where na  are the unknown coefficients with respect to the sequence that generates the actual

‘solution space’ V. Using (2.4), the observation equations (2.3) yield

ℑ∈><=><= ∑∑
ℑ∈ℑ∈

nggaggab
k

nkkn
k

kkn     ,       ,       ,                                   (2.5)

or, by using matrix notation,
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,,

         (2.6a)

aGb      =                 (2.6b)

where N denotes the finite number of the available observations. It will also be useful to
express the original observation equations (2.1) in the following operator form:

VV            fUfPU ==b                   (2.7)

where VP  is the orthogonal projector from the Hilbert space H onto its Hilbert subspace V,

and U  is a linear operator defined as follows:
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ℑ∈∀><→ℑ→ ngfflU n          ,           )(V  :  VV
2                   (2.8)

The role of the operator U  is basically to take every function in the solution space V and to
compute its inner products with respect to the sequence ℑ∈nng }{ . Since }{ ng  is a finite set

of functions, the collection of all these inner products, for every VV ∈f , can be considered

as an individual element b of the Hilbert space )(2 ℑl . Also, since the family }{ ng  spans the

whole subspace V, the operator U  will be always an injective (one-to-one) operator.

The computation of the recoverable part Vf  of the unknown field f  requires the inversion of

the operator U , or equivalently the inversion of the symmetric N×N matrix G in (2.6). In
order to perform such an inversion, we will distinguish the following two cases regarding the
behavior of the observational representers ng :

Case 1 : ℑ∈nng }{  is a linearly independent set

Case 2 : ℑ∈nng }{  is a linearly dependent set

A geometrical illustration of the above two cases is shown in figure 2.1.

Figure 2.1: Mapping type of the observation equations for Case 1 (a) and Case 2 (b)

The only difference between the two cases is that the operator U  is surjective (onto) in the
first case, whereas in the second it is not. The internal correlations existing between the
observation values >< ngf ,  when the set }{ ng  is linearly dependent, make the reproduction

of every N-tuple of numbers in the observation space impossible. Since we are interested in
the inversion of the operator U  only, we can also create the following representative diagram:

•
•

•

fV

H l
2
(ℑ )

h

PV U

(a)

f

hV

b1

b2

fV

H l
2
(ℑ )

h

PV U

(b)

f

hV

b1

b2
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Figure 2.2: Geometrical interpretation of the operator U  for Cases 1 (a) and 2 (b)

For both cases 1 and 2, there will exist a unique pseudo-inverse operator 1~−U  which can be
defined on the image space ImU of the operator U  (i.e., ImU is the actual observation space).
In the sequel, the inversion scheme is analyzed for each case separately. The properties of the

solution f̂  for the unknown field are also discussed and explained in detail.

2.1  Inversion Scheme for Case 1

In case 1, the pseudo-inverse operator 1~−U  corresponds to the usual inverse 1−U  which is

well defined since U  is bijective (surjective + injective). The numerical computation of 1~−U
is achieved by simply inverting the matrix G in (2.6), from which we finally compute the
(unique) values of the unknown coefficients na  needed in (2.4), i.e.

bGa    1−=                                       (2.9)

The system of the observational representers ℑ∈nng }{  will provide a basis for the solution

space V in this case, and the actual linear approximation (2.4) of the unknown field should be
considered as an expansion with respect to this (non-orthogonal in general) basis.

2.2  Inversion Scheme for Case 2

In case 2, the pseudo-inverse operator 1~−U  will not correspond to 1−U  in the usual sense,

because 1−U  does not exist in this case (U  is not surjective). However, since U  is always an
injective operator, we can uniquely compute one of its infinite left-inverses which will also be
identical with its unique pseudo-inverse (see, e.g., Naylor and Sell, 1982; Mallat, 1998). The
pseudo-inverse operator of U  will have thus the form

*1*1  )(    
~

UUUU −− =                 (2.10)

where *U  denotes the adjoint of U . An elegant proof for the invertibility of UU *  can be
found in Mallat (1998, p.130). Since the symmetric matrix G is non-invertible in this case, the

numerical computation of 1~−U  requires basically a minimum-norm solution for the singular

fV

V l
2
(ℑ )

U

(a)

hV

b1

b2

• •
•

fV

V l
2
(ℑ )

U

(b)

hV

b1

b2
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linear system (2.6). Such a solution is obtained by computing the unique pseudo-inverse

(Moore-Penrose inverse) +G  of the N×N matrix G, i.e.

bGa    ˆ +=                 (2.11)

The general form of the pseudo-inverse matrix +G  is given by the following formula (see,
e.g., Rao and Mitra, 1971):

EEEEEEGG -2TT-1T )(  )(  −+=+                 (2.12)

where E is an N×N matrix, whose rows are some linearly independent solutions of the
singular homogeneous system 0Gx = . The matrix E is not uniquely defined and it always

satisfies the condition 0EG =T . A particularly interesting and useful formula, which has

extensively been used by various routines for the numerical computation of +G , is the
following (Albert, 1972):

-12TT

0

T-12T

0
)(lim  )(lim  IGGGGIGGG λλ

λλ
+=+=

→→
+                 (2.13)

The observational representers ℑ∈nng }{  in case 2 provide a redundant system of base

functions for the solution space V, which is not a basis. The desired solution V
ˆ ff =  can thus

be expressed in an infinite number of ways with respect to the family }{ ng . The use of the

pseudo-inverse operator 1~−U  gives, through eq.(2.11), just a single set â  among all
admissible coefficients a  satisfying the system (2.6), which has the minimum-norm property,
i.e.

aaaaaa T2T2         ˆˆ    ˆ =≤=                 (2.14)

Finally, it can be easily shown that when the pseudo-inverse operator 1~−U  is applied to

elements of )(2 ℑl  which do not belong in ImU, then the result will be the zero element of the
Hilbert space V, i.e.

0   
~

  en                th)()(   , )( 12 =ℑ=⊕∈∀ −⊥⊥ bImImImb UlUUU                 (2.15)
For more details, see Mallat (1998, p.131).

2.3  Comments

Summarizing the previous presentation for the linear approximation problem in an infinite-
dimensional Hilbert space H, using a finite amount of observations of the form (2.1), we have

shown that its solution f̂  should always be expressed in the form of eq.(2.4), since the

available data do not supply any information regarding the part ⊥V
f  of the unknown field
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which is orthogonal to the Hilbert subspace V spanned by the observational representers

ℑ∈nng }{ .

More importantly, the general solution (2.4) obeys the minimum norm principle (deterministic
collocation) in the sense that

22
    ˆ ff ≤                 (2.16)

for every other function H∈f  that satisfies the given observation equations. In the last

equation the symbol  denotes the norm in the Hilbert space H. This property is trivial to

prove by simply taking into account the decomposition formula (2.2) and the generalized
Pythagorean theorem in Hilbert spaces. In fact, if we had started the development of our
solution procedure by imposing a-priori the following optimality criterion for the estimated

field f̂ :

min  ˆ 2
=f                 (2.17)

then we would have derived the exact same system of equations as in (2.6). The unique

solution Hˆ ∈f  that satisfies the minimum norm principle (2.17) and the observation
equations (2.1) will always belong to the Hilbert subspace HV ⊂ , and it will thus have the
general expression of eq.(2.4); see, e.g., Tscherning (1986). However, when the observational
representers are linearly dependent (case 2) the expansion coefficients na  of this expression

are not uniquely defined and an additional minimum-norm solution for them should be
computed according to (2.11). It should be emphasized that the uniqueness of the linear

approximation fPf V
ˆ =  is always assured, regardless of the linear dependence/independence

of the finite set of the observational representers }{ ng .

It is quite interesting to realize that the minimum-norm principle (2.17), which has
extensively been used in the geodetic practice up to date, is more of a by-product of the
original linear Hilbertian setting for the approximation problem, rather than an ‘arbitrary’
estimation criterion of maximum smoothness for the unknown field in a given topology. Also,
in the classic geodetic literature the problem of the functional approximation of gravity field
signals in Hilbert spaces is exclusively treated for the case 1 only; see, e.g., Tscherning
(1986), Moritz (1980), Meissl (1976). The case 2, where the observational representers }{ ng

are linearly dependent, can also be easily included in the Hilbertian approximation framework

by simply computing the pseudo-inverse +G  of the singular matrix G, as it was explained in
the previous paragraphs. Numerical stability problems that may occur during the computation

of the matrices 1−G  or +G , and other related issues are discussed in the next section.

The previous presentation of the linear approximation problem in Hilbert spaces reveals in an
interesting way one aspect of the ‘modelling choice problem’, which emerges when we use
the deterministic collocation concept in gravity field approximation. The starting point in such
cases is just a given N-tuple of real numbers ℑ∈nnb }{ , corresponding to the discrete
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observations obtained from the unknown field f . As a second step, a certain modelling
choice for f  will enable us to construct observation equations of the form (2.1), which are
then solved according to the previous methodology. In order for this methodology to work,
however, we have to ensure that the given N-tuple of the observations belongs to the image

space )(2 ℑ⊆ lUIm  of the operator U , which in turn depends solely on our modelling

choice (i.e., the form of the inner product < , > and the observational representers ng ).

Assuming that the observations nb  correspond to point values of the unknown field itself, we

can then express the observational representers in the following general form:

)QP,(  )P( nn Kg =                 (2.18)

where )QP,(K  is the reproducing kernel of the Hilbert space H chosen to model the unknown

field, and ℑ∈nn}Q{  is the given data point configuration. In this way, our modelling is

exclusively based on the selection of a single positive-definite function )QP,(K . If the set

ℑ∈nnK )}QP,({  is linearly independent, then our given observation sequence will certainly

belong in the space )(2 ℑ≡ lUIm . If we repeat, however, the same modelling choice using

denser data point configurations ℑ ′∈nn}Q{ , we should expect that the observational

representers ℑ ′∈nnK )}QP,({  start to become linearly dependent. In order for the denser

observations to remain in )(2 ℑ ′⊂ lUIm , the unknown field must exhibit a certain
‘correlated’ behavior induced by our modelling choice )QP,(K . In simple words, the
unknown field f  has to belong in the Hilbert space with the specific reproducing kernel

)QP,(K . For a fixed model, the level of the imposed correlation will increase as the data
density (resolution) increases; i.e., the UIm  space will ‘shrink’. In this way, an essential
factor in the modelling procedure becomes the maximum spatial resolution of data points

}Q{ n , above which the behavior of the unknown field starts to exhibit an increasing

correlation in its values. The answer to this question (if any) will still leave, though, a relative
freedom in choosing a specific model )QP,(K  for ‘measuring’ this correlation, whose unique
selection requires the incorporation of additional criteria.

3.  Numerical Stability and the Role of Frames

An issue of special importance in the framework of linear approximation in Hilbert spaces is
that of stable signal representations. The importance of numerical stability is not restricted

only on practical issues (e.g., computation of the matrices 1−G  or +G ), but it affects
theoretical aspects of the approximation problem as well (e.g., convergence conditions). In
our present Hilbertian approximation setting, the notion of stability is exclusively related to

the continuity of the pseudo-inverse linear operator 1~−U , which is applied to the original data

)(2 ℑ∈ lb  for the (partial) recovery of the unknown field f , i.e.

b1
V

~
        ˆ −== Uff                   (3.1)
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Note that there is no need for the observational representers to be linearly independent in

order to have a stable approximation scheme, since the continuity of the operator 1~−U  does
not depend on the linear dependence/independence of the family ℑ∈nng }{ , as it will be

explained in the sequel.

3.1  Frames

The most appropriate mathematical tool for studying the behavior of the linear operator 1~−U
is the concept of a frame. In simple words, a frame in a Hilbert space V is a family of
elements V∈jφ , such that

(i) every V∈f  is uniquely determined by its projections >< jf φ,
(ii) the reconstruction of f  from the values >< jf φ,  is a stable algorithmic process

The rigorous mathematical definition of a frame }{ jφ  is based on the following double

inequality:

222      ,     fBffA
j

j ≤><≤ ∑ φ                   (3.2)

which should be satisfied for every V∈f . Note that (3.2) provides a simple generalization of
the well known Plancherel-Parseval relation for orthonormal bases. The values A and B are
some strictly positive constants, independent of f , and they are called frame bounds. Frame
theory was originally developed by Duffin and Schaeffer (1952) in the context of
nonharmonic Fourier series for the reconstruction of band-limited signals from their
irregularly spaced samples. Some very good introductory references on this subject include
Young (1980), Heil and Walnut (1994), and Strohmer (1995). For more advanced details on
frame theory and related applications, Daubechies et al. (1986), and Daubechies (1990)
should be consulted.

Associated with every frame }{ jφ  in a Hilbert space V, there is a corresponding frame

operator F  which is defined in a similar way as the operator U  in (2.8), i.e.

Z        ,          )Z(V  :  2 ∈∀><→→ jfflF jφ                   (3.3)

where it is assumed for generality that the number of the frame components jφ  is infinite

(i.e., V is an infinite-dimensional Hilbert space). The definition in (3.2) ensures that the linear
frame operator F  is always: (i) injective, and (ii) bounded (continuous). Furthermore,
eq.(3.2) is a necessary and sufficient condition guaranteeing that F  is invertible on its image
with a bounded (continuous) inverse; for a proof, see, e.g., Mallat (1998, p.129). If the frame
components }{ jφ  are all linearly independent elements of V, then the frame operator F  is in

addition surjective and its image space ImF is the whole Hilbert space )Z(2l . In this special
case the frame is called Riesz (stable) basis.
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A frame thus always defines a unique, complete and stable discrete representation for
continuous signals in a Hilbert space, which may also be redundant. When the frame

components are normalized, 1=jφ , this redundancy is measured by the frame bounds A and

B. If the normalized }{ jφ  are linearly independent, then it can be proved that A ≤ 1 ≤ B. The

frame is an orthonormal basis if and only if A = B = 1. If A > 1, then the frame is
overcomplete (redundant) and the value of A can be interpreted as a minimum redundancy
factor.

The reconstruction of an arbitrary V∈f  from its frame coefficients >< jf φ,  is computed

with the help of a dual frame }
~

{ jφ , according to the equation (see, e.g., Daubechies et al.,

1986)

∑∑ ><=><=
j

jj
j

jj fff φφφφ  
~

,    
~

 ,                      (3.4)

The family }
~

{ jφ  is also a frame for the Hilbert space V, having frame bounds 1/A and 1/B,

and being uniquely defined by the operator formula

jj FF φφ 1* )(    
~ −=                   (3.5)

where *F  is the adjoint of F . A proof for the invertibility of the operator FF *  can be found
in Mallat (1998). The reconstruction equation (3.4) can also be written in the operator form

FfFFfFFFf  
~

     )(    1*1* −− ==                   (3.6)

It can easily be shown that the pseudo-inverse operator *1*1 )(
~

FFFF −− =  corresponds to

the usual inverse of F , when the latter is restricted on its image space )Z(2lF ⊆Im .

Furthermore, 1~−F  is always bounded (continuous) and it has the minimum sup norm among
all possible generalized inverses of F  (for more details and proofs see, e.g., Daubechies et
al., 1986; Mallat, 1998). In simple words, therefore, the fundamental property of a redundant
frame }{ jφ  is to provide a unique and stable expansion for an arbitrary signal V∈f

∑=
j

jjaf φ                       (3.7)

using, among all infinite possibilities for the sets of coefficients ja , the one that has the

smallest )Z(2l  norm.

Note that, in general, the components }{ jφ  will not be a basis in the technical sense, although

their closed linear span is all of V. This is so because }{ jφ  need not be independent. On the

other hand, a basis for V that always assumes the expansion form (3.7) is not necessarily
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stable, and therefore not a frame. A number of simple examples can be used to clarify the

situation. Let ∞
=1}{ jje  be an orthonormal basis for an infinite-dimensional Hilbert space V.

Then

1. ∞
=1}{ jje  is a frame for V, with bounds A = B = 1

2. ...} ,,,,,,{ 332211 eeeeee  is a frame for V, with bounds A = B = 2

3. ...} ,,,,2{ 4321 eeee  is a frame for V, with bounds A = 1 and B = 4

4. ...} ,
4

,
3

,
2

,{ 432
1

eee
e  is a complete orthogonal basis for V, but not a frame

In infinite-dimensional Hilbert spaces, therefore, a family of vectors may be complete and not
yield a stable signal representation. For more examples and explanations, see Strohmer
(1995). Also, one can easily verify that a finite set of N vectors Njj ≤≤1}{ϕ  is always a

frame for the Hilbert space generated by their closed linear span, regardless of their linear
independence or not (Mallat, 1998). This last fact will be used later on in section 3.3.

3.2  Practical Computations Using Frames

In order to recover a signal f  from its frame coefficients >< jf φ,  we should first

analytically pre-compute the dual frame components jφ
~

 according to (3.5), and then we can

reconstruct f  using the sum

∑ ><=
j

jjff φφ ~
 ,                      (3.8)

Fortunately, the above computational scheme is greatly simplified when the frame bounds A
and B are equal (tight frames), in which case we have the simple relation (Daubechies et al.,
1986)

jj A
φφ 1

    
~ =                   (3.9)

Within the context of computationally efficient tight frames, the major mathematical
developments that took place during the last decade have resulted in two main frame families

for various types of Hilbert spaces (including 2L  and Sobolev spaces). These two families are
widely known as: (i) Weyl-Heisenberg or Gabor frames, and (ii) wavelet or affine frames.
The first type basically corresponds to a discretized, windowed Fourier transform for the
signal f , with the individual frame components generated by a simple translation and
modulation of a basic window function w. For more details, see Daubechies et al. (1986), and
Benedetto and Walnut (1994). In the one-dimensional case, the Gabor frames have the general
form

xoik
okn enuxw

ξφ )(, −=                 (3.10)
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where now the frame components depend on two discrete indices (n,k). The basic sampling
intervals ou  and oξ  are adjusted to the space-frequency spread of w(x).

The second family of tight frames (wavelet frames) was essentially developed over the last
few years in order to overcome certain limitations for the resolution properties of the space-

frequency Gabor spectrum 
2

,, >< knf φ . In this case, instead of a modulation, the basic

window function w(x) is dilated and translated to generate the various frame components, i.e.

)( 2/
, k

k
ok

kn
a

anux
wa

−
= −φ                 (3.11)

where again the parameters ou  and a  depend on the space-frequency localization of the

selected window w(x). More details on wavelet frames can be found in Daubechies et al.
(1986), Daubechies (1990, 1992), and Benedetto (1994). Note that the generating window
function w(x), as well as the discretization parameters ( ou , oξ , a ), should satisfy certain

conditions in order for (3.2) to be valid with BA = , and they cannot be arbitrarily selected for
either the Gabor or the wavelet frame case. In Daubechies et al. (1986) and Daubechies (1990,
1992), sufficient conditions are given in order to build window functions w(x) that generate

either a Gabor or a wavelet tight frame in 2L  Hilbert spaces. Furthermore, these conditions
allow us to construct generating functions w(x) which are: (i) smooth (differentiable), and (ii)
well localized in both space and frequency domain sense. The first property is important when

we try to study the Gabor or wavelet spectrum 
2

,, >< knf φ  for signal analysis purposes,

since the use of a discontinuous w(x) may introduce artificial high-frequency content in the
spectrum which can ‘distort’ the image of the analyzed signal. As for the second property, the
localization properties of the frame components }{ ,knφ  allow us to get a closer look at the

local details of the signal, avoiding a simple and vague ‘global averaging’ that it is usually
obtained when we use non-localized reconstruction components (e.g., infinite sinusoids in
classic Fourier signal analysis).

It should be mentioned that Gabor and wavelet frames }{ ,knφ  have also been constructed for

the general, ‘non-tight’ case. In the Gabor case, we are furthermore faced with the pleasant

result that the dual frame }
~

{ ,knφ  will too be comprised of translations and modulations of a

‘dual window’ function w~  (Mallat, 1998; p.143). However, the same does not apply in
general for the wavelet frame case; for more details, see Daubechies (1990, 1992).

In certain applications, the frame vectors jφ  may depend on the specific analyzed signal f ,

and they cannot be arbitrarily chosen from a pre-determined Gabor or wavelet frame
‘dictionary’. A classic example is the frames associated with irregular sampling problems
(Duffin and Schaeffer, 1952; Feichtinger and Grochenig, 1994), where every frame
component depends on the specific location of each sample value >< jf φ, . If the sampling

grid varies from signal to signal this modifies the frame vectors, and it is then highly
inefficient to compute the dual frame for each new signal. A detailed overview of various
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numerically efficient, iterative algorithms that can be applied in such cases is given in Mallat
(1998, p.135).

One of the main practical advantages of frame decompositions is that their redundancy
becomes very useful in reducing possible additive noise in the frame coefficients >< jf φ, ,

and it significantly increases the robustness of the signal reconstruction, as compared to
‘minimal basis’ reconstruction schemes. These issues have been studied in detail mainly in
the signal and image processing community, where frames are often used for high precision
analog-to-digital conversion based on oversampling. For more details, see, e.g., Benedetto
(1998), and Cvetkovic and Vetterli (1998).

3.3  Frames and Linear Approximation in Hilbert Spaces

After the preceding brief overview on the theory of frames, let us now try to reveal their
relevance with respect to the original approximation problem of section 2. Since a finite set of
N vectors is always a frame for the space generated by their linear combinations, the set of the
observational representers ℑ∈nng }{  will constitute also a frame for the Hilbert subspace

HV ⊂  (solution space). The general solution for the unknown field, according to eq.(2.4),
will thus be just an expansion with respect to the ‘observational frame’ }{ ng . Furthermore,

the unknown coefficients }{ na  of this expansion, obtained from the solution of the linear

system (2.6) by either (2.9) or (2.11), will correspond to the optimal/stable ones implied by
frame theory. In order to better see this, let us denote by g the N×1 vector of the observational
representers, i.e.

[ ]T1    Nj ggg ��=g                   (3.12)

Each component jg  of the observational frame }{ ng  can be expressed with respect to the

unique dual frame }~{ ng  according to the equation (see section 3.1)

ℑ∈∀><= ∑
ℑ∈

jgggg
n

nnjj         ~,                    (3.13)

or, by using matrix notation

Ggg TT ~    =                 (3.14)

where

[ ]T1
~~~    ~

Nj ggg ��=g                   (3.15)

and G is the symmetric matrix given in eq.(2.6). Also, the general solution in eq.(2.4) can be
written in the equivalent vector form

agT
V         ˆ == ff                 (3.16)
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which, using eq.(3.14), takes the form

Gag T
V

~        ˆ == ff                 (3.17)

Now, if we substitute the product Ga according to eq.(2.6), we finally get

∑

∑

∑

ℑ∈

ℑ∈

ℑ∈

><=

><=

><===

n
nn

n
nn

n
nn

ggf

ggf

ggfff

~,                            

~,                            

~,    ~        ˆ

V

V

T
V bg

                (3.18)

Thus, the linear approximation f̂  of the unknown field is reduced to a simple frame

expansion for its recoverable part Vf  in the finite-dimensional Hilbert subspace HV ⊂ . The

linear operator U , see eq.(2.8), will be a frame operator for the subspace V and its pseudo-

inverse 1~−U , see eqs.(2.10) and (3.1), is thus always continuous (stable). There are two

different but equivalent ways to view the numerical computation of the approximation f̂ ,

which both require the calculation of the N×N pseudo-inverse matrix +G . In particular, we
can either compute the projections (frame coefficients) of f  with respect to the dual frame

}~{ ng  of the observational representers }{ ng , according to the scheme

><=><→+
jj gfgf ~,      ~,               VbG                           (3.19a)

or we can compute the dual frame components jg~  using the formula

jg~             T →+Gg                           (3.19b)

In either case, the final solution will always be given by the general vector form

bGg += T    f̂                           (3.19c)

Of course, when }{ ng  are linearly independent then the matrix G will be invertible, and the

last three equations are simplified accordingly by using 1−+ =GG . Furthermore, in this case
the sets }{ ng  and }~{ ng  will constitute a pair of biorthonormal Riesz bases for the solution

space V (see, e.g., Young, 1980).

The use of frame theory shows us that the stability of the linear approximation problem in an
arbitrary Hilbert space H is always guaranteed, as long as we deal with a finite amount of data



19

>< ngf , . Although this result may seem adequate for real-life applications, it actually opens

new interesting problems and questions related to the convergence of the approximation f̂
towards the unknown field f , as well as to the original setup of the approximation problem
(e.g., selection of the space H and its associated inner product, type of the observational
representers ng , invariance properties of the solution, etc.). In particular, the convergence

problem should not be viewed just as a single ‘advanced theoretical detail’, since the highly
increasing flow of various observations for the Earth’s gravity field that takes place today,
makes convergence considerations especially important in both theoretical and
practical/computational sense.

Regardless of the choice of the Hilbert space H in which the linear approximation takes place,
a necessary condition for convergence is that the closed linear span V of the observational
representers }{ ng  tends to H, as the amount of the discrete data nb  increases. Even if the last

condition is satisfied, the structure of H and/or the structure of the ‘observational modelling’
(i.e., form of the various s’ng ) may be such that the observational frame }{ ng  becomes less

and less stable as the data density increases. Although the system }{ ng  would be constantly a

frame for every finite amount of observations, its bound values A and B may converge rapidly
towards 0 and ∞  respectively, for high data density. This can cause serious numerical

problems in the computation of the matrices +G  or 1−G , making the whole approximation
procedure highly ill-conditioned. More importantly, in the limit where we consider infinitely
dense data, the frame bounds can either reach the values 0=A  and/or ∞=B , which makes
the recovery of f  from the infinite observations >< ngf ,  a completely unstable process.

This does not mean, however, that f  will not be uniquely defined from its ‘very dense

values’ >< ngf , . It just means that the approximation algorithm employing the available

discrete data (see, eq.(3.19c)) cannot be reduced to a well-defined signal description when the
data become infinitely dense, and convergence therefore cannot be established. An
illuminating example is given below.

3.4  An Example

A very classic example of the above situation can be found in Mallat (1998, p.144). One
other, more technical example arises when we consider the linear approximation of a
bandlimited signal from its regularly gridded samples. The general Hilbert space H is now a
specific Paley-Wiener (PW) space of bandlimited functions. Without loss of generality, let us
assume that this PW space corresponds to functions bandlimited inside the interval [-π,π]. In
this case, the sampled values )( xnf ∆  of the unknown field PW)( ∈xf  take the inner product
form

>∆−<=∆= )(sinc ),(    )(    xnxxfxnfbn                 (3.20)

where ∆x denotes the available grid spacing, and the inner product < , > corresponds to the

standard 2L  definition. For simplicity, we will assume that the sampling interval has the

dyadic form kx 2=∆ , where k is an arbitrary integer, which nevertheless does not destroy the
generality of the following results.
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When k > 0, the system of the observational representers, Z)}2(sinc{ ∈−= n
knxs , is always

a tight frame for the linear subspace V which is spanned by the family s. Note that the set s
cannot cover the whole original Hilbert space PW, since that would require k ≤ 0. Its frame
bounds are 1== BA , and thus s provides a complete orthonormal set for the subspace V. In
such case, no stability problems will arise under the general approximation procedure of
section 2.

For k = 0, the observational representers Z)}(sinc{ ∈− nnx  will again provide a tight frame

with 1== BA , but now they can span the whole Hilbert space PW. The approximation
procedure of section 2 would be reduced to a simple, errorless reconstruction formula for the
unknown field (Shannon’s sampling theorem). However, when the integer sampling

parameter k starts to decreases (k < 0), then the system Z)}2(sinc{ ∈− n
knx  becomes an

overcomplete tight frame for the whole PW space, with frame bounds kBA −== 2 .
Decreasing the value of k it basically means that we obtain denser and denser samples each

time. In order to verify the value k−2  for the two equal frame bounds, we shall use the
fundamental relation that defines every frame in a Hilbert space, see eq.(3.2). For every
function PW)( ∈xf , we will have

∑∑ =>−<
n

k

n

k nfnxxf
22

)2(    )2(sinc),(                           (3.21a)

Note that we now consider only negative values for the integer parameter k. Let us select, for
example, 2−=k . In this way, eq.(3.21a) yields
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  (3.21b)

which is easily verified from the translation-invariant properties of the 2L  norm and the
orthonormality of the set Z)}(sinc{ ∈− nnx . We can easily generalize the final result of

eq.(3.21b) for any other negative integer value of k, i.e.

222
 2)2(sinc),(      , 0   ,PW )( fAfnxxfkxf k

n

k ==>−<<∈∀ −∑               (3.22)
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In the case of infinitely dense data ( ∞−→  k ) the frame bounds ∞+→=  BA , and the
reconstruction algorithm will completely fail to give a well-defined description of the
unknown field. Following the linear approximation methodology of section 2, there is thus no
way to establish convergence (in the sense of infinitely dense samples) in a Paley-Wiener
space of bandlimited functions.

One could naturally claim that there is no need to consider infinitely dense samples in this
specific example, since bandlimited signals can always be reconstructed without any error
using a finite sampling interval that is less than, or equal to, the Nyquist limit (in the above
example the Nyquist limit is 1=∆x ). In any case, the pedagogical value of the above example
always remains and it lies on the fact that a well-conditioned and convergent linear
approximation scheme, that would use any possible data point configuration, is not always
compatible with the original setting of our approximation problem (selection of H, type of the
observational representers).

3.5  A Note on Ill-Posed Problems

From the discussion given in the previous sections it seems that an arbitrary selection of the
Hilbert space H, in which we choose to put our unknown signal, is not enough to ensure a
well-conditioned linear approximation scheme for any data configuration, and most
importantly it does not provide convergence in the case of infinitely dense data. Although the
selected space H may be perfectly suitable to describe some physical system, its ‘structure’
could pose certain limitations regarding the admissible data configurations that can be used
for a reasonably stable approximation procedure. Generalizing the notion of an ill-posed
problem according to Hadamard (1923), we can say that some additional type of ill-posedness
may exist in the original approximation problem of section 2, which is now related to the
stability condition of the solution for different data configurations, as well as to its
convergence properties for infinitely dense data.

The general solution procedure that was followed in section 2 corresponds basically to a
simple Tikhonov-type regularization, which is needed to overcome the non-uniqueness aspect
of the original underdetermined approximation problem of eq.(2.1). The formalism of frame
theory ensured also that this regularization scheme will always lead to stable solutions for a
given configuration of finite data. But when it comes to considering different possible data
configurations with increasing density and related convergence issues, an additional
regularization of the initial approximation problem may be feasible. Such specific
regularization procedures will be discussed later on in this report. For some general
alternatives, see Nashed (1976).

4.  The Hilbert Space Choice Problem

In this section we will study more closely the general modelling problem for linear
approximation in Hilbert spaces, which was briefly discussed in the previous section. Note
that the modelling issues now do not include the problems mentioned at the end of section
2.3, i.e., it is assumed a-priori that the unknown field does indeed belong to the selected
Hilbert space. In particular, we just try to establish a set of conditions satisfied by the ‘global’
Hilbert space H enclosing all of our unknown signals, that are sufficient to ensure certain
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desirable properties for the solution of the linear approximation problem in both theoretical
and practical sense. Such properties are:

 (i) convergence of the linear approximation f̂  in the case of infinitely dense
data;

 (ii) stable algorithms for the numerical computation of f̂ ; and

 (iii) the level of stability should be independent of the available data

configuration, i.e., the condition number of the pseudo-inverse operator 1~−U
should not worsen as the data density increases.

One additional important property is the invariance of the linear approximation f̂  with
respect to arbitrary affine transformations. Essentially, this will guarantee the independence of
the final estimated field from the reference system used to describe the position of the data
points. For 1D approximation problems, these affine transformations will correspond to
simple translations of the reference system with respect to the data point configuration,
whereas for higher dimensions we should additionally include possible rotations of the
reference system. In order to achieve such affine-invariance properties for the linear
approximation problem, the norm  in the global Hilbert space H should satisfy a

corresponding invariance condition*

22 )Q(  )Q(      , H afnfff =∈∀                       (4.1)

where Q is an arbitrary point in the domain of f , and afn denotes a general affine
transformation. In the one-dimensional case, the last equation will take the form

22 )(  )(      , H τ−=∈∀ xfxff                       (4.2)

with τ  being an arbitrary real number.

It would seem only natural to require that the linear approximation scheme should also satisfy
some kind of scale-invariance. For this type of invariance, a reasonable condition on the norm
of H could be, e.g., for the 1D case,

2
2 )(

1
  )(      , H 

a

x
f

a
xff =∈∀                       (4.3)

where a  is some non-zero scaling factor. In the following, therefore, we will assume that the
norm  in the Hilbert space H satisfies both invariance conditions (4.2) and (4.3). The

derivation of their multi-dimensional counterparts is straightforward and it will not be given
here.

                                                          
∗  Actually, such a norm condition is needed to ensure the invariance of the approximation error ffe ˆ−=  under

arbitrary affine transformations of the reference system.
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4.1  Data Type and Configuration

In the two previous sections, 2 and 3, the available data of the unknown field were assumed to
have the inner product form ><= nn gfb ,  , where ng  are known elements of the global

Hilbert space H. This is the classic modelling approach for the observation equations when we
consider linear approximation problems in Hilbert spaces (Dermanis and Sanso, 1997). The
study of the structure of the space H, that will ensure the solution properties (i)-(iii), requires a
more specific physical meaning for both nb  and ng . In this way, expressions like ‘infinitely

dense data’, ‘increasing data density’, or ‘data point configuration’, could be unambiguously
formulated in proper mathematical terms.

The most straightforward case arises when the data nb  represent point values of the unknown

field f  itself. In such cases the observational representers }{ ng  should correspond to the

actual reproducing kernel (r.k) that is associated with the global Hilbert space H (see, e.g.,
Tscherning, 1986; Moritz, 1980). A point value of the unknown field, at a point Q, can always
be expressed in the linear form

P)QP,(),P(    )Q( ><= Kff                       (4.4)

where )QP,(K  is the reproducing kernel of the Hilbert space H, and the subscript P means
that the inner product < , > is calculated using the point P as the independent variable.
According to the dimensionality of the problem, the points P and Q will depend on one, two,
or more coordinates. In order to keep the notation simple, we will work in the sequel for the
1D case only. The extension into higher dimensions does not produce any conceptual
complications and it will not restrict the generality of the subsequent results.

The consideration of different configurations for the point values )Q( nf  is also greatly

simplified if we work with regularly gridded data, i.e., )()Q( xnff n ∆= . In this way, cases of

increasing data density, as well as limiting cases of infinitely dense data, can be simply
considered by changing the value of the single sampling parameter ∆x. Hence, in the
following we will deal with discrete data of the unknown field H∈f  that assume the form

>∆<=∆= ),(),(    )(    xnxKxfxnfbn                       (4.5)

where the range (n) of the available values may be finite or infinite.

4.2  Conditions for Stable and Convergent Linear Approximation

Let us assume that we have a specific configuration of gridded point values )( xnf ∆  for an
unknown field f  belonging in a general Hilbert space H with reproducing kernel ),( yxK .

Following section 2, the solution space HV ⊂∆x  of the linear approximation problem will be

the closed linear span of Z),( ∈∆ nxnxK . Since the solution space is a closed linear subspace

of the global RKHS H, it will also be a RKHS itself with its reproducing kernel being
generally different from the global kernel ),( yxK ; see, e.g., Aronszajn (1950). In order to
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have a stable approximation scheme (for the given data configuration ∆x), we know that the
following inequality should be satisfied for every function xxg ∆∈ V)(  (see, section 3):

2

Z

22      ),(),(     gBxnxKxggA
n

≤>∆<≤ ∑
∈

                  (4.6)

where +∞<< BA,0 ; i.e., the translates of the reproducing kernel ),( yxK  should constitute a

frame for the space x∆V  generated by their linear combinations. We can further simplify

(4.6) using the reproducing properties of ),( yxK . In this way, for stable approximation, all

the functions )(xg  of the solution space x∆V  should satisfy the relation

HV  )(               )(     2

Z

22 ⊂∈∀≤∆≤ ∆
∈
∑ x

n

xggBxnggA                   (4.7)

The left part of the inequality (4.7) means that the functions of the solution space that take
zero values at the data points, should all be identically equal to the zero function. As a result,

x∆V  should not contain signals like the one shown in figure 4.1.

Figure 4.1: Non-acceptable function for the solution space x∆V  in the case of stable

approximation

As the data configuration changes (varying sampling interval ∆x), the solution space x∆V

changes accordingly. In order to ensure that the stability of the linear approximation not only
remains, but also it does not become worse, the finite frame bounds A  and B  in (4.7) must
be independent of the sampling interval ∆x. Let us denote by x′∆V  the solution space

corresponding to a new data configuration, using sampling interval xx ∆≠′∆ . To keep the
same level of numerical stability in the linear approximation, we should require that all
functions )(xh  of the new solution space satisfy the inequality

HV  )(                  )(     2

Z

22 ⊂∈∀≤′∆≤ ′∆
∈
∑ x

n

xhhBxnhhA                   (4.8)

How is it possible to satisfy both (4.7) and (4.8) in the same global Hilbert space H, for every
value of the new sampling interval x ′∆ ? An easy and straightforward way is to require that

∆x 2∆x-∆x
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the two different solution spaces, x∆V  and x′∆V , are related through a simple isometric

scaling, i.e.

)( )(    )(     :  V)(     , V)( 2/1 x
x

x
g

x

x
xhxgxh xx ′∆

∆
′∆

∆=∈∃∈∀ ∆′∆                   (4.9)

Indeed, if equations (4.7) and (4.9) hold true, then equation (4.8) will also be satisfied by
taking into account the isometric scaling property of the norm in the Hilbert space H; see,
eq.(4.3).

A non-varying stability level for the linear approximation problem would require, therefore,
that all the different solution spaces x∆V  (for different data configurations ∆x) are just scaled

versions of each other, according to the isometric transformation (4.9). Each of these solution
subspaces is a reproducing kernel Hilbert space itself, with its reproducing kernel ),( yxK x∆
depending of course on the sampling interval ∆x. The above scaling condition between the
various spaces can be equivalently expressed as a scaling condition between their
corresponding reproducing kernels. In this way, the r.k of every solution space x∆V  should

have the following form for non-varying stability in the linear approximation:

),( 
1

    ),(
x

y

x

x
K

x
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=∆                 (4.10)

where ),( yxKo  is the r.k corresponding to the solution space for a normalized data sampling

interval 1=∆x . According to the scale-invariance property of the norm  in the Hilbert

space H, imposed by eq.(4.3), all the different ),( yxK x∆  will satisfy also the equation

constant    ),( =∆ yxK x                 (4.11)

where the constant at the right hand side is independent of the sampling interval ∆x. The norm
operator in (4.11) should be applied twice to the reproducing kernel, first considered as a
function of x  only, and then as a function of y .

The fulfillment of the third property for the linear approximation problem (i.e., convergence
in the case of infinitely dense data) requires of course that

H    Vlim
0

=∆→∆ x
x

                (4.12)

which can also be written in terms of the reproducing kernels of the corresponding spaces as

),(    ),(lim
0
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                (4.13)

Using eq.(4.10), the final condition (4.13) takes the form
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We have finally derived a sufficient condition for the global Hilbert space H, in order for the
linear approximation problem to satisfy the three fundamental properties stated in page 39. In
doing so, we needed also to impose a certain scale-invariance property for the norm in H.
Note that other types of scale-invariant norms, not necessarily the same as in (4.3), may be
introduced and used for the modelling of the Hilbert space H. In such a case, we should
modify accordingly the isometric scaling (4.9) for the solution spaces, as well as the condition
(4.10) for their reproducing kernels. An analogous change will also occur in the final
condition (4.14).

Equation (4.14) gives the general form of the r.k that an ‘optimal’ Hilbert space should have.
The term ‘optimal’ is meant in the sense of the three basic properties (i)-(iii) (see, page 39), as

well as with respect to a specific scale-invariance condition imposed for f̂ ; see eq.(4.3). It is

seen, however, that this optimal reproducing kernel ),( yxK  will not be a proper function in
the usual sense. As a matter of fact, ),( yxK  will have all the characteristics of the classic
Dirac’s delta distribution )( yx −δ . This type of ‘function’ is a rather complicated notion,
defined as a limiting process on well-behaved kernels (e.g., Gaussian, Dirichlet, Fejer, etc.),

and being particularly useful for its reproducing properties under the standard 2L  inner
product, i.e.

)(     )( )(             )()( 

 -

2 yfdxyxxfLxf =−ℜ∈∀ ∫
∞+

∞
δ                 (4.15)

For more details, see, e.g., Gelfand and Shilov (1964), Debnath and Mikusinski (1999), and
Walter (1992a). Our ‘delta’ kernel ),( yxK , defined by the combination of equations (4.10),
(4.11), and (4.14), will even be more general than the classic )( yx −δ , in the sense that its
reproducing properties should hold under an arbitrary inner product definition*. Hence, the

)(2 ℜL  space can be considered just as a single member of a more extended family of Hilbert
spaces, whose r.k’s can take the form of the limiting process described  above. The norm in
every space H of this family will satisfy the isometric condition (4.3), and each such H will
make a possible candidate for modelling our unknown signals in order to achieve constantly
stable and convergent linear approximations. More details and explanations will be given in
section 5.

                                                          
* The only restriction on the inner product >< gf ,  in the Hilbert space H is that a scale-invariance condition of the form

(4.3) has to be satisfied by the induced norm ><= fff ,  
2

.
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4.3  Remarks on Previous Methodologies

The issues related to the stability and the convergence of the linear approximation problem in
Hilbert spaces have been extensively discussed in the geodetic literature. Their importance
regarding the optimal estimation of the anomalous potential of the Earth from discrete
measurements was first pointed out by Eeg and Krarup (1973). The following quotation is
taken from the concluding remarks in their classic publication:

“ No doubt the less satisfactory point in integrated geodesy is that of the choice of the norm; the
result is only defined when the norm has been chosen; it depends on the norm; and the choice of the
norm is to some extend arbitrary.
… we could ask: under which conditions will the solution in integrated geodesy converge to the
correct result independently of the choice of the norm when the observations are correct and their
number increases without limit? This should give conditions about the class of norms from which the
choice may be made and about the nature and distribution of the observations. In order to be
meaningful, this question must be modified so as to demand not only convergence but also stability,
i.e., the results must depend continuously on the observation data.”

Numerous theoretical studies exist for the convergence problem in collocation; see, e.g.,
Barzaghi and Sanso (1986), Moritz (1976), Sanso and Tscherning (1980), Tscherning (1978).
A common characteristic in all these studies is that they rely upon rather strong assumptions,
which restrict considerably the validity of the convergence results. Furthermore, these
assumptions create new and even more difficult questions that need to be answered for a
complete and rigorous treatment of the problem. In particular, the first standard assumption in
these convergence studies is that the observational representers in the Hilbert space, within
which the convergence problem is studied, are always linearly independent so that the matrix
G in eq.(2.6) is always non-singular. Such an assumption is supposed to hold even for very
dense data point configurations (i.e., ε-net configurations; see Moritz, 1976), which are
considered sufficient to ensure the full recovery of the unknown field. In this spirit there is
also the underlying assumption that the observational representers, corresponding to such
sufficiently dense data point geometries, provide a complete system of independent base
functions for the whole Hilbert space H within which we model our unknown signals
(Tscherning, 1978).

The above, briefly described, general setting for the convergence issue in collocation implies
basically that there should exist a close connection between the adopted reproducing kernel
and the overall resolution properties of the signals that belong in the corresponding Hilbert
space. In other words, for a given Hilbert space H with reproducing kernel )QP,(K , we

should be able to identify a point distribution }Q{ i  such that the functions )QP,( iK

constitute a complete system of independent base elements (i.e., basis) for H. Every other data
point configuration }Q{ i′  that violates the linear independence condition for )QP,( iK ′  is

considered unacceptable and it cannot be incorporated in the approximation framework. In
this way, apart from the unpleasant result that we cannot establish some kind of convergence
for infinitely dense data, we are additionally faced with a restriction problem for the
admissible spatial configurations of data points. But is it reasonable to use a reproducing
kernel based on pre-determined ‘sampling scenarios’ for the unknown field, excluding other
possible data configuration schemes with varying spatial density that may arise in practice?
Furthermore, even if the answer is yes, how are we going to a-priori select/determine the
resolution properties of the unknown signals that should be implicitly associated with the
form of the reproducing kernel (i.e., spatial configuration of the ‘ideal’, sufficiently dense
point distribution }Q{ i , actual form of the corresponding complete system )QP,( iK )?
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In essence, the methodology that has already been applied for establishing the convergence
properties of collocation in a Hilbert space H, leads back to its original major problem: the
reproducing kernel choice problem. The reproducing kernel in H is supposed to dictate a
certain convergence scheme, in the sense that (Moritz, 1976)

 )QP,(    lim    )P(       H)P( 
1
∑
=→∞

=∈∀
N

i
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N
Kaff                 (4.16)

where the coefficients ia  are obtained from the solution of the non-singular system
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Thus, the critical issue that will control the convergence (and the stability) of the linear
approximation, becomes the spatial point distribution }Q{ i  for which (4.16) and (4.17) are

satisfied. It is a rather challenging and (to our knowledge) relatively unexplored mathematical
problem to try finding, for a given reproducing kernel )QP,(K , its associated point

distribution }Q{ i  that can provide completeness and linear independence in the

corresponding Hilbert space H; for some special cases, see Nashed and Walter (1991). It is
also worth mentioning that the convergence setting, expressed through the last two equations,
corresponds clearly to the search of a sampling theorem in the underlying Hilbert space,
where the sampling functions will be given by the general formula:

∑
=

−
→∞

=
N

i
i

N
j jiKS

1

1]),([ )QP,(   lim    )Q,P( G                 (4.18)

It is intuitively obvious that the use of a smooth reproducing kernel, with a sparse }Q{ i  point

distribution associated with it, will limit our modelling capabilities for the gravity field to
correspondingly smooth signals, which may not be compatible with dense data sets (see also
the remarks in section 2.3, pp.21-22). On the other hand, if we want to increase the resolution
content of the signals in the adopted Hilbert space H, we have to choose a rougher
reproducing kernel )QP,(K  with a denser ‘optimal’ }Q{ i  point distribution. It is less

obvious, however, that the use of ‘higher-resolution’ reproducing kernels in conjunction with
sparse data point configurations (relatively to the spread of )QP,(K  or the density of }Q{ i ),

can result in minimum-norm interpolations that may be completely erroneous.

An example of such situation is illustrated in figure 4.2, where 13 point gravity anomaly
values, with a normalized sampling interval 1=∆x , are used to determine linear
approximations of the underlying gravity anomaly signal using two different reproducing
kernels.
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Figure 4.2: Minimum-norm collocation using a smooth r.k (lower graph) and a higher-
resolution r.k (upper graph). The dots represent the data points.

In the one case (upper graph) the used reproducing kernel corresponds to the Hilbert space of
bandlimited functions inside the interval )2,2( ππ− , whereas in the second case (lower graph)
the minimum-norm interpolation takes place in the Hilbert space of bandlimited functions
inside the interval ),( ππ− . Although the first RKHS is capable of providing signals with
higher resolution than the second RKHS, its use with a sparse data point distribution will
produce a minimum-norm approximation for the unknown field that contains artificial details
which cannot be justified from the available data, as it is seen from the irregular signal
variations occurring between the data points. On the other hand, the use of a smoother RKHS
in the second case results to a more reasonable approximation scheme, which ‘merges’ the
spatial resolution of the available data points with the resolution of the signals in the RKHS in
a certain optimal fashion (i.e., in this specific example we have just an application of
Shannon’s sampling theorem).

In every convergence problem in approximation methods the central role is always played by
the notion of a correct or true solution for the unknown field we try to approximate. Unlike
the framework and the philosophy of pure mathematics, in physical applied sciences (like
Physical Geodesy) the correct solution is just a model obtained by simplifying in some way
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physical reality. In Sanso’s (1987) words: ‘this is what we can do at most’. When we consider
the deterministic collocation concept for our approximation purposes, the modelling takes the
form of a specific Hilbert function space H with an associated reproducing kernel. As it was
explained in the previous paragraphs, however, there will exist a certain trade-off among the
overall signal details that this model can provide, the quality of the approximation for sparse
data point configurations (relatively to the implied model resolution), and the existence of a
solution for data sets denser than the implied model resolution (see also, Rummel et al.,
1979). This would suggest that we should change our modelling choice for every new data
point configuration in order to construct good and reasonable signal approximations that
balance between the data and model resolution. But in this way the convergence problem
becomes meaningless since the global RKHS H will be different for every data set!

5.  The Connection with the Multiresolution Concepts

The final result of section 4.2 may seem a bit puzzling, and even contradictory with the
original setting of the problems discussed therein. In essence, we have shown that in order to
achieve

•  a constantly stable linear approximation for increasing regular data )( xnf ∆
density, and

•  convergence for infinitely dense data,

then the Hilbert space, within which we model our unknown signals )(xf , should not possess
a reproducing kernel! That is because ),( yxK , as determined by the limiting procedure in
section 4.2, could not definitely belong in any reasonable function space of ‘natural signals’
capable of describing physical phenomena like Newtonian gravity fields, and therefore it is
not a reproducing kernel in the strict sense. On the other hand, this peculiar behavior of the
optimal ),( yxK  is a perfectly acceptable mathematical structure, that lies in the vast field of
generalized functions and distributions (Schwartz, 1951; Sobolev, 1964). Just like we use the

classic Dirac distribution )( yx −δ  as a reproducing kernel for 2L  signals, in the same spirit
we can also accept the kernel ),( yxK  given by (4.14) as a generalized r.k for a specific class

of Hilbert spaces (including 2L ) with scale-invariant norms according to eq.(4.3).

What is the important characteristic of all these Hilbert spaces admitting the generalized form
(4.14) as their reproducing kernel*? Basically, a Hilbert space H with such a reproducing
kernel should be interpreted as an infinite-resolution function space. Regardless of its
topological structure (i.e., the specific type of the scale-invariant norm ), the value of an

arbitrary signal at a point Q cannot be generally determined by its behavior in the
neighborhood of Q. That is because no well-behaved kernel H),( ∈yxK  exists which, when
applied to an arbitrary H)( ∈xf , could recover the exact same )(xf . However, this does not
mean that H will not contain smooth functions, whose value at a specific point could be
predicted arbitrarily well from set of values at a dense network of adjacent points.

                                                          
* Note that the term ‘reproducing kernel’ is now used in a non-rigorous sense.
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These infinite-resolution spaces provide an ideal ‘environment’ to model signals with highly
irregular patterns, where abrupt changes may be expected between nearby points. In view of
the rapid increase in gravity field data resolution that takes place today, the recovery of such
irregularities in the gravity field signals not only does it seem possible from an observational
point of view, but it is actually extremely useful in certain types of applications (e.g.,
geophysical inverse problems, geodynamical studies, etc.). Thus, it would seem only natural
to use a Hilbert space setting that is actually capable of providing signals with such erratic
behavior. Extreme cases of signals with singularities should not also be excluded from our
approximation framework, since such situations may very well appear in the gravity field
(see, e.g., Bochio, 1981, 1983), as well as in other signal processing applications (see, e.g.,
Mallat and Hwang, 1992).
A very important problem, however, still remains. Since the optimal (with respect to all these
issues discussed so far) Hilbert space should not possess a proper reproducing kernel, how are
we going to actually construct the symmetric matrix G and compute the linear approximation

f̂  according to eq.(3.19c)? In such cases the observational representers

),(    )( xnxKxgn ∆=                   (5.1)

are not usual functions, and linear expressions of the form (3.19c) cannot be properly defined
and used for the numerical computation of the approximated field. The same situation also
appears when the available observations are not necessarily point values of the unknown field,
but other linear functionals as well. The solution to this problem is discussed below.

5.1  Linear Approximation as a Multiresolution Approximation

It would be useful, at first, to understand in simple terms why the minimum-norm solution of
the linear approximation problem would fail to give a reasonable answer, when the selected
Hilbert space H has the infinite-resolution characteristics discussed above. In this case the
evaluation functional in H is not bounded (continuous), which means that there is no 0>C
such that the following inequality:

H     )P( fCf ≤                       (5.2)

will hold for every H∈f  and for every point P in the domain of f  (see, e.g., Moritz, 1980).

The invalidity of (5.2) ensures that there will exist functions in H with 0H =f  but there

may be points in their domain for which 0)P( ≠f . In other words, isolated singularities are
acceptable in infinite-resolution Hilbert spaces, and they are topologically equal to the zero
function. Therefore, the minimum-norm function that assumes given values at a discrete
network of data points will be the zero function, and that makes minimum-norm solutions
theoretically and computationally useless. As it was explained in the previous section,
knowledge of f  at a set of discrete points cannot generally provide any information
regarding its behavior in the neighborhood of these points, and this fact is immediately
reflected to the inadequacy of (3.19c) to yield a proper numerical result. A more rigorous
mathematical treatment requires the incorporation of concepts from measure theory (see, e.g.,
Halmos, 1991) which will be avoided here.
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The above situation should not be perceived as a ‘deficiency’ of the infinite-resolution Hilbert
space H, but it is merely a modelling requirement. In order to compute a reasonable linear
approximation for an unknown field from its discrete values, we have to develop a different
methodology which will not employ the generalized reproducing kernel of H, and which will
satisfy the crucial properties (i)-(iii) stated in page 39. Such a methodology will now be
briefly described.

The final result of any linear approximation procedure in a Hilbert space H is always a
bijective linear mapping T between an observation space Λ and a solution space V ⊂  H. The
observation space contains different data sets (b) corresponding to different signals from the
global space H. All these data sets are associated with a specific data point configuration,
which in this report has been always assumed as a sequence of gridded sampled values with a
certain resolution level x∆ . In order to have a stable bijective mapping T , the following
boundeness property for the norm in Λ should be satisfied:

Λ∈∀∈∀≤≤ ΛΛ bbb    ,  Vˆ                         ˆ       
H

fBfA                   (5.3)

where b  denotes the data set obtained from an unknown field H∈f , f̂  denotes the linear
approximation of f  computed via the linear mapping T , and A, B are positive constants. The
formula (5.3) is just an alternative definition for an isomorphic mapping between the solution
space V and the observation space Λ (Holschneider, 1995; p.183).

For all practical purposes it is convenient to choose the norm in Λ as the standard 2l  norm for
discrete sequences, and thus the observation space can be always viewed as a space of square-
summable sequences. If we further accept the fact that the observations in the various data
sets can produce any square-summable sequence (i.e., remember that the data sets are
obtained from infinite-resolution signals in general, and no a-priori smoothing restrictions are

imposed), then the observation space can be regarded as the whole )(2 Zl  Hilbert space. This
of course does not exclude cases of finite sets of sampled data. The situation is illustrated in
figure 5.1.

Figure 5.1: Linear Approximation as an isomorphic mapping T
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So far we have identified a stable linear approximation procedure, in an infinite-resolution
Hilbert space H, as an isomorphic linear mapping T  between a solution space V ⊂  H and the

observation space )(2 Zl  which contains regularly sampled values of the unknown signals in
H. If we also require that T  is a translation-invariant approximation operator, then V has to be
generated by a family of linearly independent functions of the form Znxnx ∈∆− )(1ϕ . The

proof is very simple and it is omitted (see, e.g., Mallat, 1989; Walter, 1992b). The solution
space V (i.e., its generating function )(1 xϕ ), as well as the properties of the isomorphism T ,

will depend on some optimal criteria that we have chosen a-priori for our approximation
procedure.

After having established the structure of a single solution space V, corresponding to a specific
data resolution level x∆ , let us now see what additional properties we should require when
the data density changes. For a new resolution level x ′∆ , we should again be able to obtain a
similar isomorphic mapping T ′  between a new solution space HV ⊂′  and the observation

space )(2 Zl . Note that the observation space contains again all square-summable sequences,
obtained though with a different sampling rate from the unknown signals. In order to maintain
the same stability level in the new isomorphism T ′  (which should also obey the same optimal

criteria as T ), equation (5.3) must now be satisfied for every Vˆ ′∈f . It is trivial to prove that
this will be true, under the scale-invariance condition (4.3) for the norm in the global Hilbert
space H, when the two solution spaces ( V  and V ′ ) are related through the isometric scaling
of eq.(4.9). If we combine this last property with the requirement of translation–invariance for
the new isomorphism T ′ , then the new solution space V ′  should too be generated by a family
of linearly independent functions of the form Znxnx ∈′∆− )(2ϕ , such that:
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In essence, the linear approximation procedure should employ the same type of isomorphic
mapping at different scales, depending on the spatial resolution x∆  of the available sampled
data. Thus the underlying approximation model of the procedure described above can be
expressed in the general linear form

∑ −
∆

=
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n n
x

x
axf )(     )(ˆ ϕ                     (5.5)

where the unknown coefficients na  are related in a stable and unique way to the available

discrete data )( xnf ∆  of the unknown field. The computation of na  from the data, as well as

the choice of the approximating kernel )(xϕ , should be based on certain optimality principles

imposed for the approximation procedure. In any case, the set of functions Znn
x

x
∈−

∆
)(ϕ

should always constitute a Riesz (stable) basis for their closed linear span, which is nothing
else than the solution space of the linear approximation problem for the specific data
resolution level x∆ . Some interesting details regarding convolution-based approximation
models, like in eq.(5.5), can be found in Unser and Daubechies (1997), and Blu and Unser
(1999a,b).
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It is also natural to impose a certain ‘causality’ principle with respect to the quality of signal
information that we extract from the available data through the isomorphic approximation
mapping. Such a principle can be stated as follows:

xx ′∆>∆′⊂ for         VV                   (5.6)

where V  and V ′  denote the solution spaces for data resolution levels x∆  and x ′∆ ,
respectively. Finally the convergence issue for infinitely dense data requires that

H    Vlim
0

=
→∆x

                              (5.7)

According to the original concept of Multiresolution Analysis (MRA) that was introduced by
Mallat (1989), we can conclude from the previous discussions that a (constantly stable,
convergent, and translation-invariant) linear approximation scheme in an infinite-resolution
Hilbert space H requires, basically, the introduction of an MRA subspace structure in H. The
solution, at each data resolution level x∆ , will then be given by an isomorphic mapping of the
form (5.5), where the kernel )(xϕ  is the one that generates the MRA sequence of subspaces.
In a way, we have ‘re-invented’ Mallat’s MRA concept as a necessary regularization tool for
linear approximation problems in infinite-resolution Hilbert spaces.

5.2  Final Remarks

In section 4.2 it was shown that a constantly stable and convergent (in the sense of infinitely
dense data) linear approximation scheme in a Hilbert space H is generally incompatible with
the existence of a reproducing kernel for H. In the methodology that was used, the only
element that can be considered as being arbitrary is the assumption that the norm in the global
Hilbert space H satisfies a scale-invariance condition; see, eq.(4.3). Under this assumption,
the reproducing kernel of H should have a ‘generalized’ form similar to the Dirac distribution,
in order to maintain stability and convergence. In this way, the Hilbert space H is equipped
with certain infinite-resolution characteristics which were discussed in the previous sections.
This, however, prohibit us from using the well-established methodology of minimum-norm
collocation to compute linear approximations for unknown functions.

Nevertheless, a useful alternative is provided by considering a structured sequence of
multiresolution Hilbert subspaces within the global space H, through which we can construct
our affine-invariant linear approximation via isomorphic mappings from the observation

space )(2 Zl . This sequence will depend on a generating scaling function )(xϕ , and also on a

specific rule according to which the data resolution level jx∆  changes from one solution

space jV  to the next 1V +j . Note that we haven’t even established yet that such a structure

generally exists. From Mallat’s developments, we definitely know that it will exist when we

identify the infinite-resolution space H as the )(2 ℜL  Hilbert space, and when the data

resolution level has the dyadic form j
jx −=∆ 2 ; multi-dimensional extensions are also

possible in this case.
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The properties of convergence and unperturbed stability, however, are not the only benefits
obtained from using this general methodology. What is furthermore achieved is a kind of
‘consistency’ between the data resolution and model resolution. The importance and
implications of this concept within the linear Hilbertian approximation framework have
already been discussed in section 4.3. We should repeat here that by model resolution we
mean the existence in a RKHS of a point distribution }Q{ i  such that the family of

reproducing kernel functions )QP,( iK  provides a stable (Riesz) basis for this space.

Equivalently, we can also define model resolution in a more ‘engineering’ fashion, as the
ability of a Hilbert space to reproduce its elements through a certain sampling theorem
embedded on it. For some interesting aspects on the connection between sampling theorems
and RKHS, see Nashed and Walter (1991). In contrast to the notion of data resolution which
always has an ‘absolute’ meaning (i.e., the sampling interval x∆  between the data points), the
model resolution is more of a ‘relative’ term since its definition depends not only on the
topology of }Q{ i , but also on the actual form of )QP,( iK  or the form of the implied

sampling functions in the corresponding RKHS. Thus, for a specific grid of data values there
may exist many different data referencing models (i.e. RKHSs) that can match the available
spatial grid resolution by having the same underlying sampling point resolution }Q{ i , but

they will all differ in the specific functional forms )QP,( iK  they use to describe the signal

variations between these data points. Note that the notion of model resolution, with respect to
linear approximation problems in Hilbert spaces, does not have yet an established rigorous
definition in the mathematical and/or geodetic literature, and all the previous postulates
represent just the personal view of the authors who have been inspired mainly from the
various theoretical and practical problems existing in deterministic collocation.

In our current, MRA-type approximation framework it may be more reasonable to distinguish
between model and modelling resolution. As modelling resolution we should consider the
model resolution implied in each of the solution subspaces jV . The problem of the existence

of an appropriate reproducing kernel )QP,(jK  in each HV ⊂j , which will control the

modelling resolution at every data resolution level jx∆ , will not be considered here. On the

other hand, the general model resolution should be identified as the resolution of the global
Hilbert space H enclosing all of our unknown signals, which is infinite (i.e., H does not posses
a proper reproducing kernel). The modelling resolution should be always adapted to the
resolution of the available discrete data, and that is exactly one of the roles of the isomorphic
mapping during the linear approximation procedure.

We should mention that the interplay between data resolution and linear approximation of
gravity field signals has already been discussed by Sanso (1987), in an attempt to establish the
equivalence between the ‘model approach’ and the ‘operational approach’ in Physical
Geodesy. Also, K-P. Schwarz in his classic lecture notes (Schwarz, 1984) studied in detail the
relationship between various data types resolution and estimated gravity field quantities, but
his whole analysis was restricted only in a purely Fourier-based setting, using the well-known
Nyquist criterion as the optimal rule to connect data and model resolution.

There still exist various open problems that remain to be solved. The development of actual
algorithms for the numerical computation of the isomorphic mapping T  is one of them. Such
algorithms should be based on specific criteria regarding the properties of the linear
approximation (e.g., the data values in the observation space should be reproduced by the
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approximated field in the solution space). Also, the problem of selecting the generating
scaling function )(xϕ  for the multiresolution subspace sequence needs to be rigorously
explored. In a way, this problem replaces the classic norm choice problem in deterministic
collocation.

6.  Conclusions and Future Work

The central idea of this report was to demonstrate, using appropriate mathematical
formulation, that the multiresolution/wavelet theory lies behind some of the most important
problems encountered in linear approximation methods for Physical Geodesy applications. In
particular, it has been shown that the MRA concept can be actually used as a ‘regularization
tool’ for linear approximation problems in infinite-resolution Hilbert spaces, in order to
ensure unperturbed stability for increasing data resolution and convergence in the sense of
infinitely dense data. At the same time, the standard formulation of minimum-norm
collocation was proven to be insufficient to accommodate these two crucial properties. Some
other important issues, like the consistency between the data and model resolution, have also
been discussed throughout the report.

Although the present work had a purely theoretical character, all the problems discussed
herein are of great importance in practical applications, especially considering the constantly
increasing size and resolution of the available gravity field databases. In this way, the
reformulation of the classic functional approximation methods in gravity field modelling, in
terms of multiresolution approximation in infinite-resolution Hilbert spaces, seems a natural
step. A good starting point will be to consider the well-established multiresolution

approximation theory in 2L  Hilbert spaces, which is actually a very convenient choice with
respect to the use of the always useful frequency-domain formalism.

Numerous theoretical and practical issues, however, need to be resolved in order for the MRA
theory to become a standard tool in gravity field modelling applications. The problem of
selecting an optimal scaling function for the approximation of an unknown 1D field has
already been discussed in Kotsakis (1999a,b) using a statistical collocation approach. The
extension of these developments in multi-dimensional cases remains to be made. Also, the
study of the approximation error within a multiresolution framework is a very interesting and
important topic that should be explored. The inclusion of non-stationary random noise in the
available discrete data, along with the development of optimal noise filtering schemes, are
some additional important problems requiring detailed investigation. Considerably more
difficult are finally the problems of combining heterogeneous types of regularly/irregularly
distributed data in the multiresolution approximation framework, as well as the problem of a
consistent ‘merging’ between global and local multiresolution approximation schemes in a
remove-restore fashion.
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