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Abstract

The purpose of this report is to provide a comprehensive evaluation of geoid models and

study their use in combined GPS/levelling/geoid height network adjustments. The

information obtained from combining the three height data sets (ellipsoidal, orthometric

and geoidal heights) is valuable for many applications and can be more efficient and

accurate than traditional techniques. The development of a new gravimetric geoid model

(GARR98) for Canada and parts of the U.S., created in the Department of Geomatics

Engineering at the University of Calgary is presented herein. In addition, the

methodology applied for the computation of the new geoid model, and the specific data

types that were used, are discussed. GARR98 uses the most current databases available

for Canada, namely new additional surface gravity data, a very high resolution DEM

model, and a more accurate global geopotential model (EGM96). Detailed comparisons

(both absolute and relative) among the new geoid, global geopotential models (OSU91A

and EGM96), the latest GSD95 Canadian geoid model developed by the Geodetic Survey

Division of Geomatics Canada, and GPS/levelling-derived geoidal undulations, are also

presented and explained. Upon the establishment of the accuracy of these geoid models

and the differences between them, a detailed and statistically rigorous treatment of

adjustment problems in combined GPS/levelling/geoid networks is provided. Finally,

some concluding remarks on the findings of this report are included which may give rise

to further studies in this area.
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1.  Introduction

The simple relationship that exists between the three different height types derived from

GPS, levelling, and geoid models has been used for many geodetic applications. The

combination of GPS heights with geoid heights to derive orthometric heights can be used

to eliminate the strenuous and difficult task of precise spirit levelling, especially in

mountainous areas where levelling may not be possible due to the rough terrain and the

lack of control points. This relationship between the different height data has been

employed as a means of computing an intermediate corrector surface used for the optimal

transformation of GPS heights and orthometric heights. Gravimetric geoid evaluation

studies have also been routinely based on the combination of such heterogeneous height

data.

The combination of various height types is unavoidably plagued with the complexities

encountered when dealing with data obtained from different sources such as GPS, spirit

levelling and gravimetric geoid models. In order to take advantage of the benefits

achieved by using these data sets, a detailed evaluation of their accuracy and optimal

means for their combination must be performed. In response to this, an evaluation of a

new Canadian geoid and an analysis of combined GPS/levelling/geoid height network

adjustments is presented in this report.

The purpose of this report is twofold. First, the development and evaluation of a new

gravimetric geoid model (GARR98) for Canada, created in the Department of Geomatics

Engineering at the University of Calgary is presented. The methodology applied for the

computation of the new geoid, and the data types that were used, are discussed. GARR98

uses the most current databases available for Canada, namely, new additional surface

gravity data, a high resolution digital elevation model (DEM), and a more accurate global

geopotential model (GM), EGM96. Comparisons among the new geoid, pure GM-

derived geoids (OSU91A and EGM96), the latest GSD95 Canadian geoid model, and

GPS/levelling data, are also presented. Absolute and relative differences at 1307 GPS

benchmarks are computed, on both national and regional scales. These external
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comparisons reveal interesting information regarding the behavior of the Canadian

gravity field, the quality of the geoid models, and the achievable accuracy in view of

future GPS/levelling applications.

The second purpose deals with the adjustment of combined GPS/levelling/geoid (GLG)

height networks. A detailed and statistically rigorous treatment of adjustment problems in

combined GPS/levelling/geoid networks is given in this report. The two main types of

‘unknowns’ in this kind of multi-data 1D networks are usually the gravimetric geoid

accuracy and a 2D spatial field that describes all the datum/systematic distortions among

the available height data sets. Accurate knowledge of the latter becomes especially

important when we consider employing GPS techniques for levelling purposes with

respect to a local vertical datum. Two modelling alternatives for the correction field are

presented, namely a purely deterministic parametric model, and a hybrid deterministic

and stochastic model. The concept of variance component estimation is also proposed as

an important statistical tool for assessing the actual gravimetric geoid noise level and/or

testing a-priori determined geoid error models.

A brief outline of the methodology used for a new gravimetric geoid model created in the

Department of Geomatics Engineering at the University of Calgary will be presented,

followed by an evaluation of the absolute and relative accuracies of the geoid model on

both national and regional scales. Results of a kinematic GPS campaign performed in a

small area just east of the Rocky Mountain region is also included to provide an example

of the type of results that are achievable using the new geoid model. The remaining

sections of this report concentrate on issues related to adjustment problems in combined

GLG networks. Preliminary results from a simple analysis performed using two of the

adjustment methods will also be presented which reveal the interesting nature of

combined GLG height adjustment problems. Finally, some conclusions about the material

presented in this report will be provided which lead to recommendations on future work

on this topic.
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2.  Development of a New Canadian Geoid Model

The benefits achieved from combining GPS measurements with geoid information was

the main motivation behind the pursuit of computing a new gravimetric geoid model for

Canada and parts of the U.S. Since the last Canadian geoid model, GSD95, was created

by the Geodetic Survey Division in 1995 (Veronneau, 1996), new gravity field data has

been obtained which can be used to update the geoid information, resulting in a more

accurate representation of the Canadian region. The geoid heights (N) obtained from this

model could then be used in conjunction with GPS ellipsoidal heights (h), in order to

compute orthometric heights (H) practically everywhere in Canada, as shown in the

simple equation below and depicted in Figure (2.1):

H = h – N     (2.1)

In the past, traditional spirit levelling has been used to obtain height information with

very high accuracy. By nature, spirit levelling is a very time consuming, weather

dependent, costly and laborious task. In addition to these shortcomings, spirit levelling is

not feasible for obtaining absolute heights in large unsurveyed territories, such as

northern Canada, due to the absence of any vertical control. The versatility and accuracy

of GPS has brought to the forefront of the surveying industry the importance of an

accurate geoid that will allow for the use of GPS/levelling techniques as an efficient

alternative over traditional levelling. The following section of this report outlines the data

and methodology used for the development of a new Canadian geoid.

Figure 2.1:  Relationship Between Orthometric, Geoid and Ellipsoidal Heights

H

N h

Earth’s Surface

Geoid

Ellipsoid
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2.1  Computational Methodology

The computation of the new Canadian geoid model (GARR98) was based on the classical

"remove-compute-restore" technique. The underlying procedure can be summarized as

follows:

1) Remove a gravity anomaly field (computed from a global spherical harmonic model

evaluated at the geoid) from Helmert gravity anomalies that are computed from local

surface gravity measurements and digital elevation data. In this way, "residual

Helmert anomalies" are obtained. Faye anomalies were actually used to approximate

the Helmert gravity anomalies.

2) Compute "residual co-geoid undulations" (N∆g) by a spherical Fourier representation

of Stokes’ convolution integral using the residual gravity anomalies.

3) Restore a geoid undulation field NGM (computed from a global spherical harmonic

model evaluated at the geoid) to the residual co-geoid undulations, and add also a

topographic indirect effect term NH (computed from digital elevation data) to form

the final geoid undulations.

The above three steps can be combined in a single formula as follows:

N = NGM + N∆g + NH     (2.2)

The computation of the NGM term was made on a 5’ × 5’ grid, within the following

geographical boundaries: northern N72°, southern N41°, western W142°, and eastern

W53°. This is also the grid configuration in which the final GARR98 geoid heights are

given. The EGM96 geopotential model (complete to degree and order 360) was used for

these computations, according to the following formula (Heiskanen and Moritz, 1967):

∑∑
= =

+=
360

2 0

)(sin )]sin()cos(C[    
n

n

m
nmnmnmGM PmSmRN φλλ     (2.3)
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An initial comparison at the above grid between EGM96 and the OSU91A geopotential

model which was used in the development of the latest GSD95 Canadian geoid, showed

an RMS undulation difference of 97 cm. Further information and tests for the

performance of the EGM96 geopotential model over the Canadian region can be found in

IGeS (1997). Additional comparisons are presented in the following section of this report.

The medium and small wavelength contributions to the total geoid heights were

computed from the local gravity anomaly data, according to Stokes’ formula (Heiskanen

and Moritz, 1967)

∫ ∫∆=∆

Q Q

QQQPQQQPPg ddSg
R

N
λ φ

λφφψλφ
πγ

λφ  cos )( ),( 
4

  ),(     (2.4)

where S(ψ) is the Stokes function, and the local data ∆g are residual Faye anomalies, i.e.

GMFA gcgg ∆−+∆=∆                   (2.5)

In the last equation, ∆gFA are the usual free-air anomalies, c is the terrain correction term,

and ∆gGM is the removed long wavelength contribution of the geopotential model

computed from the expression

( ) ( ) ( )ϕλλ sinP sincos1-nG  nm
0m

n

2n

max

∑∑
==

+=∆
n

nmnmGM mSmCg      (2.6)

where nmC  and nmS  are normalized coefficients from a spherical harmonic series

expansion for the anomalous potential obtained from a global geopotential model data set

(EGM96 or OSU91A) and nmP  are normalized Legendre functions. All the gravity data

were obtained from the Geodetic Survey Division (GSD) of Geomatics Canada in the

form of a 5’ × 5’ grid of mean Faye anomalies, within the same geographical boundaries

mentioned above. This is essentially a smaller part of the gravity grid used in the
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development of the original GSD95 geoid model. The GSD95 gravity grid covered a

slightly larger region, which extended its eastern boundary to W46° and including half of

the Greenland area and most of the Labrador Sea. However, the GARR98 grid

incorporates some newly obtained surface gravity information across British Columbia,

which was not used in the GSD95 solution. The average spacing of the surface gravity

measurements used for the gridding was approximately 10 km on land, and 1 km over the

oceans in Canada. A detailed description of the Canadian gravity database and the

followed gridding procedures can be found in Veronneau (1995 and 1996). A discussion

for the treatment and computation of all the necessary gravity reductions (atmospheric,

free-air gradient, terrain reduction) applied to the original data is included in Veronneau

(1994) and Mainville et al. (1994).

The evaluation of Stokes’ integral (2.4) was performed by the 1D spherical FFT

algorithm (Haagmans et al., 1993), according to the expression

 [ ] [ ]












∆∆∆= ∑
=

−
∆

max

1

cos ),( )( 
4

  ),( 1
φ

φφ
φλφψ

πγ
λφλφ

Q

QQQPQPPg gS
R

N FFF            (2.7)

where the operators F and F−1 denote the forward and inverse 1D discrete Fourier

transform, ∆φ = ∆λ = 5’ is the used grid spacing, and φ1, φmax are the southern and

northern grid boundaries, respectively. The gravity anomaly input grid (∆gcosφ) had 50%

zero padding applied on the east and west edges of the grid, but none on the north and

south sides. This is because equation (2.7) performs the FFT in the east/west direction,

and thus padding is only needed on those two edges to eliminate circular convolution

effects. On the other hand, the values of the Stokes spherical kernel S were analytically

computed at all points of the zero-padded grid, and its discrete spectrum values were

subsequently used in (2.7). Also, no tapering of ∆g was performed, since the long

wavelength part of the gravity anomaly signal had already been removed from the grid

values.
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The shorter wavelength information for the GARR98 geoid model was obtained through

the computation of the indirect effect term NH, induced by using Helmert’s second

condensation method for the gravity data reduction on the geoid (Heiskanen and Moritz,

1967). In general, the formulation of the topographic indirect effect on the geoid,

according to Helmert’s second condensation method, is made in terms of a Taylor series

expansion from which only the first three terms are usually considered:

21       NNNN oH δδδ ++=     (2.8)

Wichiencharoen (1982) and Sideris (1990) should be consulted for all the detailed

formulas. In our case, only the zero-order term

γ
ρπδ

2

  DEM
o

HG
N −=     (2.9)

was used for the geoid computations, since it is the dominant one. The same

approximation was also adopted in the construction of the GSD95 geoid model. The

height data used to evaluate (2.9) were obtained from a 1km × 1km Digital Elevation

Model (DEM) which covered most of the Western Canadian region (N67°, N47°, W135°,

W110°). In contrast to the GSD95 geoid solution, which additionally used the global

ETOPO5-DEM and the Digital Terrain Elevation Data set (DTED-Level 1) to obtain a

total terrain coverage for Canada, no other height data sources were incorporated in the

GARR98 model. However, the DEM file that was used in the GARR98 geoid solution

provided us with a better overall terrain resolution for the Western mountainous parts of

Canada, since it was not restricted only in the Northern British Columbia and in the

Yukon Territory, as it happened with the corresponding 1km × 1km DEM used in the

GSD95 geoid solution (Veronneau, 1996).
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2.2  GARR98

The final GARR98 geoid model on a 5′ × 5′ grid is illustrated in Figure (2.2). Table (2.1)

summarizes the statistics of the GARR98 and the GSD95 geoid models. Note that the

statistics for the GSD95 model refer to its original grid boundaries (N72°, N41°, W142°,

W46°), which differ slightly from the ones used in GARR98.

Table 2.1:  Statistics of GSD95 and GARR98 Geoid models

Geoid model Minimum Maximum Mean σ RMS

All values in metres
GARR98 -47.66 48.46 -14.55 20.30 24.97
GSD95 -49.00 43.88 -15.45 20.04 25.30

Figure 2.2: The GARR98 Geoid Model (contour interval: 2.5 m)
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3.  Evaluation of Various Geoid Models

An important aspect during the development of a new gravimetric geoid for Canada was

its evaluation with already existing geoid models. Comparisons between GARR98 and

other models (GSD95, EGM96 and OSU91A) were conducted in order to assess the

accuracy of the models on both regional and national scales. In addition to inter-

comparisons between models, results for the absolute and relative agreement of these

geoid models with respect to GPS/levelling data are also provided. Finally, a sample of

the achievable orthometric height accuracies resulting by combining GPS heights derived

from a kinematic DGPS campaign and geoid heights, is provided to demonstrate the

feasibility of performing actual ‘GPS/levelling’.

3.1  Comparisons Between Geoid Models

 In order to investigate the quality of the new gravimetric geoid, comparisons between

various geoid models were made by differencing their geoidal undulation values on the 5'

× 5' grid used to compute GARR98 (see Section 2.2). These differences are displayed

graphically on shaded contour plots in Figures (3.1) through (3.3), and their statistics are

given in Table (3.1).

 

 At first, a comparison between the EGM96 and OSU91A global geoid models is made,

and the result is illustrated in Figure (3.1). It reveals the strong effect of the additional

gravity data in the Western and in the Northeastern parts of Canada, which were

incorporated in the development of EGM96. This new gravity data results in up to 10

metre differences in geoidal undulations in Northwestern Canada and the area around

Greenland. Extreme differences are also seen in the Rocky Mountain region due to its

rugged terrain features, which suggests the importance of using dense gravity coverage in

order to recover the small-wavelength gravity field information. The highest level of

agreement between the two global models is found in Central Canada averaging up to 50

cm, which increases to up to 1.5 m in parts of Eastern Canada.
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 Figure (3.2) shows the differences between GSD95 and EGM96, which basically reveal

the medium and small wavelength structure of the Canadian gravity field, combined with

the discrepancies between EGM96 and OSU91A. It should be kept in mind that GSD95

uses the OSU91A model as a reference field. Again, the maximum differences between

the models are seen in the Western mountainous regions, as well as in the Northeastern

areas.

 

The differences between the two gravimetric solutions, GARR98 and GSD95, are shown

in Figure (3.3). The RMS agreement of those two geoid models is at the 37 cm level. The

largest difference values averaging 1-2 m, with a maximum of up to 4 m, are seen in the

Hudson Bay area as well as the shores of the Grand Banks area around the Davis Strait

which is located on the Northeastern coast of Canada. These differences can be partly

correlated to the differences between the two global models (see Figure 3.1), as well as to

the extended gravity grid used for GSD95 up to W46° as opposed to W53° for GARR98.

The geoids have the highest level of agreement in the Canadian Shield area, Central BC,

Southern Alberta, Saskatchewan and Northern Quebec.

 

 Table 3.1:  Statistics for Various Geoid Models and Their Differences

 Geoid model  Minimum  Maximum  Mean  σ  RMS

 All values in metres
 GARR98  -47.66  48.46  -14.55  20.30  24.97
 GSD95  -49.00  43.88  -15.45  20.04  25.30
 EGM96  -48.91  48.50  -15.44  20.04  25.30
 OSU91A  -48.71  44.59  -15.44  20.14  25.37

 Geoid Model Differences
 EGM96-OSU91A  -10.57  6.95  -0.07  0.96  0.97
 GSD95-EGM96  -5.45  5.99  -0.01  0.58  0.58
 GARR98-GSD95  -1.62  3.62  0.00  0.37  0.37

 

 The areas with the highest levels of disagreement are located in the Northwest Territories,

the northern tip of Labrador. The coastal range surrounding the Vancouver area is also

fairly poor in terms of agreement. The range of differences in the Western region is

approximately 25-50 cm in parts of BC and reduces to 0-25 cm moving north. This may

partly be attributed to the higher resolution DEM for these areas, used for the creation of
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GARR98 as opposed to the GSD95 geoid, as well as to the newer gravity information

obtained for GARR98. The effect of the large discrepancies, noted between the two

global models (see Figure 3.1), are also seen on a smaller scale in this western region.

 

 In general, from Figures (3.1) through (3.3), the largest discrepancies between the models

occur in the western and northern parts of Canada. The differences in western Canada

may be due to the Rocky Mountain range, where undulations change quickly due to

terrain effects as noted by the rapid changes visible in the plots. In northern Canada, very

sparse gravity measurements have been gathered, hence the computed gravity anomalies

are poor affecting both the geopotential coefficients and the local geoid models.

 

 

 

 

 Figure 3.1:  Geoid Differences Between EGM96 and OSU91A
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 Figure 3.2:  Geoid Differences Between GSD95 and EGM96

 

 
 Figure 3.3:  Geoid Differences Between GARR98 and GSD95

m
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3.2  Comparisons at GPS Benchmarks

 An external evaluation for the quality of a gravimetric geoid model can be performed by

comparing its interpolated values (N) at a network of GPS benchmarks with the

corresponding GPS/levelling-derived geoid heights (NGPS). Such a comparison is

traditionally based on the following model (see, e.g., Forsberg and Madsen, 1990; Sideris

et al., 1992):

 

 ii3ii2ii1oiiii
GPS
i sinsincoscoscos    vxxxxNHhNN ++++=−−=− ϕϕϕ      (3.1)

 

 which is solved for the unknown parameters (xo, x1, x2, x3) by minimizing the quantity

vTv. The adjusted values for the residuals vi give a realistic picture of the level of absolute

agreement between the gravimetric geoid and the GPS/levelling data. The four-parameter

model in (3.1) absorbs most of the datum inconsistencies among the available height data

sets, as well as possible long wavelength geoid errors. In such comparisons, it should

always be kept in mind that the final residual values vi are not purely gravimetric geoid

determination error, but contain levelling and GPS positioning errors as well. A detailed

description of the above transformation model, along with its geometrical interpretation,

can be found in Heiskanen and Moritz (1967, p. 213). Further investigations of how this

transformation applies to combined GPS/levelling/geoid networks is provided in Section

4 of this report.

 

 A total of 1300 GPS benchmark points (with the outliers removed), which are all part of

the first-order Canadian levelling network, were used for the evaluation. Figure (3.4)

shows the distribution of these GPS benchmarks across Canada, which varies from a very

dense network in the Western regions and along the Trans-Canada highway, to very few

points in the Ontario province and in the Northern areas.



15

 

 Figure 3.4:  Distribution of GPS Benchmarks in Canada

 

 The known ellipsoidal height values (hi) refer to the ITRF92 reference frame. The Hi

values correspond to Helmert orthometric heights, computed from true surface gravity

measurements and by a minimal-constraint adjustment of the whole Canadian levelling

network, where a single point in Rimouski, Quebec, was held fixed. The adjustment was

performed by GSD in October 1995, in an attempt to improve the Canadian Vertical

Geodetic Datum of 1928 (CVGD28), in view of various systematic distortions

accumulated over the years (e.g., mean sea level rise, post glacial rebound, use of

approximate normal gravity values instead of true surface gravity measurements in the

CVGD28 datum, etc.). Four geoid models were used for the comparisons at the GPS

benchmarks, namely, GARR98, GSD95, EGM96, and OSU91A. Both absolute and

relative differences were computed with respect to the GPS/levelling-derived geoid, and

all the results are presented in the next two sections.

3.3  Absolute Agreement of Geoid Models With Respect to GPS/Levelling

 The statistics of the absolute differences between the four geoid models and the

GPS/levelling-derived geoid for the entire Canadian region are shown in Table (3.2).
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Three additional tables are given, in which the absolute agreement is studied for three

separate major regions in Canada. Table (3.3) refers to all GPS benchmarks in Alberta

and British Columbia (Western Canada); Table (3.4) uses all the GPS benchmarks lying

inside the meridian zone 95°W<λ<110°W (Central Canada); and finally Table (3.5) takes

into account only the GPS benchmarks east of 95°W (Eastern Canada). Note that the

values inside the parentheses, shown in all four tables, are the results after the least-

squares fitting of the 4-parameter transformation model has been applied to the original

differences. It should be noted that for the computation of all statistics presented in this

section, the GPS benchmarks showing large differences before the least-squares fitting

(i.e., >3σ level) were removed. The removal of such points with gross errors, in either the

GPS or levelling data, further improved the results obtained in previous computations

where no effort to remove the outliers was performed.

 

 From the statistics shown in Table (3.2), it can be seen that the GARR98 gravimetrically

derived geoid, with the support of the EGM96 global model, drastically improves the

overall agreement with the GPS/levelling-derived geoid in Canada, from a σ of 44 cm to

a σ of 20 cm. After the fit, however, both GARR98 and GSD95 present approximately

the same overall external accuracy, which is at the 13-14 cm level. This would suggest

that even with the use of EGM96, the present gravity data accuracy and resolution still

needs to be improved in Canada, in order to bring the absolute geoid consistency with

GPS/levelling data down to the cm-level. It is also interesting to note the superiority of

the EGM96 global model, over OSU91A, for describing the long wavelength structure of

the Canadian gravity field. After the fit, EGM96 alone fits the Canadian GPS/levelling

geoid with an overall RMS accuracy of 31 cm, whereas OSU91A cannot perform better

than 67 cm on a national scale (more than 100% difference in accuracy). This is basically

due to the fact that OSU91A provides a very poor representation of gravity field features

over the British Columbia and Alberta regions, as seen from the corresponding values in

Table (3.3).

 

 A regional analysis for the statistics of the differences reveals the interesting result of

having the same level of absolute agreement (after fit) for the gravimetric geoid solutions
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in both Western and Eastern Canada. This is not surprising and it simply confirms that

the strong terrain gravity signal in the Western region has been properly modeled in both

GSD95 and GARR98 models. For the same area, the two global geoid models provide an

RMS agreement with the GPS/levelling data of 38 cm (EGM96) and 67 cm (OSU91A),

respectively, illustrating again the superiority of the EGM96 model.

 

 In Central Canada, GSD95 seems to perform slightly better than GARR98, with the

former model giving an after fit RMS accuracy at the GPS benchmarks of 6 cm and the

latter 9 cm. A possible reason for this difference in accuracy between the two gravimetric

models may be the incorporation in the GSD95 solution of height data for this region, in

contrast to GARR98 which uses a DEM only for western Canada. In addition, no

improvement in EGM96 over OSU91A occurs in this area, which might have been

reflected in the corresponding local gravimetric solutions.

 

 More interesting, however, is the fact that the use of GPS, in conjunction with a global

geoid model alone, seems to be sufficient for levelling applications in central Canada

requiring dm-level of accuracy. Both global models represent the gravity field in the

central flat areas quite well, with an agreement level of 12 cm for both EGM96 and

OSU91A. All four geoid models achieve their best performance in this area. For the

Eastern part of Canada, both gravimetric geoids show similar results, with GSD95 (12

cm) being marginally better than GARR98 (13 cm). Again, the fact that additional

gravity and height data in this region were used in the GSD95 solution (see Section 2) is

probably causing this difference. In the case where a global geoid model is only

employed for the Eastern region, the level of agreement worsens by more than 10 cm,

reaching 24 cm for both EGM96 and OSU91A.

 

 In general, the GARR98 geoid model shows a large bias before the four-parameter

transformation (see also table 3.1). For example, in the Eastern region the difference in

the mean values between GARR98 and GSD95 is more than 1 m, whereas in the Western

region this difference drops to less that 50 cm. These high biased values are not due to the

differences between EGM96 and OSU91A, but rather they exist because of the more
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extended gravity and height data grids that were used in the computation of GSD95 and

not in GARR98 (as described in Section 2.1). The mean value for GARR98 differences

decreases as we move west, which is expected since both gravimetric models used the

same local gravity and height data in British Columbia and Alberta.

 

 Table 3.2:  Comparison of Various Geoid Models with the GPS/levelling
 Derived Geoid (All of Canada)

 Geoid model  Minimum  Maximum  Mean  σ  RMS

 All values in metres
 NGPS – GARR98  -2.31 (-0.64)  -1.20 (0.50)  -1.77 (0.00)  0.20 (0.14)  1.78 (0.14)
 NGPS – GSD95  -1.89 (-0.45)  0.04 (0.54)  -1.13 (0.00)  0.44 (0.13)  1.21 (0.13)
 NGPS – EGM96  -2.55 (-1.27)  0.41 (1.63)  -1.09 (0.00)  0.37 (0.31)  1.15 (0.31)
 NGPS – OSU91A  -5.92 (-4.73)  4.04 (5.13)  -1.14 (0.00)  0.69 (0.67)  1.34 (0.67)

 
 

 Table 3.3:  Comparison of Various Geoid Models with the GPS/levelling
 Derived Geoid (BC and Alberta)

 Geoid model  Min  Max  Mean  σ  RMS

 All values in metres
 NGPS –GARR98  -2.18 (-0.35)  -1.47 (0.36)  -1.84 (0.00)  0.11 (0.11)  1.85 (0.11)
 NGPS -GSD95  -1.89 (-0.40)  -0.92 (0.39)  -1.39 (0.00)  0.13 (0.11)  1.39 (0.11)
 NGPS -EGM96  -2.55 (-1.24)  0.41 (1.56)  -1.24 (0.00)  0.39 (0.38)  1.30 (0.38)
 NGPS -OSU91A  -5.92 (-4.67)  1.49 (2.82)  -1.35 (0.00)  0.68 (0.67)  1.52 (0.67)

 
 Table 3.4:  Comparison of Various Geoid Models with the GPS/levelling

 Derived Geoid (Central Canada)
 Geoid model  Minimum  Maximum  Mean  σ  RMS

 All values in metres
 NGPS –GARR98  -2.14 (-0.18)  -1.59 (0.31)  -1.91 (0.00)  0.10 (0.09)  1.92 (0.09)
 NGPS –GSD95  -1.65 (-0.22)  -1.15 (0.16)  -1.37 (0.00)  0.08 (0.06)  1.37 (0.06)
 NGPS –EGM96  -1.63 (-0.49)  -0.79 (0.28)  -1.05 (0.00)  0.13 (0.12)  1.06 (0.12)
 NGPS –OSU91A  -1.48 (-0.40)  -0.83 (0.31)  -1.12 (0.00)  0.14 (0.12)  1.13 (0.12)

 
 

 Table 3.5:  Comparison of Various Geoid Models with the GPS/levelling
 Derived Geoid (Eastern Canada)

 Geoid model  Min  Max  Mean  σ  RMS

 All values in metres
 NGPS -GARR98  -2.31 (-0.49)  -1.20 (0.44)  -1.58 (0.00)  0.22 (0.13)  1.60 (0.13)
 NGPS -GSD95  -1.31 (-0.49)  0.04 (0.43)  -0.55 (0.00)  0.30 (0.12)  0.63 (0.12)
 NGPS -EGM96  -1.59 (-0.67)  0.12 (0.89)  -0.83 (0.00)  0.25 (0.24)  0.87 (0.24)
 NGPS -OSU91A  -1.61 (-0.64)  -0.05 (0.83)  -0.86 (0.00)  0.28 (0.24)  0.90 (0.24)
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 An interesting observation can also be made by comparing the standard deviation values

shown in Tables (3.2) through (3.5), before and after the four-parameter model

adjustment. By doing such a comparison one sees that in Western and Central Canada the

accuracy improvement for all four geoid models, after the 4-parameter transformation, is

approximately constant and averages to about 1.75 cm. This amount is also very close to

the mean accuracy improvement for the two global models, occurring in Eastern Canada.

It is quite reasonable to assume that such a small amount should represent the difference

between the GPS datum and the datum used in the development of the global geoid

models, i.e., the reference frame realized by the satellite tracking station coordinates.

However, in Eastern Canada both GARR98 and GSD95 exhibit a large deviation from

this “1.75 cm accuracy improvement” trend, as it is seen from their corresponding values

in Table (3.5). This deviation could possibly be attributed to the fact that the parametric

model of eq.(3.1) not only eliminates the datum differences among the available data sets,

but also absorbs a part of gravimetric geoid random error, caused from the extended

amount of low-quality shipborne gravity data used in this area (see Section 4 for details).

3.4  Relative Agreement of Geoid Models With Respect to GPS/Levelling

 In order to evaluate the relative accuracy of the four geoid models with respect to the

GPS/levelling data, relative undulation differences (∆N−∆NGPS) in parts per million

(ppm) were formed for all baselines between the GPS benchmarks, and plotted as a

function of the baseline length. Figures (3.5) through (3.8) illustrate these relative

differences for all of Canada and for the three separate regions considered in the previous

section. The relative differences refer to the values obtained after filtering the

GPS/levelling benchmarks for outliers and after the fitting of the transformation model

(3.1), as described previously.

 On a national scale (Figure 3.5), the two global geopotential models show similar relative

accuracies up to baseline lengths of 350 km, ranging from 3.5 ppm (20 km) to 0.5 ppm

(300-350 km). For larger baseline lengths, we begin to see the improved long wavelength
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structure of EGM96 as compared to OSU91A, with EGM96 giving approximately 0.3

ppm for up to 1500 km baselines, and OSU91A averaging to about 0.5 ppm for the same

baseline-length band. For larger than 1500 km baselines, both models start dropping to

approximately 0.2 ppm.

 

 GARR98 and GSD95 exhibit similar behavior across Canada for all baseline lengths,

which is approximately 2.5 ppm for baselines of 20 km, 1.3 ppm for baselines of 100 km,

dropping down to 1 ppm at approximately 250 km, and 0.2 ppm for baseline lengths over

500 km. In all cases, some remaining long wavelength errors are evident in Figure 3.5.

 In British Columbia and Alberta GARR98 and GSD95 perform essentially the same. For

baseline lengths up to 20 km their relative accuracy is at the 2.5 ppm level, decreasing to

0.8 ppm for baseline lengths of 100 km. The relative accuracy for baseline lengths of 200

km drops to approximately 0.4 ppm and at 400 km has reached the 0.2 ppm level, which

remains almost constant for up to 800 km baselines. A slightly better performance of

GARR98 over GSD95, seen in some parts of Figure 3.6, can be attributed to the

improved long wavelength structure of EGM96 over OSU91A for Western Canada. The

large difference between the performance of the two global geoid models in this region

can also be seen in the long baseline lengths (>300 km), where there is an average of 0.5

ppm improvement in EGM96’s relative accuracy over OSU91A. EGM96 also seems to

be able to minimize the long wavelength errors that are so pronounced in OSU91A.

 As we move eastwards, larger differences between GARR98 and GSD95 become more

evident. In Central Canada (Figure 3.7), GSD95 performs better than GARR98 by

approximately 0.5 ppm for baseline lengths up to 480 km, and this difference decreases to

an average of 0.1 ppm for baseline lengths 500-800 km.

 

 In Eastern Canada, GSD95 seems to perform better the GARR98 for shorter baselines

averaging 2.5 ppm at 20 km baselines while GARR98 averages 3.5 ppm for the same

baseline length. The difference in relative accuracy between models decreases as the

baseline length increases. After 200 km both models seem to perform essentially the
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same averaging 0.3 ppm for baseline lengths up to 1500 km. The performance of the two

geopotential models is similar for all baselines with the exception of baseline lengths of

100-450 km where EGM96 seems to perform approximately 0.3 ppm better than

OSU91A. For baseline lengths greater than 450 km both models have relative accuracies

of approximately 0.5 ppm. The differences in relative accuracies between the various

models demonstrates the importance of incorporating extended gravity and height

information in gravimetric geoid solutions for large areas (like Canada), in order to

achieve the level of accuracy required for substituting conventional spirit levelling by

GPS techniques.
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Figure 3.8:  Relative Accuracy of the Geoid Models in Eastern Canada

3.5  Results from a Kinematic DGPS Campaign

On January 31, 1998, an eight-hour kinematic DGPS campaign was conducted in order to

assess the accuracy of the published orthometric heights as compared to the heights

obtained by combining GPS and the new geoid model for a small test network. The

network is situated in southwestern Alberta, just east of the Rocky Mountain Range in an

area known as the Foothills. The entire network spanned a 15′ × 25′ area between

51°00′00 to 51°15′00 North latitude and 114°20′00 to 114°45′00 West longitude. The

ASCM height difference between the highest and lowest points in the network is

approximately 298.5 metres. The region was selected because a number of existing

Alberta Survey Control Monuments (ASCM) were readily available with published

orthometric heights, which were used for comparing with the results obtained from the

GPS campaign.

The results for six remote stations located in this network are presented in Table (3.6).

Two NovAtel MiLLennium receivers were used for collecting the GPS data at one

second intervals. The ellipsoidal heights of the remote stations were obtained in post-
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mission by post-processing using a differential carrier-phase fixed solution. A base

station was situated on a pillar located on the roof of the Engineering building at the

University of Calgary, located approximately 40 km from the network. In all cases, the

geoid height refers to the values obtained from GARR98 model, interpolated at the points

of interest.

Table 3.6:  Orthometric Height Results from Kinematic DGPS Campaign

Station
ID

Latitude

(dms)

Longitude

(dms)

ASCM
Height

(m)

Geoid
Height

(m)

Ellipsoidal
Height

(m)

∆H

(m)
26195 51°15′19″ -114°33′34″ 1308.575 -15.913 1292.693 -0.031
165472 51°11′01″ -114°41′54″ 1301.356 -15.465 1285.869 0.022
338848 51°10′59″ -114°33′36″ 1241.371 -15.974 1225.41 -0.013
238394 51°02′16″ -114°29′18″ 1266.121 -15.905 1250.318 -0.102
1917 51°01′17″ -114°22′25″ 1183.933 -16.129 1167.75 0.054
419440 51°07′40″ -114°33′16″ 1277.161 -15.912 1261.178 0.071

It should be noted that the ASCM stations were established using various levelling

techniques including, inertial surveying systems (ISS), GPS, and spirit levelling methods.

In Table (3.6), the first two stations were established using ISS, the next three stations

were established using GPS and the last station was established using spirit levelling.

These different methods are important since the associated accuracy of the height

information varies depending on the method employed for establishing the ASCM height.

The approximate accuracy of the points established using ISS is at the metre level, while

the points established using GPS are accurate to approximately 2 to 5 cm. The spirit

levelled points depend on the order of levelling which typically produces accuracies of 1

to 15 cm. The final column in the table represents the residual values computed between

the published ASCM orthometric heights and the height obtained by combining the GPS

and geoid information. On average the results agree to within 5 cm. However, a larger

network consisting of a greater number of stations must be used in order to achieve more

reliable results. Although a reliable account of the absolute accuracies achieved from this

kinematic DGPS campaign is not possible from a small set of six stations, further tests

may provide more insight as to whether this method is a feasible alternative to traditional

levelling.



25

4.  Adjustment of Combined GPS/Levelling/Geoid Networks

The combined use of GPS, levelling, and geoid information has been a key procedure for

various geodetic applications. Although these three types of height information are

considerably different in terms of physical meaning, reference surface

definition/realization, observational methods, accuracy, etc., they should fulfill the simple

geometrical relationship (see also equation 2.1):

0=−− NHh     (4.1)

where h, H, and N are as described in Section 2.1. In practice equation (4.1) is never

satisfied due to (i) random noise in the values of h, H, N, (ii) datum inconsistencies and

other possible systematic distortions in the three height data sets (e.g. long-wavelength

systematic errors in N, distortions in the vertical datum due to an overconstrained

adjustment of the levelling network, deviation between gravimetric geoid and reference

surface of the levelling datum, etc.), (iii) various geodynamic effects (post glacial

rebound, land subsidence, plate deformation near subduction zones, mean sea level rise,

monument instabilities), and (iv) theoretical approximations in the computation of either

H or N (e.g. improper or omitted terrain/density modeling in the geoid solution, improper

evaluation of Helmert’s formula for orthometric heights using normal gravity values

instead of actual surface gravity observations, negligence of the Sea Surface Topography

(SST) at the tide gauges, error-free assumption for the tide gauge observations, etc.). The

statistical behavior and modelling of the misclosures of equation (4.1), computed in a

network of levelled GPS benchmarks, have been the subject of many studies which are

often considerably different in terms of their research objectives. The following is a non-

exhaustive list for some of these objectives. The references provided are just

representative and not the only important ones.

(1) Testing the performance of global spherical harmonic models for the Earth’s

gravitational field (IGeS, 1997), or testing the performance of local/regional
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gravimetric geoid models and their associated computational techniques

(Mainville et al., 1992; Sideris et al., 1992).

(2) Development of intermediate corrector surfaces for optimal height

transformation between geoid surface and levelling datum surface (Mainville et

al., 1997; Smith and Milbert, 1996).

(3) Development of corrector surfaces for low-wavelength gravimetric geoid errors

(De Bruijne et al., 1997), and general gravimetric geoid refinement strategies

(Jiang and Duquenne, 1996).

(4) Evaluation of the achievable accuracy for ‘levelling by GPS’ surveys (Forsberg

and Madsen, 1990).

(5) Monitoring, testing, and/or improving (strengthening) of already existed vertical

datums (Hein, 1986; Kearsley et al., 1993).

The above list can be further extended if we substitute the GPS height h in equation (4.1)

with altimetric observations, and the orthometric height H with the SST. A study for such

marine applications is included in De Bruijne et al. (1997). In view of the many different

uses for such multi-data 1D networks, the purpose of this section is to present some

general adjustment and modelling schemes that can be employed for an optimal analysis

of the misclosures of equation (4.1). In particular, we are mainly interested in

applications of the type (1), (2), or (3) from the previous list.

4.1  Overview of Various Adjustment Schemes

A brief review of various adjustment and modelling schemes, that have been already

applied for the applications mentioned in the previous section, will be given here. Some

general aspects for adjustment problems with combined height data sets can be found in

Pelzer (1986).
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4.1.1  Geoid Evaluation

Most of the geoid evaluation studies, based on comparisons with GPS/levelling data,

make use of the following basic model:

iiiii vNHh     T +=−− xa     (4.2)

where x  is a vector of n unknown parameters, ia  is an n×1 vector of known coefficients,

and iv  denotes a residual random noise term. The parametric part xaT
i  is supposed to

describe all possible datum inconsistencies and other systematic effects in the data sets.

In practice, for these studies, the usual four-parameter model is often used, i.e.

iiiiioi xxxx ϕλϕλϕ sinsincoscoscos  321
T +++=xa     (4.3)

and rarely its five-parameter extension (see, e.g., Duquenne et al., 1995)

iiiiiioi xxxxx ϕϕλϕλϕ 2
4321

T sinsinsincoscoscos  ++++=xa     (4.4)

has also been employed. Both equations (4.3) and (4.4) correspond to the following

datum transformation model for the geoid undulation N, which is described extensively in

Heiskanen and Moritz (1967, sec.5-9):

iiiiiiiN ϕϕλϕλϕ 2
ooo sinfasinZsincosYcoscosXa  ∆+∆+∆+∆+∆=∆     (4.5)

where ooo Z,Y,X ∆∆∆  are the shift parameters between two ‘parallel’ datums and

af, ∆∆  are the changes in flattening and semi-major axis of the corresponding ellipsoids.

In our case, the two different datums will correspond to (i) the GPS datum and (ii) the

datum used for the development of the global spherical harmonic model that supports the

gravimetric geoid, and for the computation of the gravity anomaly data ∆g. The model of
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equation (4.2) is applied to all network points and a least-squares adjustment is performed

to estimate the residuals iv , which are traditionally taken as the final external indication

of the geoid accuracy. The main problem under this approach is that the iv  terms will

contain a combined amount of GPS, levelling, and geoid random error, that needs to be

separated into its individual components for a more reliable geoid assessment.

Furthermore, an optimal adjustment in a statistical sense would require the proper

weighting of the residuals, which is hardly applied in practice. Finally, the use of such

oversimplified parametric models, like (4.3) or (4.4), combined with improper weighting

of the residuals iv , create important problems in terms of the ‘separability’ of the various

random and systematic effects between the two unknown components xaT
i  and iv .

4.1.2  Corrector Surface for GPS/levelling

The development of such corrector surfaces aims basically at providing GPS users with

an optimal transformation model between ellipsoidal heights h and orthometric heights H

with respect to a given levelling datum. For a general discussion regarding theoretical and

practical aspects of this problem, see Featherstone (1998). Two such developments have

been reported in North America, particularly in the U.S. by the National Geodetic Survey

(NGS; Smith and Milbert, 1996) and in Canada by the Geodetic Survey Division (GSD;

Mainville et al., 1997). Both studies followed a similar methodology, using initially the

basic model of equation (4.2) with its parametric part given by equation (4.3). The

obtained adjusted values for the residuals iv  were then spatially modelled in a grid form

using an interpolation procedure. In the GSD study, a minimum-curvature interpolation

algorithm was used, whereas NGS fitted an isotropic Gaussian covariance function to the

statistics of the irregularly distributed values iv  and then used simple collocation

formulas for the gridding. From the combination of the gridded values for the residuals

and the adjusted values for the parameters x , a corrector surface was finally computed.

Some comments regarding the drawbacks of these modelling approaches will be given

later on in this chapter.
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4.1.3  Gravimetric Geoid Refinement

In De Bruijne et al. (1997), a 28-parameter surface model was estimated to correct the

gravimetrically-derived geoid in the North Sea area for its long-wavelength errors.

TOPEX altimetric data (h) and gravimetric geoid heights (N) were only used in the

general observation equation (2), since the SST was neglected in this study. The

parametric model xaT
i  was comprised from a simple bi-linear part with 4 parameters (1

bias, 2 tilts, 1 torsion), and a more complicated part of trigonometric polynomials with 24

coefficients. For the optimal estimation of this correction model only the external

altimetric data were properly weighted, according to their precomputed standard

deviations. Extensive statistical testing was also applied to validate the final adjustment

results. For the refinement of land gravimetric geoid models using GPS/levelling data,

Jiang and Duquenne (1996) proposed the division of the entire test area into smaller

adjacent networks, in order to better model the higher frequency geoid distortions due to

the insufficient local gravity data coverage and the errors in the used DTMs.

4.1.4  Vertical Datum Testing/Refinement

For such applications, the analyzed network usually contains a combination of some, or

all, of the following data: (i) relative ∆H from conventional levelling, (ii) relative ∆h

from local GPS surveys, (iii) N or ∆N from a geoid model, (iv) absolute H and SST

values at tide gauge stations, and (v) absolute h from SLR or global GPS campaigns. The

above general data configuration was proposed by Kearsley et al. (1993). In their

extensive study for investigating the quality of sample subsets of the Australian Height

Datum (AHD), they used the following general mathematical model for known

observations and unknown parameters:

ijhijij vhhh ∆+−=∆    (4.6a)

ijHijij vHHH ∆+−=∆    (4.6b)
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ijNijij vNNN ∆+−=∆    (4.6c)

0=−− jjj NHh   (4.6d)

All available observations ),,( ijijij NHh ∆∆∆ , along with their a-priori accuracy

estimates, were simultaneously adjusted, using equation (4.6d) as a geometrical

constraint for the unknown parameters at each station point j. For the unknown

parameters, additional a-priori information can also be incorporated in the adjustment

algorithm (Bayesian estimation), in the form of independent point measurements with

their associated variances and possible co-variances (e.g., measurement of H at tide

gauge sites). The above methodology suggests a powerful adjustment tool that can be

used for vertical datum refinement/redefinition, where both geometrical (GPS, SLR) and

physical (levelling, geoid, mean sea level) quantities are optimally combined in a unified

IDVKLRQ��VHH�DOVR�9DQLþHN��������

Among the critical issues existing in this approach (as well as in the previously

overviewed applications) is the estimation of the a-priori covariance matrices for the

different data sets. Since these types of weighting measures are only used to describe the

behavior of the random errors in the measurements, some augmentation of the

observation equations (4.6) by additional auxiliary parametric models, describing

possible systematic/datum offsets in the available data sets, should also be considered.

4.2  General Modeling Considerations

In general, equation (4.1) does not hold exactly due to not only the presence of zero-mean

random errors in the height data, but also due to a number of other direct or indirect

systematic effects. Since there are not usually available a-priori corrections for many of

these effects, they should be individually modelled and estimated during an adjustment

process. In this way, the following three general equations can be written for each point

Pi in a combined GPS/Levelling/Geoid (GLG) network:
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     h
i

h
i

a
ii vfhh ++= ,      H

i
H

i
a
ii vfHH ++= ,      N

i
N

i
a
ii vfNN ++=     (4.7)

where hi, Hi, and Ni denote the available ‘observed’ values for the GPS, orthometric and

geoid heights, respectively. The superscript α denotes true values with respect to a

unified geodetic datum, such that the following equation holds:

0=−− a
i

a
i

a
i NHh             (4.8)

The fi terms correspond to all the necessary reductions that need to be applied to the

original data in order to eliminate the datum inconsistencies and other systematic errors.

Finally, the vi terms describe zero-mean random noise errors, for which a second-order

stochastic model is available:

{ } hhh Cvv =TE ,        { } HHH Cvv =TE ,         { } NNN Cvv =TE     (4.9)

For the orthometric heights, the covariance (CV) matrix CH is known from the

adjustment of the levelling network. In the same way, Ch can be computed from the

adjustment of the GPS surveys performed at the levelled benchmarks. In the gravimetric

geoid case, the covariance matrix CN is computed by simple error propagation from the

original noisy data used in the geoid solution (geopotential coefficients, gravity

anomalies, terrain heights); for detailed formulas, see Li and Sideris (1994). For a more

realistic stochastic error model, full knowledge of the CV matrices should not be

assumed. This is especially true for the geoid heights where the often vaguely known

noise level of the input data (GM coefficients, gravity, DTM) and the always necessary

stationary noise assumption when fast spectral techniques are employed for the

computations, may cause CN to deviate considerably from reality. Hence, we will adopt

the following stochastic model for the random noise effects in the three height data sets:

{ } hhhh Qvv  E 2T σ= ,       { } HHHH Qvv  E 2T σ= ,       { } NNNN Qvv  E 2T σ=   (4.10)
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where the co-factor matrices Qh, QH, and QN are assumed known from the sources

previously indicated, and the three variance components are treated as unknown

parameters controlling the validity of the a-priori random error models. One could also

extend the above stochastic model a little bit more, by decomposing the covariance

matrix CN into two different CV matrices with associated unknown variance components,

which would correspond to the two main geoid random error sources (noisy geopotential

coefficients, noisy gravity anomaly data). In this report, the set of the observation

equations (4.7) and their associated stochastic model in equation (4.10) represent the

basic framework upon which all the derivations in the following sections will be based.

4.3  A General Adjustment Model

Let us assume that, at each point Pi of a test network with m points, we have a triplet of

height observations (hi, Hi, Ni), or equivalently one ‘synthetic’ observation li = hi−Hi−Ni.

By combining equations (4.7) and (4.8), we get the following observation equation for

each network point:

l h H N f f f v v vi i i i i
h

i
H

i
N

i
h

i
H

i
N= − − = − − + − −( ) ( )   (4.11)

or, in a more compact form

N
i

H
i

h
iii vvvfl −−+=   (4.12)

If the main objective for using such a test network is to evaluate the gravimetric geoid

accuracy, then we are naturally interested in the estimation of the vi
N  terms. Since there

is a stochastic model (equation 4.10) that has been associated with these terms, the values

of vi
N  are supposed to reflect all the geoid random error sources that were taken into

account for the computation of the matrix QN. Furthermore, the ability to estimate the
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unknown parameter σ N
2  according to some variance component estimation algorithm

(see, e.g., Rao, 1971; Rao, 1997), provides probably the most powerful statistical tool for

a reliable estimate of the actual geoid noise, and a useful means of testing all the

assumptions that were incorporated in the construction of the preliminary geoid error

model QN. There is still, however, an amount of geoid error which is not included in the

vi
N  terms, and for which no a-priori information is available in general. We can very

briefly mention: aliasing effects, improper (or omitted) terrain and density modelling,

various biases in the coefficients of the geopotential model, etc. Such geoid errors, which

do not follow a zero-mean random behavior, will be absorbed in the fi correction term

along with many other systematic effects in the GPS and levelling data. In the absence of

any prior statistical and/or deterministic information for these error sources, filtering

them out and estimating their magnitude individually is impossible.

If, on the other hand, this test network is to be used for the determination of an optimal

corrector surface for future GPS/levelling applications, then the values if  have to be

estimated and spatially modeled in the best possible way. The random noise terms

vi
h , vi

H , vi
N  should be left out of the modeling for such a correction surface. This can be

easily realized by looking at the form of the basic observation equation in a future

orthometric height network, which will utilize GPS/geoid information, as well as the

computed corrector surface from our original test network, i.e.

vHcNh +=−−                       (4.13)

where the term c represents the reduction effect of the computed correction model. A

system of equations, created by taking the differences of equation (4.13) between the

GPS survey points, has now to be adjusted for the optimal estimation of the orthometric

height differences ∆H with respect to the local levelling datum. Correcting, prior to this

adjustment, the ‘GPS/geoid observations’ for their random noise effects (which is the

case if the terms vi
h  and vi

N  from equation (4.12) are included in the modeling of the

corrector surface term c) makes no sense statistically. Furthermore, if the residual values
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vi
H  from equation (4.12) are included in the modeling of the corrector surface, then the

available original observations in equation (4.13) will be ‘corrected’ for an error source

which does not even exist in them!

Let us now return to our initial observation model of equation (4.12). The correction term

)P( ii ff =  represents a 2D spatial field of values, and it can be further decomposed in

the general form:

f si i i    T= +a x   (4.14)

where ai is an (n×1) vector of known coefficients, and x is an (n×1) vector of unknown

deterministic parameters. The term si denotes some ‘residual correction’, the nature of

which (deterministic or stochastic) is left unspecified for now. The final observation

equation for each point in the test network will have, therefore, the form:

N
i

H
i

h
iiii vvvsl −−++= xaT   (4.15)

and by using matrix notation in order to combine all the network points, we get

BvsAxl       ++=   (4.16)

where

[ ]T1 mi lll LL=l ,       [ ]s = s s si m1 L L
T

   (4.17a)

[ ]v v v v= h H N
T T T T

   (4.17b)

[ ] NHhvvv mi  , , : #     ,  
#

T###
1 LL=v             (4.17c)

[ ]A a a a  
T= 1 L Li m             (4.17d)
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[ ]B I I I= − −m m m ,       Im : m×m unit matrix (4.17e)

This final adjustment model is summarized in Box (4.1). The associated stochastic model

follows from the one introduced in equation (4.10).

BvsAxl       ++=                  { }E v 0=

{ }E         Tvv C

C 0 0

0 C 0

0 0 C

Q 0 0

0 Q 0

0 0 Q

v= =

















=



















h

H

N

h h

H H

N N

σ

σ

σ

2

2

2

σh
2 ,  σH

2 ,  σ N
2  :  unknown variance components

Box 4.1: A General Model for GPS/Levelling/Geoid Network Adjustment

Such adjustment problems where, apart from the unknown deterministic parameters x

and the zero-mean random errors v , there appear also some quantities s  that depend on

an underlying unknown function (the corrector surface in our case) are very common in

geodetic applications. When the emphasis is placed on the estimation of the functionals

s , it is traditionally called a least-squares collocation problem with unknown parameters

(Moritz, 1980). In the case where the main interest is on the parameters x , it is viewed as

a simple least-squares adjustment problem ‘in the presence of signals’ (Dermanis, 1978

and 1984). Both approaches are of course equivalent, with an immediate relation to the

classic mixed linear models of statistical theory (see, e.g., Koch, 1987).

The crucial point for the solution of the adjustment model in Box (4.1) is how to treat the

signals s . In a first simple deterministic approach these signals can be treated just as
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additional discrete unknown parameters, and their implicit relation with the underlying

unknown function is completely ignored (see, e.g., Dermanis, 1984). This approach,

however, is not applicable to our specific case of eq.(4.16), because the resulting matrix

of the normal equations, under the minimization principle

min        1T1T1TT =++= −−−
NNNHHHhhh vQvvQvvQvPvv   (4.18)

with the weight matrix being

P

Q 0 0

0 Q 0

0 0 Q

     =



















−

−

−

h

H

N

1

1

1

,   (4.19)

will always be singular. In order to get a unique solution, therefore, some additional

constraints need to be imposed to the residual systematic corrections si. Two different

cases will now be identified for applying these necessary constraints.
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4.4  A Purely Deterministic Approach

One easy way to solve the general adjustment model in Box (4.1) is to neglect the

presence of the residual correction signals s. Essentially, this means that the corrector

surface will be exclusively modeled by a pre-selected deterministic parametric form. In

order to avoid any rank deficiency problems, the total number of the selected parameters

should be always smaller than the number of the network points. In this case, the

adjustment model of Box (4.1) will be reduced to the form

BvAxl     +=       (4.20)

where A is some appropriate design matrix with full column rank. The final solution of

equation (4.20), under the minimization principle (4.18), will be given by the equations

( ) 1T11T )( )( −−− ++++−= NHhNHhm QQQAAQQQAAIW    (4.21a)

[ ] lQQQAAQQQAx  )(  )(  ˆ 1T11T −−− ++++= NHhNHh     (4.21b)

$v Q Q Q Q W lh h h H N   ( )   = + + −1     (4.21c)

$v Q Q Q Q W lH H h H N    ( )   = − + + −1     (4.21d)

$v Q Q Q Q W lN N h H N    ( )   = − + + −1     (4.21e)

lWvvvvBv    ˆˆˆ  ˆ  ˆ =−−== NHhtotal      (4.21f)
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In the case where we do not have available a full CV matrix for the height data noise, but

only some gross estimates for their overall pointwise accuracy, a much simpler version of

the above equations occurs. If we denote by qh
2 , qH

2 , and qN
2  the a-priori uniform

accuracy estimates for the ellipsoidal, orthometric, and geoid heights, respectively, then

we get the following solution:

( ) T1T AAAAIW
−

−= m         (4.22a)

( ) lAAAx     ˆ T1T −
=    (4.22b)

$v W lh
h

h H N

q

q q q
    =

+ +

2

2 2 2
    (4.22c)

$v W lH
H

h H N

q

q q q
     = −

+ +

2

2 2 2
    (4.22d)

$v W lN
N

h H N

q

q q q
     = −

+ +

2

2 2 2
     (4.22e)

From the last three equations (also from eqs.4.21c, 4.21d, 4.21e) the crucial role of the

stochastic model for the random noise in the height data is obvious. It offers the means of

applying an optimal filtering to the total residuals Bv Wl$ =  of the adjustment by

separating the noise coming from each individual height component. It is rather

interesting, though a highly unrealistic case, that when stationary white noise has been

assumed for all data types, the estimates for the unknown parameters x̂  and the total

residuals Bv$  will not depend at all on the three different noise levels qh
2 , qH

2 , qN
2 . By

applying covariance propagation to the above results, the CV matrix xC ˆ  of the adjusted
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model parameters can be also determined, which should be always used to evaluate the

quality of the parametric corrector surface for future GPS/levelling applications. Another

useful matrix is also the cross-CV matrix between the adjusted model parameters and the

adjusted residuals for the various height data sets, from which important information can

be extracted regarding the correlation of the corrector surface with the available data.

The reliability of the previous results depends on (i) the suitability of the parametric

model Ax  to describe effectively all the systematic effects in the height data sets, and (ii)

the correctness of the stochastic model for the observational noise (Qh, QH, QN). It is,

therefore, necessary to estimate also the three unknown variance components (see Box

4.1). The method of variance component estimation used in geodesy is Rao’s Minimum

Norm Quadratic Unbiased Estimation - MINQUE (Rao, 1971). In the geodetic literature

this problem has been solved independently, for a variety of adjustment models, by many

researchers; an extensive review with further references to the relevant literature is given

in Grafarend (1985). The following algorithm follows the MINQUE criterion and

computes optimal estimates for the unknown variance components of the ellipsoidal

heights ( $σh
2 ), orthometric heights ( $σH

2 ), and geoid heights ( $σ N
2 ):

$σ   = −J k1     (4.23a)

[ ]$ $ $ $σ  
T

= σ σ σh H N
2 2 2     (4.23b)

ki i i i  T= −$ $v Q v1                                       i, j : h, H, N                  (4.23c)

[ ]jNHhiNHhijJ WQQQQWQQQQ 11 )++()++( tr  −−=         (4.23d)

There are occasions, however, where the use of algorithm (4.23) may lead to negative

estimates for the unknown variance components. In such cases, a modification of the

MINQUE method is required (see, e.g., Sjoberg, 1984; Rao, 1997). A number of various

statistical tests and subsequent iterations are finally needed in order to validate the
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adjustment results. An overview of the whole adjustment procedure described in this

section is given in the flowchart of Figure (4.1).

Figure 4.1: Flowchart of the Adjustment Procedure Used in the
Deterministic Approach

OBSERVATIONS

l = h – H – N

 NOISE MODEL

 Qh,  QH,  QN

CORRECTION
SURFACE MODEL

Deterministic
description (Ax)

LEAST-SQUARES
ADJUSTMENT

   RESULTS

• Adjusted parameters x̂
• Adjusted GPS residuals
• Adjusted Geoid residuals
• Adjusted Levelling residuals
• Variance Component Estimation

AVAILABLE OPTIONS

• Extensive statistical testing
• Iterations
• Use x̂  to interpolate the effect of

the Correction Surface at other non-
levelled points
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4.5  Some Preliminary Numerical Tests of Methods Used for the Adjustment of
Combined GLG Networks

A simple, preliminary numerical testing of the methods discussed thus far on the

adjustment of combined GPS/levelling/geoid networks is presented in this section. The

first tested method uses the traditional four-parameter transformation model approach,

without any weighting applied to the data. The second method, referred here as the

’enhanced’ method, was described in detail in Section 4.4 of this report.

In order to analyze these methods, real data was used to implement each method. A

triplet of height information for each point in a network was required. For this, the latest

(December 1998) GPS/benchmark height information in 1482 points spread across

Canada was obtained from GSD. In particular, data values regarding the latitude and

longitude (ϕi, λi), ellipsoidal heights with respect to NAD83 and ITRF92 geodetic datums

(hi), orthometric heights obtained from the GSD/October-1995 levelling network

adjustment (Hi), and geoidal undulations from GSD95, EGM96 and OSU91A geoid

models (Ni), were available at each GPS benchmark.

Given this data, two individual test networks were created, one for Western Canada (λ >

110°W) and one for Eastern Canada (λ < 110°W). All computations were performed

using ellipsoidal heights referring to the ITRF92 geodetic datum and the geoidal

undulations from the GSD95 and EGM96 geoid models

4.5.1  Western Canada

As described in the previous section, a network in Western Canada (λ > 110°W),

consisting of 729 points, was used to implement the two adjustment models. However,

before the analysis of the results could be performed it was necessary to clean the data by

identifying and eliminating blunders. With such a large network of points, it was

determined that the best way to accomplish this task would be to plot the distribution of

the observations in the network points, and visually extract any points which did not

seem to fit the overall trend of this distribution. Figure (4.2) shows a histogram of the
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observed residuals (h-H-N) in the network. The used geoid heights are coming from the

GSD95 model. It is obvious from this plot that there are a few points, centered around

zero, that do not fit the rest of the observations.
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Figure 4.2:  Distribution of Observed Residuals for Western Canada

Before these outliers were removed, a plot of the points versus their corresponding

residual values was created using the simple four-parameter adjustment method with no

data weighting and the enhanced adjustment method. The results of this are seen in

Figure (4.3). The original observations are the residuals obtained by simply computing h-

H-N for all points in the network. From this plot, two spikes in the original observed

residuals were identified as outliers. The results of the simple four-parameter adjustment

method also revealed these two spikes. However, it is uncertain by looking at the simple

model results, which height types are responsible for the outliers. Taking this one step

further and performing the enhanced method allows us to see that the levelling residuals

display the same spikes, leading to the conclusion that the outliers are due to the

orthometric heights obtained from levelling. This information is valuable when cleaning
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data, since it not only allows the outliers to be detected, but it also provides an indication

of a possible source for the outliers.
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Figure 4.3:  Residual Point Values for Western Canada using the
Two Adjustment Methods and the GSD95 geoid model

The two blunder points were identified and eliminated from the data set. The results for

the remaining 727-point network in Western Canada are provided in Figure (4.4). Two

plots of the same data set, representing the west-east and north-south network profiles,

are shown. This was done to visually identify possible systematic tilts in the data set. It is

evident from this plot that the original observations exhibit a constant systematic effect or

bias at approximately the –1.5 metre level. By applying the traditional or simple model,

this systematic datum bias is removed and the zero-mean random noise effects remain.

However, this plot also shows the results of the enhanced method which filters the total

noise residuals obtained in the simple model and produces three individual sets of zero-

mean random residuals, corresponding to the geoid model, the GPS, and the levelling

heights random errors.
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Figure 4.4:  Residual Point Values for Western Canada using the Two Adjustment
Methods and the GSD95 Geoid Model (outliers removed)
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In order to obtain these filtered residuals (also for figure 4.3), a-priori accuracy estimates

of the height data sets were used in the Q matrices of the enhanced model. The GPS

heights were assigned a standard deviation of 10 cm. This uniform accuracy estimate for

all points was derived from the observation method and observation period (< 24 hours in

most cases) which was best represented by a 10 cm accuracy level. The orthometric

heights were also given a standard deviation value of 75 cm (in absolute sense). This

rather large value was assigned due to the fact that some uncertainty still exists on the

absolute accuracy of the vertical datum for the October 1995 national least squares

adjustment. Finally, the GSD95 geoid model was used which has been shown to have an

approximately 40 cm accuracy level in the mountainous areas of Western Canada.

Table (4.1) summarizes the results of the two methods for the case of Western Canada

using the data and a-priori accuracy estimates described above. The main conclusions

that can be drawn from Table (4.1) are that both adjustment methods are successful in

removing the systematic errors introduced by the datum biases, as seen by the mean of

the residuals equating to zero. The separate residuals obtained from the enhanced method

show that the orthometric heights that were assigned the poorest a-priori accuracy absorb

most of the random error effects. Similarly, the GPS heights that were given the lowest a-

priori accuracy did not absorb much of the residual errors since they were very accurate

at the outset.

Table 4.1:  Statistics for Adjusted Residuals in Western Canada

Residual Maximum Minimum Mean σ RMS

All values in metres
Original Observations -0.92 -1.89 -1.41 0.41 0.14
Simple Model 0.44 -0.38 0.00 0.12 0.12
GPS 0.00 -0.00 0.00 0.00 0.00
Orthometric 0.33 -0.38 0.00 0.10 0.10
Geoid (GSD95) 0.05 -0.06 0.00 0.02 0.02

To test what the sensitivity of the enhanced model is to the height data sets used, a second

geoid model (EGM96) was used for the same network in Western Canada. The EGM96

geoid model is assigned an a-priori accuracy estimate of 80 cm for Western Canada
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(Fotopoulos et al., 1998). The results using this second geoid model are shown in Figure

(4.5), in two different profiles as was previously mentioned. Also with the use of this

geoid model we see the removal of the systematic errors in the original observations by

the simple and enhanced adjustment models. Once again, the levelling heights contribute

the most to the residual random errors, with the geoid model being second in line.

To this point it is evident that the traditional adjustment model is successful in removing

the systematic errors in Western Canada, and that the enhanced model just filters the

resulting total residuals in the random errors for each height data set. However, for

optimal and more reliable results, it is important that appropriate full CV matrices for the

accuracy of each height data set are used for implementing the enhanced adjustment

model. This will allow for a-posteriori accuracy estimates to be formed (variance

component estimation) and checked against the a-priori error models. Further

investigations into the quality of the accuracy estimates must be performed.
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Figure 4.5:  Residual Point Values for Western Canada using the Two Adjustment
Methods and the EGM96 Geoid Model (outliers removed)

4.5.2  Eastern Canada

The second test network investigated using the two adjustment methods previously

described was in Eastern Canada (λ < 110°W) consisting of a total of 584 points. Again

the distribution of the observed residuals was plotted in order to clean the data set of any

outliers. The distribution is shown in Figure (4.6). As it is seen from this figure, although

the residuals are bi-modally distributed, no outliers can be identified by visual inspection.

This does not necessarily mean that outliers do not exist but more exhaustive statistical

means must be used to identify the possible blunders. Since this is not the purpose of this

report, it was assumed that all 584 points were valid.
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Figure 4.6:  Distribution of Observed Residuals for Eastern Canada

A plot of the residual values versus the various profiles of the points in the Eastern

Canadian network reveal similar results to those obtained for the Western Canadian

network and are shown in Figure (4.7). Again the removal of the systematic errors by the

two adjustment methods is seen. The same uniform a-priori accuracy estimates were used

as those in Western Canada for all height data sets including the geoid model (GSD95). It

has been shown that GSD95 performs virtually the same across Canada and thus different

accuracy estimates for the Eastern network were unnecessary.
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Figure 4.7: Residual Point Values for Eastern Canada using the Two Adjustment
Methods (GSD95 Geoid Model)
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Table (4.2) summarizes the statistics computed for the residual values referring to the

Eastern Canadian network. Once again, removal of the systematic errors by the

adjustment models is evidenced in the mean values. The filtering of the residuals by the

enhanced method is also seen in the corresponding statistical values.

Table 4.2:  Statistics for Adjusted Residuals in Eastern Canada

Residual Maximum Minimum Mean σ RMS

All values in metres
Original Observations 0.04 -1.67 -0.78 0.44 0.90
Simple Model 0.49 -0.82 0.00 0.13 0.13
GPS 0.00 -0.01 0.00 0.00 0.00
Orthometric 0.70 -0.42 0.00 0.11 0.11
Geoid (GSD95) 0.11 -0.07 0.00 0.02 0.02

4.5.3  Surface Plots

The results presented for the enhanced model seem very promising and are a definite

improvement over the traditional four-parameter model with no data weighting. In light

of this more effective method of adjusting GLG networks, an additional spatial analysis

was performed on the adjusted total residuals for both networks, focusing on possibly

identifying a common behaviour for these values that can further be modeled by some

parametric form. Surface plots of the adjusted total residuals for the Western and Eastern

Canadian networks are shown in Figures (4.8) and (4.9) respectively. These plots were

created in order to aid in the identification of some underlying behaviour in the adjusted

total residuals that may lead to possible systematic error modelling improvements. As it

is seen by the figures no dominant trend in either network exists.  This reinforces our

results that showed the systematic errors successfully removed for the Canadian networks

by the 4-parameter transformation model. However, this analysis is vital for other areas,

where the existing height data sets may not be as proficient in modelling the network

region.



51

Figure 4.8:  Surface Plot of Adjusted Total Residuals for Western Canada

(contours in metres)

Figure 4.9:  Surface Plot of Adjusted Total Residuals for Eastern Canada

(contours in metres)
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4.6  A ‘Collocation’ Approach

The main disadvantage of the previous adjustment approach is the difficulty to find a

good parametric model Ax to describe all the possible systematic inconsistencies in the

height data sets (too many effects to model). This, in turn, causes problems with respect

to how reliable the results would be for the GPS/levelling/geoid noise residuals and for

the corresponding variance components. The use of classical statistical testing may help

to identify, to some degree, the weaknesses of a specific parametric model, but it cannot

provide the means for model improvement. It should be noted that a good parametric

model does not necessarily imply small values for the estimated residuals vBˆ , since the

noise level in the original height data (Qh, QH, QN) may allow relatively large values. It is

the accuracy xC ˆ  of the adjusted model parameters that should determine how good a

model is, and how effectively it can be further used in future GPS/levelling applications.

Although the parameterization of the distortion effects in combined GLG networks is a

very interesting topic on its own, it may be more appropriate not to try putting all the

systematic errors in a pre-selected parametric form. For small networks, in particular, this

should be the guiding rule, since in such cases only a small number of unknown

parameters can be introduced in order to keep the degrees of freedom relatively large and

the reliability of the adjustment results relatively high. Such a ‘compact’ model is of

course unable to fully describe the complexity of the systematic effects and should be

accompanied by additional residual corrections, which were previously introduced in the

form of signals s  (see equation 4.16). The solution of the general adjustment model in

Box (4.1) requires the incorporation of the signals s  in the minimization principle, which

now takes the form

min        1T1T1T1T =+++ −−−−
NNNHHHhhhs vQvvQvvQvsQs                     (4.24)

with 1−
sQ  being an appropriate weight matrix for the unknown correction signals.
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Although the solution obtained by using equation (4.24) does not necessarily have to

admit a stochastic interpretation for the signal part, it is useful to consider the signals as

additional stochastic parameters, just like the zero-mean random errors v; an excellent

discussion on this aspect can be found in Dermanis (1984). The stochasticity of s is

actually necessary in the case where statistical tests related to the validity of their

weighting (covariance) model sQ  are to be applied.

One of the main difficulties in this approach is that the mean value }E{sm =s  of the

stochastic signals will not necessarily be zero, due to the systematic behavior that is

supposed to exist in their values. As a result, ms should appear in the final estimation

formulas if we are seeking unbiased estimators (i.e., equivalence between the least-

squares principle (4.24) and the Best Linear Unbiased Estimation-BLUE for E{s}≠0; for

detailed formulas see, e.g., Dermanis, 1987). In order to avoid such computationally

useless estimates, we can initially solve the system BvsAxl ++=  using equation (4.24)

with a unit signal weight matrix. The initial solution for the signal part

( ) 1T11T )( )( −−− ++++++−= mNHhmNHhm IQQQAAIQQQAAIW  (4.25a)

lWIQQQs   )(  ˆ 1−+++= mNHhinit (4.25b)

can be viewed as the ‘smoothest’ residual correction field, that best fits the available

observations l , the selected parametric model Ax , and the associated stochastic model

for the random noise effects (Qh, QH, QN).

Now, we can easily compute the overall trend in the signals s  by fitting some very

smooth surface to the initŝ  values. If we evaluate this fitted surface at the test network

points, we get in general some values initsms ˆˆ ≠ . We can then create the following

‘reduced’ observations and signals:
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l l m sr     = − $ (4.26a)

s s msr     = − $ (4.26b)

It is now safe to assume that the reduced signals sr have zero mean, i.e., E{sr}=0.

Furthermore, the numerical values )ˆˆ( sms −init  can be used for an empirical

determination of a covariance function model describing the average spatial behavior of

the reduced signals sr. In this way, we can repeat the adjustment of the model in Box

(4.1), using a new ‘improved’ version for the stochastic model of the correction signals:

BvsAxl       ++= rr             (4.27a)

{ }E s 0r =   ,        { }
rrr sssrr QCss      E 2T σ== (4.27b)

The elements of the co-factor matrix 
rsQ  are computed according to the empirical CV

model estimated at the previous step. An unknown variance component has been also

introduced in order to diagnose any problems related to the validity of the empirical

signal covariance function. The solution of the adjustment model in equation (4.27) will

be given by the following unbiased estimators:

( ) 1T11T )( )( −−− ++++++−=
rr sNHhsNHhm QQQQAAQQQQAAIW (4.28a)

[ ] rsNHhsNHh rr
lQQQQAAQQQQAx  )(  )(  ˆ 1T11T −−− ++++++= (4.28b)

rsNHhhh r
lWQQQQQv   )(   ˆ 1−+++= (4.28c)

rsNHhHH r
lWQQQQQv   )(    ˆ 1−+++−=     (4.28d)
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rsNHhNN r
lWQQQQQv   )(    ˆ 1−+++−=     (4.28e)

rsNHhsr r
lWQQQQQs   )(   ˆ 1−+++=  (4.28f)

The final solution equations are similar to the ones obtained under the deterministic

approach, with the only differences being (i) the use of reduced observations lr instead of

the original l, and (ii) the incorporation of the signal covariance matrix 
rsQ . In the

special case of stationary white noise in all three height data sets, no significant

simplification of the above formulas occurs due to the appearance of the matrix 
rsQ .

The estimation of the four unknown variance components $σh
2 , $σH

2 , $σ N
2 , 2ˆ

rs
σ  follows a

straightforward extension of the MINQUE algorithm (4.23) and it is omitted.

As was mentioned previously, various statistical tests and iterative solutions can be

performed in order to finally validate the adjustment results. For statistical testing

procedures in extended adjustment models with signals, see Dermanis and Rossikopoulos

(1991) and the references given therein. In any case, a complete answer for the estimated

corrector surface should include: (i) the estimated parametric model Ax$ , (ii) the

parameters describing the non-zero mean signal trend ( $m s  are just the values of this

trend at the test network points), (iii) the estimated values for the reduced zero-mean

signals $s r  at the network points, and (iv) a covariance model for the zero-mean signals

s r . A combined use of (iii) and (iv), in a collocation-type prediction formula, is required

for the prediction of the zero-mean part of the correction signal at other non-levelled

points. A general flowchart for the whole computational procedure described in this

section is given in Figures (4.10a) and (4.10b).
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Figure 4.10a:  Flowchart for the Adjustment Procedure in the
‘Collocation’ Approach
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l = h – H – N
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• Covariance model for s
is N/A

• E{s} ≠ 0 ,  in general

INITIAL
LEAST-SQUARES

ADJUSTMENT

Using eq.(4.24) with IQ =s

Initial values for Adjusted signals ŝ
(eq.4.25b)

Step (A)

ESTIMATION OF E{s} ≠ 0

Fit smooth surface to the values of step (A)

Step (B)

REMOVAL OF THE MEAN

• Subtract the effect of E{s} from the
original observations l

• Create new zero-mean signals
                  sr = s − E{s}

Step (C)

ESTIMATION OF SIGNAL
COVARIANCE MODEL

Use the residuals:

values from step (A) – E{s} from step (B)
to empirically model the spatial behaviour
of the reduced signals sr

Step (D)

REPEAT L-S
ADJUSTMENT

(see Figure 4.11b)
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Figure 4.10b: Flowchart for the Adjustment Procedure in the ‘Collocation’
Approach (continued)
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• Adjusted Geoid residuals
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requires:

- x̂
- E{s} from step (B)

- rŝ

- CV model for signals from step (D)
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4.7  Statistical Testing in GPS/Levelling/Geoid Networks

Statistical testing for various (linear) types of hypotheses in the general adjustment

models considered in this study is a very extensive and important topic. Since it is

impossible to be fully covered in a single section, an attempt will only be made to draw

some general lines, particularly in conjunction with the specific applications of GLG

network adjustments. Relevant references in the geodetic literature that should be

consulted for a more in-depth treatment of the statistical testing problem in general and

extended adjustment models include Dermanis and Rossikopoulos (1991), Krakiwsky

and Biacs (1990), Persson (1982), and Wei (1987). In all these references, as in the

following discussion, all the stochastic components of the adjustment model (noise,

signals) are assumed to be Gaussian distributed vectors of random variables.

The inherent peculiarity of GLG networks, compared to classical 1D, 2D, 3D, or

integrated 1D/2D/3D geodetic networks, is a relatively high level of uncertainty

regarding the validity of almost every component in the adjustment model. In most

classical geodetic network problems, little doubt exists about the selected parametric

models and the observational noise stochastic model, which are trusted to describe

physical reality in a very consistent manner. In integrated geodetic networks, also, the

necessary covariance model for the signal part can be very reliably determined by

processing ‘external’ data (e.g., gravity anomalies, deflections of the vertical, etc.). The

situation is different, however, in GLG networks where the complexity of the systematic

effects involved, the often questionable gravimetric geoid error modeling, and the

absence of any external information for determining a good statistical model for the

residual correction signals, cause serious problems in the selection of realistic parametric,

signal, and observational noise models. As a result, statistical testing in this kind of

networks should not be viewed just as a ‘luxury’ for identifying possible outliers in the

original observations, but rather as a necessity for validating and testing both the a-priori

information and the modelling choices.
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Before any special tests are performed for checking particular features of the general

adjustment model, some global statistical test must be used first. This test will indicate if

the overall model is problematic, without identifying in which specific part (parameters,

signal, noise). For this type of test, the employed test statistic is

u f    T= −$ $ ~e M e1 2χ   (4.29)

where $ $ $ $ $e v v v s= − − +h H N r , M Q Q Q Q= + + +h H N s , and f are the degrees of

freedom. In case where a fully deterministic approach has been followed for the GLG

network adjustment, the terms corresponding to the signal part should be omitted from

the statistic u. The acceptance of the test, for some adopted level of significance a, is

verified if χ χα α
f fu2 1 2 2 2( / ) ( / )− ≤ ≤    .

The previous test gives an overall impression of the model validity but further testing is

always required since it is possible that effects from different modelling errors cancel

each other out in the computation of u. The next series of tests to be traditionally carried

out are those for individual outliers in the observations, using data snooping. They are

well documented in the geodetic literature, following Baarda’s pioneering work. Such

tests are not discussed here, their usefulness however should be always exploited after

having eliminated all possible modelling errors.

Tests on the validity of the stochastic model for the observational height data noise, and

on the admissibility of the empirical covariance model for the correction signals, require

the estimation of the corresponding unknown variance components. A general hypothesis

for variance components is (Rao and Kleffe, 1988)

H  :           vs.       H  :       o aH d H dσ σ= ≠         (4.30)
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where σ is the vector containing the q unknown variance components, and H is an s × q

matrix of rank s. The test statistic, which follows the χs
2  distribution, is

u s  
1

2
 ( )  ( )  ( ) ~  T T 2= − −− −H d HJ H H d$ $σ σ1 1 χ        (4.31)

and the hypothesis Ho is accepted when u s  ≤ χ α2( ) . The structure of matrix J was given

in (4.23d). Tests for single variance components have also appeared in the geodetic

literature (see, e.g., Persson, 1982).  The test

H  :           vs.       H  :    o aσ σ σ σi o i o
2 2 2 2= ≠         (4.32)

is equivalent to the test

1
 

   : H             vs.1
 

   : H
2a2o ≠===
oi

i
i

oi

i
i p

k
u

p

k
u

σσ
        (4.33)

where

r
1T1T for      ˆˆ        and      ,,for    ˆˆ  sikNHhik rsriiiii ==== −− sQsvQv     (4.34a)

[ ]pi h H N s i  tr ( + + )= + −Q Q Q Q WQ1     (4.34b)

The general structure of matrix W is given in (4.28a). For GLG network adjustment

without signals, all the signal-related terms in the above equations disappear. The

hypothesis Ho is accepted when

F u Fp
a

i p
a

i i,
/

,
/

∞
−

∞≤ ≤1 2 2            (4.35)
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where F denotes centennial points of the Fisher distribution.

Another important family of statistical tests can be used to check the performance of the

deterministic model for the systematic distortion effects in GLG networks. Although it

would be very useful to be able to test between different deterministic model choices, no

statistical tools are available in this direction. The only possibility is to compare ‘nested’

deterministic models, which essentially means to either test for the existence of possible

additional parameters in an already adopted model (model expansion) or to test the

possibility of deleting some of the already used model parameters (model shrinkage).

Computationally efficient statistics have been developed for performing the above tests,

which do not require the repetition of the adjustment procedure using the

expanded/shrinked parametric model. All the necessary formulas can be found in

Dermanis and Rossikopoulos (1991). An additional empirical tool that can be employed

for a rough check of the deterministic model is the use of correlation values among the

adjusted model parameters. High correlation suggests possible over-parameterization,

whereas low correlation gives priority to model expansion.

A combined use of all the above mentioned tests, with parallel iterative adjustment

solutions incorporating at each step in the stochastic model the previously estimated

variance components and probably correcting the deterministic model, should be

employed for a rigorous assessment of GLG networks. It is likely that after some

iterations the variance components will be stabilized to some certain values. If, in

addition, the accuracy of the adjusted model parameters is satisfactory, we can then trust

the final results to contain valuable information regarding the actual gravimetric geoid

noise level, and the behavior of the systematic effects that are needed to transform GPS

heights to orthometric heights relative to the local vertical datum.

One final important comment should be made for the covariance model of the correction

signals sr. Apart from the straightforward empirical way of computing such a preliminary

covariance model (as it was described in a previous section) and assigning a single

variance component for controlling its validity, there is always the alternative to use an a-
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priori linearly parameterized CV function for the zero-mean stochastic part of the

distortion field:

C k k k
k

( ) ( ) ( )P, Q    P  Q= ∑σ ψ ψ2         (4.36)

where the ‘degree variances’ σk
2  play now the role of the unknown variance components,

i.e.:

{ }E  Ts s C Qr r s k k
k

= = ∑σ 2 (4.37a)

Q k k ki j i j[ , ] ( ) ( )   = ψ ψ (4.37b)

The selection of a truncated basis {ψk} for describing the correction field is of course an

open problem. The variance component estimation and testing problem, for the signal

part, is now reduced to a ‘power spectrum’ estimation and testing problem, with respect

to the adopted basis. Subsequent iterations of the whole adjustment algorithm, using the

newly estimated power spectrum at each step, are required in order to get a reliable

answer for the various components (geoid noise, correction signals, parameters, etc.).

Such an approach could eliminate the need to use additional discrete deterministic

parameters Ax, under the perspective of having them included in the behavior of the

selected system of basis functions. The whole GLG network adjustment problem can, in

this way, be reduced to a pure collocation with random noise (geodetic terminology) or

random effects model (statistics theory terminology).
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5.  Concluding Remarks

A new geoid model (GARR98) has been computed for Canada and parts of the United

States by using the EGM96 global geopotential model and local surface and marine

gravity data. Terrain effects were modeled through the use of a 1 km × 1 km DEM for all

of western Canada. The overall agreement of GARR98 with the GPS/levelling data is

approximately 14 cm, after datum inconsistencies have been removed via the four-

parameter transformation and outliers have been eliminated from the original

GPS/levelling data. This overall accuracy approximately agrees with GSD95, however

differences between the two geoid models were observed when a regional analysis was

applied. Also, before the four-parameter transformation was applied at the GPS

benchmarks, GARR98 improved the standard deviation obtained by GSD95 by more than

100% (from 44 cm to 20cm).

The similar accuracy results between western and eastern Canada (for both GARR98 and

GSD95) indicated that the strong terrain effects in the western mountainous areas were

properly modelled in both geoid models. The highest level of agreement for all models is

achieved in central Canada ranging from 9 cm to 6 cm for GARR98 and GSD95,

respectively. For all of Canada, the two global geopotential models show similar relative

accuracies up to baseline lengths of 350 km, ranging from 3.5 ppm to 0.5 ppm. In Eastern

Canada, OSU91A shows slightly better relative accuracies than EGM96 for baseline

lengths up to 400 km, whereas EGM96 has better overall accuracy especially in the

western regions giving relative accuracies better than 1 ppm for baselines greater than

200 km.

The main differences between GARR98 and GSD95 can be attributed to the additional

gravity and height data that were used in the GSD95 solution for parts of Eastern Canada

(see section 2.1). This demonstrates the importance of incorporating extended gravity and

height information in gravimetric geoid solutions for large areas, such as Canada, in order

to achieve the level of accuracy required for substituting conventional spirit levelling by

GPS techniques. In addition, advances in global geoid modelling through the inclusion of
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EGM96 help towards meeting the requirements for a more accurate national geoid model.

Given these improvements in terms of data and the results from our kinematic DGPS

campaign, it is evident that combining GPS with an accurate geoid model may be an

efficient and accurate alternative to the traditional spirit levelling techniques currently

being used.

The use of combined GPS/Levelling/Geoid networks provides a very attractive

evaluation scheme for the accuracy of gravimetric geoid models. At the same time, GLG

networks constitute the skeleton of ‘common points’ in the attempt to find optimal

transformation models between GPS and orthometric heights. These are two different

problems which, nevertheless, can be attacked simultaneously through a unified

adjustment setting. As far as the geoid evaluation problem is concerned, a GLG network

adjustment can essentially be used for testing the reliability of preliminary internal geoid

error models, which have been derived via error propagation from the source data and

their noise used in the gravimetric solution. Variance component estimation has been

proposed as a useful statistical tool for computing and testing the actual geoid noise level.

The important role played by the stochastic noise model of the other two height

components was also demonstrated through the derived filtering equations for the total

noise residuals of the adjustment. This general approach also allows us to check

individually various additive geoid error models (see comment at the end of Section 4.2).

In the absence of any prior geoid error model, we can still use a unit weight matrix and

get an estimate for the a-posteriori unit geoid variance.

For the problem of modeling a corrector surface for GPS-to-orthometric height

transformation, it is important to filter out all the zero-mean random noise effects coming

from the triplet of the height data. This is the main weakness of some of the presently

available attempts for such a modelling. This correction surface will also absorb a part of

the geoid long-wavelength error which does not necessarily follow a zero-mean random

behavior, and it is not possible to be explicitly isolated. Two modeling alternatives have

been presented for the description of the systematic correction field. These included: (a)

purely discrete deterministic modelling, (b) hybrid deterministic and ‘stochastic’
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modelling. Again, the tool of variance component estimation provides the statistical

means to testing the admissibility of the correction field’s CV model when (b) is

employed.

The problem of statistical testing for various hypotheses regarding the a-priori accuracy

information and the modelling choices in GLG networks needs to be addressed in more

detail, especially in view of the many different levels of accuracy desired by

GPS/levelling users. In this direction, the problem of optimization and design of GLG

networks is another important and interesting topic that certainly needs to be explored.

The numerical analysis of two adjustment methods used in applications requiring GLG

networks has revealed some interesting results regarding the nature of the height

adjustment problem. The traditional four-parameter model was proven to be sufficient for

removing the systematic errors introduced by the datum differences of the three height

data sets for Canada. It was also shown that a more generalized or enhanced weighting

scheme could be applied in order to filter the total adjusted residuals and separate the

noise coming from each height component. Furthermore, the adjustment of combined

GLG networks can be used for testing the a-priori error models for GPS, levelling and

geoid, given full error CV matrices for all height data. Further numerical tests using the

proposed methodologies as well as various geoid models must be conducted in order to

reveal the true benefits achieved from adjustments of combined GLG networks.

6. Acknowledgements

The Geodetic Survey Division of Geomatics Canada provided data and financial support

for this study which the authors gratefully acknowledge. Further support was provided by

an NSERC grant and an Alexander von Humboldt Research Fellowship to the third

author.



66

7.  References

De Bruigne, A.J.T., Haagmans, R.H.N., and de Min, E.J. (1997): A Preliminary North

Sea Geoid Model GEONZ97, Report from Delft University of Technology, Faculty of

Geodetic Engineering.

Dermanis, A. (1978): Adjustment of Geodetic Observations in the Presence of Signals.

International School of Advanced Geodesy, 2nd course: ‘Space-Time Geodesy,

Differential Geodesy, and Geodesy in the Large’, Lecture Notes, Erice, Italy, May 18 -

June 2, 1978.

Dermanis, A. (1984): Signals in Geodetic Networks.  International School of Advanced

Geodesy, 3rd course: ‘Design and Optimization of Geodetic Networks’, Lecture Notes,

Erice, Italy, April 25 - May 10, 1984.

Dermanis, A. (1987): Geodetic Applications of Interpolation and Prediction.

International School of Geodesy A.  Marussi, 4th course: ‘Applied and Basic Geodesy:

Present and Future Trends’, Lecture Notes, Erice, Italy, June 15-25, 1987.

Dermanis, A. and Rossikopoulos, D. (1991): Statistical Inference in Integrated Geodesy.

Paper presented at the IUGG XXth General Assembly, Vienna, August 11-21, 1991.

Duquenne, H., Jiang, Z. and Lemarie, C. (1995): Geoid Determination and Levelling by

GPS: Some Experiments on a Test Network. IAG Symposia Gravity and Geoid, No.

113, pp. 559-568.

Featherstone, W. (1998): Do we need a Gravimetric Geoid or a Model of the Australian

Height Datum to Transform GPS Heights in Australia? The Australian Surveyor, vol.

43, No. 4, pp. 273-280.

Forsberg, R. and Madsen, F. (1990): High-Precision Geoid Heights for GPS Levelling.

Proceedings of the 2nd International Symposium on Precise Positioning with the

Global Positioning System, Sept. 3-7, Ottawa, Canada, 1990, pp. 1060-1074.

Fotopoulos, G., Kotsakis, C., and Sideris, M.G. (1998): Development and Evaluation of a

New Canadian Geoid Model. Paper presented at the 2nd Joint Meeting of the IGC and

the IGeC, Trieste, Sept. 7-12, Italy, 1998.



67

Grafarend, E. (1985): Variance-Covariance Estimation, Theoretical Results and Geodetic

Applications. Statistics and Decisions, Supplement Issue 2. pp. 407-441.

Hein, G.W. (1986): Height Determination and Monitoring with Time Using GPS

Observations and Gravity Data. In: Determination of Heights and Height Changes,

Pelzer, H. and Niemeier, W. (eds.), Contributions to the Symposium on Height

Determination and Recent Vertical Crustal Movements in Western Europe, Hannover,

Sept. 15-19, 1986, pp. 349-360.

Heiskanen, W.A. and Moritz, H. (1967): Physical Geodesy. W.H. Freeman, San

Francisco.

Haagmans, R., de Min, E., and van Gelderen, M. (1993): Fast evaluation of convolution

integrals on the sphere using 1D FFT, and a comparison with existing methods for

Stokes’ integral. Manuscripta Geodaetica, 18, pp. 227-241.

IGeS - International Geoid Service (1997): The Earth Gravity Model EGM96: Testing

Procedures at IGeS. Special Issue, Bulletin n.6, D.I.I.A.R., Politechnico di Milano,

Italy.

Jiang, Z. and Duquenne, H. (1996): On the combined adjustment of gravimetrically

determined geoid and GPS levelling stations. Journal of Geodesy, No. 70, pp. 505-

514.

Kearsley, A.H.W., Ahmad, Z.  and Chan, A. (1993): National Height Datums, Levelling,

GPS Heights and Geoids. Aust. J. Geod.Photogram. Surv., No. 59, pp. 53-88.

Koch, K-R. (1987): Parameter Estimation and Hypothesis Testing in Linear Models.

Springer-Verlag.

Krakiwsky, E. and Biacs, Z.F. (1990): Least Squares Collocation and Statistical Testing.

Bull. Geod., 64, pp.73-87.

Li, Y.C. and Sideris, M.G. (1994): Minimization and Estimation of Geoid Undulation

Errors. Bull. Geod., 68, pp. 201-219.



68

Mainville, A., Forsberg, R., and Sideris, M.G. (1992): Global Positioning System Testing

of Geoids Computed from Geopotential Models and Local Gravity Data: A Case

Study. Journal of Geophysical Research, vol. 97, No. B7, pp. 11,137-11,147.

Mainville, A., Veronneau, M., Forsberg, R.  and Sideris, M.G. (1994): A Comparison of

Terrain Reduction Methods in Rough Topography. Paper presented at the Joint

Meeting of the International Gravity Commission and the International Geoid

Commission, Graz, Austria, 1994.

Mainville, A., Craymer, M., and Blackie, S. (1997): The GPS Height Transformation

1997, An Ellipsoidal-Orthometric Height Transformation for Use with GPS in

Canada. Report of Geodetic Survey Division, Geomatics Canada, Ottawa.

Moritz, H.  (1980): Advanced Physical Geodesy.  Herbert Wichmann Verlag, Karlsruhe.

Pelzer, H.  (1986): Height Determination – Adjustment Models for Combined Data Sets.

In: Determination of Heights and Height Changes, Pelzer, H.  and Niemeier, W.

(eds.), Contributions to the Symposium on Height Determination and Recent Vertical

Crustal Movements in Western Europe, Hannover, Sept. 15-19, 1986, pp. 327-340.

Persson, C.G. (1982): Adjustment, Weight-Testing and Detection of Outliers in Mixed

SFF-SFS Models. Manuscr. Geod., 7, pp.299-323.

Rao, C.R. (1971): Estimation of Variance Components - MINQUE Theory.  Journal of

Multivariate Statistics. vol. 1, pp. 257-275.

Rao, C.R. and Kleffe, J. (1988): Estimation of Variance Components and Applications.

North-Holland Series in Statistics and Probability, vol.3.

Rao, P.S.R.S. (1997): Variance Components Estimation: Mixed Models, Methodologies,

and Applications. Monographs on Statistics and Applied Probability, vol. 78,

Chapman & Hall.

Sideris, M.G. (1990): Rigorous gravimetric terrain modelling using Molodensky's

operator. Manuscr. Geod., 15, pp. 97-106.



69

Sideris, M.G., Mainville, A., and Forsberg, R. (1992): Geoid Testing Using GPS and

Levelling (or GPS Testing Using Levelling and the Geoid?). Aust. J. Geod.

Photogram. Surv., No.57, pp. 62-77.

Sjoberg, L. (1984): Non-negative Variance Component Estimation in the Gauss-Helmert

Adjustment Model. Manuscr. Geod., 9, pp. 247-280.

Smith, D.A. and Milbert, D.G. (1996): The GEOID96 High Resolution Geoid Height

Model for the United States. National Oceanic and Atmospheric Administration

(NOAA), U.S.  National Geodetic Survey, Silver Springs, MD.

9DQLþHN�� 3�� �������� 9HUWLFDO� 'DWXP� DQG� 1$9'���� Surveying and Land Information

Systems, Vol. 51, No. 2, pp. 83-86.

Veronneau, M.  (1994): Determination of Mean Helmert Gravity Anomalies in a Plane

Approximation. Internal Report. Geodetic Survey Division, Geomatics Canada, Dept.

of Natural Resources Canada, Ottawa, Ontario.

Veronneau, M. (1995): An Analysis of the Gravity Measurements Used in the

Determination of the 1995 Canadian Geoid Model. Internal Report. Geodetic Survey

Division, Geomatics Canada, Dept. of Natural Resources Canada, Ottawa, Ontario.

Veronneau, M. (1996): Canadian Geoid Model GSD95 and its Precision. Internal Report.

Geodetic Survey Division, Geomatics Canada, Dept. of Natural Resources Canada,

Ottawa, Ontario.

Wei, M. (1987): Statistical Problems in Collocation. Manuscr. Geod.,12, pp. 282-289.

Wichiencharoen, C. (1982): The Indirect Effect on the Computation of Geoidal

Undulations. Report No.336, Dept. of Geodetic Science and Surveying, Ohio State

University, Columbus, Ohio.


