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Abstract 

Persistent scatterer interferometry (PSI) detects strong, stable, and coherent radar 
signals throughout a time series of SAR images. Such persistent signals are reflected 
from so-called persistent scatterer (PS) points on ground. A set of PS attributes such as 
temporal coherence, deformation velocity, and topography height can be derived for 
scene monitoring. In practice, PSI works well on built-up cities because the regular and 
stationary substructures of buildings ensure high PS density. In case of standard PSI 
processing, these PS points must maintain presence during the whole acquisition period 
of a set of SAR images. For this reason, the so-called semi-PS points cannot be 
identified because they disappeared or emerged during this period due to big changes 
like construction. We thus regard them as change points.  
 

Based on PSI, we propose a spatiotemporal analysis to detect positions and 
occurrence times of change points. Our technique first extracts PS points from a SAR 
image stack. Afterwards, this image stack is divided into several subsets by a series of 
break dates (an interval between two successive image acquisitions). These image 
subsets are used as inputs in PSI processing to derive temporal coherence images sorted 
by time. We introduce change indices calculated from these temporal coherences. A 
sequence of change indices for each non-PS point quantify its probability of being a 
change point at different times. Using these change indices, change points are identified 
by a global, automatic, and statistical-based method. Thereafter, the disappearance or 
emergence date of each change point is detected from the break dates based on the 
temporal variation in its change index sequence. Finally, the PS and change points along 
with the events’ dates are integrated for further analysis.  
 

In this study, we use simulated and real data tests to validate and evaluate our 
approach. The simulation results show that the overall detection accuracy (confusion 
matrix) of PS and change points is 99% and all of the producer’s and user’s accuracies 
are better than 99%. The correlation coefficient of 0.999 between the estimated and 
reference times indicates a considerably high accuracy for change time detection. Our 
real data test using TerraSAR-X images successfully recognizes the steady, 
disappearing, and emerging buildings in Berlin, Germany, within 2013. The 
spatiotemporal information are consistent with the ground truth. We also discuss 
monitoring of five study areas of different urban characteristics: intensive constructions, 
business district, sport facility, traffic infrastructure, and single building. Finally, we 
compare our technique with two conventional methods to demonstrate the improvement.  
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Kurzfassung 

Persistent Scatterer Interferometry (PSI) nutzt starke, stabile und kohärente 
Radarsignale für die Auswertung von Zeitreihen in SAR-Bildern. Solche zeitlich 
stabilen Signale werden durch Reflextionen von sogenannten Persistent Scatterer (PS) 
Punkten auf der Erdoberfläche erzeugt. Für Monitoringanwendungen kann von diesen 
PS-Punkten ein Satz von PS-Attributen, z. B. zeitliche Kohärenz, 
Bewegungsgeschwindigkeit und Topographiehöhe abgeleitet werden. PSI funktioniert 
gut in bebauten Städten, da die regelmäßigen Strukturen an Gebäuden eine hohe PS-
Dichte mit sich bringen. Die PS müssen während der gesamten Akquisitionsperiode 
von SAR-Bildern vorhanden sein. Auf sogenannte Semi-PS-Punkte trifft dies nicht zu: 
Diese sind im Allgemeinen nicht nutzbar, da sie während der Beobachtungsperiode 
aufgrund von großen Änderungen wie Gebäudekonstruktion oder -abriss auftreten oder 
verschwinden. Solche Punkte werden als Veränderungspunkte bezeichnet. 

 
Basierend auf PSI wird in dieser Arbeiteine raumzeitliche Analyse vorgeschlagen, 

um die Positionen und Auftrittszeiten von Veränderungspunkten zu ermitteln. Dazu 
werden zuerst PS-Punkte aus einem SAR-Bildstapel extrahiert. Der Bildstapel wird 
dann durch einen Satz von Ereignis-Tagen in mehrere Teilmengen unterteilt (ein 
Intervall zwischen zwei aufeinanderfolgenden Bildaufnahmen). PSI wird sodann auf 
die Bilduntergruppen angewandt, um eine Reihe zeitlicher Kohärenzbilder abzuleiten. 
Aus den Kohärenzbilder wiederum werden Änderungsindizes berechnet. Eine Sequenz 
von Änderungsindizes für jeden Nicht-PS-Punkt quantifiziert die Wahrscheinlichkeit, 
zu verschiedenen Zeiten ein Änderungspunkt zu sein. Alle Änderungsindizes werden 
verwendet, um Änderungspunkte durch eine globale, automatische und statistisch 
basierte Methode zu identifizieren. Aus den Ereignis-Tagen wird danach der Zeitpunkt 
des Verschwindens oder Auftretungs jedes Änderungspunkts erfasst, basierend auf der 
zeitlichen Variation in seiner Änderungsindexsequenz. Schließlich werden die PS- und 
die Änderungspunkte zusammen mit den Zeitpunkten der Ereignisse zur weiteren 
Analyse integriert. 

 
Zur Validierung und Bewertung des Ansatzes werden Tests mit simulierten und 

realen Daten durchgeführt Die Simulation zeigt, dass die aus der Konfusionsmatrix 
ermittelte Gesamtdetektionsgenauigkeit der PS- und der Änderungspunkte 99% beträgt 
und die Hersteller- sowie Anwender-Genauigkeiten besser als 99% sind. Die 
Mittelwerte der Zeitpunkte der geschätzten Ereignisse wurden mit den Referenzdaten 
verglichen. Es ergibt sich ein Korrelationskoeffizient von 0.999, was bedeutet, dass die 



4 
 

vorgestellte Methode Ereignis-Zeitpunkte mit einer sehr hohen Genauigkeit erkennen 
kann. Beim Test mit realen Daten (TerraSAR-X Bilder von Berlin, Deutschland, 2013) 
werden erfolgreich vielerlei verschwindende und entstehende Gebäudeteile erkannt. 
Die ermittelten Zeitpunkte und Positionen der Veränderungen stimmen mit den 
tatsächlichen Gegebenheiten überein. In der Arbeit werden darüber hinaus auch 
städtebauliche Anwendungen anhand folgender fünf Beispiele untersucht: (i) Ableiten 
des Baufortschritts, Entwicklung von (ii) Geschäftsvierteln, (iii) Sportanlagen, (iv) 
Verkehrsinfrastrukturen sowie (v) einzelner Gebäude. Schließlich demonstriett der 
Vergleich der vorgestellten Technik mit zwei konventionellen Methoden die 
Verbesserungen, die durch den neuen Ansatz erzielt werden. 
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1. Introduction 

1.1. Motivation and objective 

The continuous rise in population and economic growth has led to global 
urbanization along with frequent building changes, i.e., erection and destruction. 
Monitoring such big changes is important for city management, urban planning, 
updating of cadastral maps, etc. (Gamba, 2013; Marin et al., 2015). Remote sensing 
offers a cost-effective mapping of large areas compared with the conventional field 
surveys. Spaceborne synthetic aperture radar (SAR) sensors provide radar images, 
which are captured rapidly over vast areas at fine spatiotemporal resolution. For 
instance, TerraSAR-X operating in Stripmap mode provides a new image of about 3 m 
resolution over a scene size of 50 km × 30 km every 11 days. The spatial resolution can 
be increased up to 20 cm when Staring Spotlight mode operates (Mittermayer et al., 
2014). In addition, active SAR sensors are weather independent and have a day-and-
night vision ability, which guarantees to acquire images with a high temporal density. 
These characteristics make SAR suitable for monitoring events. 
 

Many approaches using multi-temporal SAR images have been proposed for urban 
monitoring. Among them, persistent scatterer interferometry (PSI) (Costantini et al., 
2008; Crosetto et al., 2005, 2016; Ferretti et al., 2000, 2001, 2011; Hooper et al., 2004; 
Kampes, 2006) detects strong, stable, and coherent radar signals from a time series of 
SAR images. Such persistent signals are reflected from so-called persistent scatterer 
(PS) points on ground. A set of PS attributes such as temporal coherence, line-of-sight 
(LoS) velocity (mm/year level), topography height, and geographic position can be 
derived for various applications. In practice, PSI works well on built-up cities because 
the preferred rectangular alignment of stationary structures ensures high PS density. In 
principle, monitoring of urban subsidence and uplift considers local LoS velocity 
pattern.  
 

In standard PSI processing, the signal sequence of a PS point is modelled to 
maintain coherence during the entire acquisition period of a SAR image stack. A scene 
of interest covered with PS points is assumed not to undergo big changes. A typical 
example is a building composed of PS-like substructures, which remain permanently 
intact. These local PS points can thus be extracted for further applications. In contrast, 
if parts of the substructures or even the entire building disappears due to construction, 
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the corresponding PS points vanish meanwhile in the initial screening of a PSI 
framework for temporally stable scatterers. We call them semi-PS points, which 
disappear or emerge due to big changes. In principle, PSI has nothing to do with such 
large-scale change detection bur rather LoS motion. 
 

Some previous works (Ansari et al., 2014; Brcic and Adam, 2013; Ferretti et al., 
2003; Novali et al., 2004) aim at detecting semi-PS points by searching for abrupt 
amplitude changes of pixels along a sequence of SAR images. PS points are supposed 
to manifest equally high amplitudes over time. Indeed, it is quite common to utilize an 
amplitude-based threshold like amplitude dispersion (Ferretti et al., 2001) to select PS 
candidates. These candidates are then refined to extract PS points. However, we might 
lose PS points of low amplitude and thus also the corresponding semi-PS points if any. 
We can resort to another technique.  
 

In general, change detection (Bruzzone and Bovolo, 2013; Hussain et al., 2013; 
Preiss and Stacy, 2006; Rignot and van Zyl, 1993) measures signal variations in multi-
temporal SAR images to identify scene changes. Such changes must be sufficiently 
large and comparable to the image resolution, e.g., collapsed buildings. According to 
target objects of interest, a variety of signal forms can be chosen, such as coherence, 
amplitude, backscatter coefficient, radar cross-section, and so on. For example, we can 
detect flood coverage (Nico et al., 2000) or vegetation expansion (Askne et al., 1997) 
based on coherence variance. Nevertheless, nuisances such as image noise and 
irrelevant changes complicate the task and therefore degrade the detection accuracy. 
We need complementary data and additional pre-/post-processing to improve the 
accuracy. Such manipulations usually cause side effects. For instance, image noise can 
be suppressed by low-pass spatial filters if the noise is modelled to be spatially 
uncorrelated; however, scene details are inevitably blurred. 
 
 This dissertation develops a spatiotemporal change detection to detect 
disappearing and emerging semi-PS points along with their occurrence times. We 
regard these semi-PS points as change points. The term "spatiotemporal" refers to 
changes that occur over geographical spaces at different times. This new technique 
proves able to detect more change points than the amplitude-based semi-PS methods. 
In addition, the nuisances subject to common change detection are not concerned at all. 
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1.2. State of the art of PSI 

1.2.1. Methodology development 

Persistent scatterer interferometry is extended from differential interferometric 
SAR (DInSAR) that estimates ground displacements over a scene of interest by using 
two or more SAR images. Two comprehensive reviews of DInSAR can be found in 
Hanssen (2001) and Massonnet and Feigl (1998). A DInSAR procedure was first 
proposed by Gabriel et al., (1989), followed by various applications including landslide 
monitoring (Carnec et al., 1996; García-Davalillo et al., 2014), uplift and subsidence 
analysis (Amelung et al., 1999; Galloway et al., 1998; Massonnet et al., 1997; 
Raucoules et al., 2003), glaciology (Goldstein et al., 1993; Rignot et al., 1997), 
seismology (Dalla Via et al., 2012; Massonnet et al., 1993; Peltzer and Rosen, 1995; 
Zebker et al., 1994), and volcanology (Antonielli et al., 2014; Massonnet et al., 1995; 
Massonnet and Sigmundsson, 2000). However, the displacement estimation is often 
degraded due to coherence loss of signals caused by temporal and geometric 
decorrelations, errors caused by phase unwrapping, and atmospheric phase screen (APS) 
(Crosetto et al., 2016). PSI was thus developed in the early 2000s to overcome this 
drawback.  
 
 The research pioneers (Ferretti et al., 2000, 2001) coined their method as 
permanent scatterers approach, which was patented as PSInSARTM in 2000 by Tele-
Rilevamento Europa. This approach aims at detecting and analysing PS points for scene 
deformation monitoring. The signals of PS points maintain coherence consistently as 
they are little affected by temporal and geometric decorrelations. This method requires 
a time series of N SAR images, which are acquired using the same system parameters, 
i.e., orbit, look angle, polarization, wavelength, etc. After all of the images are precisely 
co-registered, N-1 interferograms between a master image and the other N-1 slave ones 
are computed. The phases of the interferograms are employed in the following 
procedure. PS candidates are selected from the pixels if their time-series signals are 
strong above a certain level. Here amplitude-based dispersion index is used for this 
purpose. A periodogram grid search is applied to the PS candidates to estimate their 
best-fit deformation velocities and residual topographic errors. The goal of this 
searching is to maximize the temporal coherences, which are modelled in a cost 
function. This step is done without phase unwrapping. The phase components of the 
best-fit estimates are subtracted from the original phases to obtain residual phases. The 
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residual phases are mainly attributed to noise and APS. The APS phases (only spatially 
correlated, not temporally) are derived by a low-pass spatial filtering and then removed 
from the original phases. The refined phases are used to estimate again the PS 
candidates’ deformation velocities and residual topographic errors. Compared with the 
first estimation, their accuracies are improved because of less APS disturbance. Finally, 
PS points are extracted from the candidates if their temporal coherences fulfil a 
specified threshold.  
 

PSInSARTM approach has two major constraints. First, moderate-coherence areas 
like natural lands usually result in low PS density due to lack of coherent signals. 
Second, amplitude-based dispersion is not suited to low SNR scenes (often in natural 
lands) to select PS candidates. These two constraints mentioned above hampers 
applications to low- and moderate-coherence areas. We can resort to another technique 
described in the following to improve both density and reliability of PS points in 
particular for suburban scenes.  
 

The small baseline subset (SBAS) method (Berardino et al., 2002; Lanari et al., 
2007) allows several master images to establish their own optimal interferogram sets 
characterized by small temporal and normal baselines. This so-called small baseline 
constraint mitigates scene coherence loss caused by temporal and geometric 
decorrelations. Therefore, more PS points over suburban areas are probably identified 
compared with PSInSARTM. The interferogram sets are temporally connected by 
singular value decomposition (SVD) (Golub and Van Loan, 1996). A pixel is selected 
as a PS point if its ensemble coherence of interferograms fulfils a specified threshold. 
Afterwards, all of the PS points are spatially connected by Delaunay triangulation to 
form a PS network. The PS points’ phases are unwrapped (Costantini and Rosen, 1999) 
and interpolated for the remaining non-PS points. Based on the unwrapped phases, a 
least square algorithm is utilized to evaluate the deformation velocities and residual 
topographic errors for all pixels. The evaluation accuracy is further improved by 
iteration after APS removal. For this purpose, the APS phases are derived by means of 
a low-pass spatial filtering and a high-pass temporal one.  
 

Certain advances in technique and application were achieved in 2003. Schmidt 
and Bürgmann (2003) introduced a SBAS-like approach for monitoring of uplift and 
subsidence. Based on small baseline constraint, Mora et al. (2003) sought and used only 
crucial SAR images in PSI computation to improve the efficiency. Colesanti et al. (2003) 
adapted PSInSARTM method for seasonal deformation phenomena. Other important 
literatures are Adam et al. (2003), Crosetto et al. (2003), and Lyons and Sandwell 
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(2003). The industry community also began to commercialize PSI and SBAS 
techniques (Duro et al., 2003; Werner et al., 2003).  
 

So far the PS density in low SNR natural terrains was still insufficient for reliable 
analysis. To overcome this shortcoming, Stanford method for persistent scatterers 
(StaMPS) (Hooper et al., 2004) brought a phase-based threshold to detect PS points 
irrespective of SNR. The increase of PS density in suburban areas was proven. In the 
same year, SBAS experts also improved their method. Formerly, SBAS relied on multi-
look operation to improve scene coherence and thus enhance phase unwrapping 
accuracy. However, this operation causes loss of spatial resolution as well. This 
disadvantage was addressed by an extended SBAS version (Lanari et al., 2004) where 
the phase unwrapping was adapted to work on full-resolution SAR images without 
accuracy degradation.  
 

Afterwards, technical development kept moving forward. Crosetto et al. (2005) 
divided PSI procedure into two consecutive steps. The first computation only involves 
parts of SAR images in order to spare processing time. The second step employs the 
entire images but considers only the subareas of interest, which are subject to notable 
deformation signals in the first results. This strategy improves the efficiency of PSI 
processing and analysis. Ferretti et al. (2005) characterized the physical properties of 
PS points, i.e., backscattering, geometrical features, and corner reflection type. 
Understanding these properties assists in interpretation of scene deformation. Kampes 
(2006) proposed a spatiotemporal unwrapping network (STUN), which is able to assess 
precisions of PS-related estimates. Originally, a minimum cost flow (MCF) phase 
unwrapping was designed for one single interferogram (Costantini, 1998; Schmidt and 
Bürgmann, 2003). An extended MCF (EMCF) version was then tailored to be 
compatible with multi-temporal interferograms for SBAS (Pepe and Lanari, 2006). A 
3D phase unwrapping method was developed by Hooper and Zebker (2007) to solve 
spatiotemporal phase ambiguity. Ferretti et al. (2007) demonstrated how to decompose 
a LoS deformation velocity to derive the vertical and horizontal components. This 
method requires at least two PSI results from ascending and descending SAR image 
stacks to solve rank deficiency. Quasi-PS (QPS) method (Perissin et al., 2007; Perissin 
and Wang, 2011, 2012) is devoted for PS points of medium coherence, which are 
usually ignored in a standard PSI processing. Persistent scatterer pairs (PSP) approach 
estimates relative deformation velocities and topography heights between connected PS 
points. These estimates are unwrapped to derive the absolute values for each PS point. 
The final results are insensitive to APS disturbance, which is modelled to be offset 
between connected points. Stable point network (SPN) (Crosetto et al., 2008) was 
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proposed to determine a linear deformation velocity and a nonlinear displacement 
sequence for each PS point. López-Quiroz et al. (2009) and Wegmuller et al. (2010) 
contributed to monitoring of extraordinarily large deformation.  
 

In the late 2000s, Hooper (2008) and Rocca (2007) emphasized the need to 
combine PS and distributed scatterers (DS) points to increase the measurement points 
for comprehensive monitoring. DS points are defined to be a cluster of pixels where 
reflected radar signals share the same statistics. In general, DS points are found on 
homogeneous areas of moderate coherence such as non-cultivated vegetation, outcrops, 
or rocky lands. Ferretti et al. (2011) developed SqueeSARTM (patented by Tele-
Rilevamento Europa) to detect and combine PS and DS points in a standard PSI 
workflow. First of all, PS points are located by PSInSARTM. Then, DS points are 
identified by a two-sample Kolmogorov-Smirnov test (Kvam and Vidakovic, 2007; 
Press et al., 1988; Stephens, 1970). The time-series phases of each DS point are refined 
by phase triangulation algorithm to "squeeze" useful and high-coherence phases. 
Afterwards, the DS points are treated as and processed with the PS points in a standard 
PSI computation. The increase of measurement points enhances the PSI applicability 
to various kinds of land cover.  
 

Recent works are summarized as follows. The improved EMCF phase unwrapping 
(Fornaro et al., 2011; Pepe et al., 2011, 2015) does not require multi-look operation and 
thus prevents loss of detail. Goel and Adam (2014) and Wang et al. (2012) contributed 
to detect DS points in a more efficient way. Multiscale interferometric SAR time series 
(MInTS) (Hetland et al., 2012) features its flexible usage of various deformation models 
including linear, nonlinear, logarithmic, exponential, sinusoidal, B-spline motions, etc. 
Lv et al. (2014) extracted DS points, whose phases can be correctly retrieved even from 
SAR images of poor co-registration accuracy. Zhang et al. (2014) integrated different 
deformation models characterized by linearity, acceleration, periodicity, etc., to 
investigate complex deformation scenarios. Morishita and Hanssen (2015) combined 
SAR images, which are acquired from multiple radar sensors, in a single PSI processing. 
The major contribution is a refined deformation model, which integrates radar signals 
of different wavelengths and look angles. Chang and Hanssen (2016) introduced 
multiple hypothesis testing (Koch, 1999; Teunissen, 2000) in PSI to optimize parameter 
solution and enable reliability assessment. Unlike SqueeSARTM, a single DS point 
detected by Cao et al. (2016) is modelled to be dominated by multiple scattering 
mechanisms instead of only one. This new modelling leads to increase of DS density. 
Esmaeili and Motagh (2016) merged dual-polarized SAR signals to be used in PSI. The 
benefit of a proper merging in a proper way is to increase the signal coherences.  
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1.2.2. Techniques for urban monitoring 

In particular, PSI works well for urban areas where dense PS points are likely 
formed on steady buildings due to multi-bounce corner reflection. For example, an 
urban PS density detected from a stack of high-resolution TerraSAR-X images can be 
greater than 100000 points/km2 (Gernhardt et al., 2010). Nevertheless, monitoring 
structural details was constrained in the early days because only low- or moderate-
resolution SAR images such as Radarsat-1/2 and Envisat were available. This constraint 
has been overcome by the second-generation SAR systems such as TerraSAR-X and 
COSMO-SkyMed (Bamler et al., 2009; Sansosti et al., 2014). They were launched since 
2008 and are able to provide metre-resolution images. For instance, the azimuth and 
slant-range resolutions of a TerraSAR-X image are up to 0.2 and 0.6 m given use of 
Staring Spotlight mode (Mittermayer et al., 2014). Meanwhile, high spatial resolution 
also assists with increase of PS density. Bonano et al. (2013) demonstrated that the PS 
densities from the Radarsat-1 and Envisat images to the COSMO-SkyMed images are 
increased by 320% and 550%. Besides, the updated georeferencing system enables 
accurate 3D geocoding of PS points. The geocoding accuracy of TerraSAR-X images 
can be better than 1 m (Gernhardt et al., 2015; Gisinger et al., 2015). In summary, the 
advanced SAR systems benefit PSI performance especially for urban applications.  
 

We summarize important studies with respect to urban applications of high-
resolution SAR images. Gernhardt et al. (2010) analysed the factors in determining PS 
density on buildings. These factors include polarization, look angle, and spatiotemporal 
resolution of SAR signals as well as geometric features of buildings. This research helps 
people to select adequate parameters to make PS density as high as possible. Monserrat 
et al. (2011) investigated thermal expansions of PS points to interpret structural 
deformation caused by temperature variation. A similar work was later done by Crosetto 
et al. (2015). Gernhardt and Bamler (2012) demonstrated how to evaluate building 
deformation by using high-resolution SAR images. The geometric characteristics of PS 
points on facades was discussed in Gernhardt et al. (2015), Schack and Soergel (2014), 
and Schunert and Soergel (2012). The aim is to take advantage of PS geometry to 
improve PSI accuracy or translate deformation values into semantic information. Ma 
and Lin (2016) devise a way to identify PS points subject to double dominant scatterers. 
This method is suited for built-up environments where double dominant scattering is 
often caused by layover distortion. The work conducted by Schunert and Soergel (2016) 
fits PS points to a 3D building model, which facilitates geometric interpretation of 
structural deformation. Huang et al. (2017) evaluated the thermal expansion of a high-
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speed railway bridge using Sentinel-1 images.  

1.2.3. Bottom line 

PSI is a mature technology capable of providing qualitative and quantitative (at 
millimetre or even sub-millimetre level) deformation estimation for large-scale scenes 
or small objects. This technology suits monitoring of urban areas in particular when 
high-resolution SAR images are used. So far most of the researches have been devoted 
to improving PS density and estimation accuracy and to adapting deformation models 
for various applications. These methodological improvements mainly benefit from the 
advancements of radar systems and algorithms.  
 

PSI relies on PS points, which always exist and provide coherent signals during a 
whole acquisition period of SAR images. Given occurrence of big changes, the coherent 
signals are interrupted and no longer PS points. Consequently, these affected points are 
not present in the PSI result. However, there are no clues to the causes, i.e., change 
events. We must resort to other approaches for change detection.  

1.3. State of the art of change detection 

1.3.1. Common approaches 

Change detection using multi-temporal SAR images (Bruzzone and Bovolo, 2013; 
Hussain et al., 2013; Rignot and van Zyl, 1993) is widely used to recognize big changes. 
The methodological categories contain direct comparison (Hall and Hay, 2003; Rignot 
and van Zyl, 1993), coherent and incoherent methods (Preiss and Stacy, 2006), 
supervised analysis (Balz and Liao, 2010; Dong et al., 2011; Ehrlich et al., 2009), 
unsupervised analysis (Bazi et al., 2005; Brett and Guida, 2013; Dekker, 2011; 
Matsuoka and Yamazaki, 2004), classification (Bruzzone et al., 2004; Gong et al., 2017), 
GIS application (Dell’Acqua et al., 2011), time-frequency analysis (Bovolo and 
Bruzzone, 2005), joint use of SAR and complementary data (Brunner et al., 2010; Chini 
et al., 2009; Poulain et al., 2011; Tao et al., 2012; Taubenböck et al., 2012), and so on.  
 

Whichever methods are employed, there are four considerations to achieve accurate 
and reliable results. First, ground changes of interest are mixed with speckle and noise 
in SAR images. Second, side-looking imaging of SAR systems causes image distortions 
(foreshortening, layover, and shadowing), which are particularly problematic in built-
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up areas (Dong et al., 1997; Franceschetti et al., 2002; Soergel et al., 2005, 2006; Stilla 
et al., 2003). Third, geometric and radiometric characteristics of ground objects are 
diverse depending on signal parameters (wavelength, polarization, look angle, etc.), 
scene environments (topography, land cover, corner reflection, etc.), and object 
properties (dielectric constant, surface roughness, etc.) (Xia and Henderson, 1997). 
Fourth, high-resolution images are more heterogeneous than moderate- and low-
resolution ones (Brenner and Roessing, 2008; Soergel et al., 2006). For example, a 
single building is regarded as a pure object in a moderate-resolution image. In contrast, 
the substructures like facades and roofs are independently treated as small objects given 
use of a high-resolution image. On the one hand, the changes of small objects can be 
detected; on the other hand, the task becomes more difficult and requires new and 
adequate methods. All of these considerations make change detection complicated and 
vulnerable in particular for urban areas. To solve these problems, we rather turn to 
another technique explained in the next section.  

1.3.2. Amplitude-based semi-PS detection 

We regard amplitude-based semi-PS detection (Ansari et al., 2014; Brcic and Adam, 
2013; Ferretti et al., 2003; Novali et al., 2004) as one category of change detection. The 
concept of semi-PS points was first introduced by Ferretti et al. (2003). This method 
looks for abrupt amplitude changes of pixels in a SAR image stack to recognize semi-
PS points. For instance, building constructions can be detected in cities without 
consideration for speckle, noise, and irrelevant changes (e.g., water or vegetation). 
Bayesian step detector (Ó Ruanaidh and Fitzgerald, 1996) or Normality test can be 
utilized for this purpose. Brcic and Adam (2013) compared other common change point 
detectors, i.e., ratio edge detector (Touzi et al., 1988), exponential maximum likelihood 
estimation (MLE), rice MLE, and Gaussian MLE. These detectors perform similarly in 
practice. Further applications and discussions were later conducted by Ansari et al. 
(2014) and Novali et al. (2004).  

1.3.3. Bottom line 

So far we have introduced common change detection and amplitude-based semi-PS 
detection. The performance of common change detection is limited due to complex 
processing and analysis of SAR images. Amplitude-based semi-PS detection is 
dedicated to identifying disappearance or emergence of PS points. This technique suits 
especially monitoring of building changes in urban areas. However, semi-PS points of 
low amplitude are likely missed considering that PS points are assumed to manifest 
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high amplitudes. To overcome this drawback, we propose a novel technique to detect 
sort of semi-PS points based on temporal phase stability rather than amplitude stability.  

1.4. Summary 

In this dissertation, the proposed PSI-based change detection aims to identify 
disappearing and emerging semi-PS points along with their occurrence times. We 
distinguish and label these two kinds of points as disappearing big change (DBC) and 
emerging big change (EBC) points. The key idea of our approach is to derive a change 
index sequence for each pixel from its temporal coherence estimates spanning different 
periods. Temporal coherence is modelled to be proportional to phase stability and serves 
as an indicator of a PS point. Change points are then identified by statistical analysis of 
their change indices. Finally, we analyse the evolution of change indices to detect the 
occurrence time of a change point. In practice, this technique is suitable to monitor 
built-up areas covered with intensive PS-like structures. The concept is simple and 
portable because only temporal coherence images are needed instead of developing a 
specialized approach from scratch.  

1.5. Dissertation structure 

This dissertation is organized as follows. Section 2 illustrates fundamentals of 
SAR interferometry: brief of development, SAR imaging, interferometric SAR 
(InSAR), DInSAR, and PSI. The proposed methodology is described in detail in Section 
3. By using simulated data, we validate and assess our approach in Section 4. Our real 
data test (Section 5) is to detect the disappearing and emerging buildings as well as their 
occurrence times in the Berlin’s city centre. In addition, some examples with respect to 
urban applications are discussed. We also compare our method with the conventional 
ratio change detection and the amplitude-based semi-PS approach. Finally, the 
conclusions and future works are summarized in Section 6.  
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2. Fundamentals of SAR interferometry 

2.1 Development 

Radar is an acronym for radio detection and ranging. Principle of radar operation 
is to emit electromagnetic signals in the microwave domain and then receive the return 
signals backscattered from target objects. The range between radar and target object 
can be approximated from the two-way travel time of each signal. The intensities of the 
return signals regard the physical properties, e.g., material and roughness, on the object 
surfaces. The first radar system (Hülsmeyer, 1904) was developed in 1903 for ship 
tracking and collision avoidance. The military needs promoted the radar development 
in the 1930s and 1940s (Curlander and McDonough, 1991). Since the beginning of 
1950s, an imaging radar system called side-looking radar (SLR) has been operational. 
This system is able to distinguish adjacent backscattering sources, i.e., image resolution. 
In addition, the active sensors mounted on airplanes or satellites are capable of day-
and-night vision regardless of weather conditions. This advantage guarantees high 
temporal density of image acquisition. Initially, an imaging radar was called real 
aperture radar (RAR), in which due to diffraction the azimuth resolution is inversely 
proportional to the antenna length. In principle, a longer antenna results in a finer 
azimuth resolution. However, the restriction on an antenna length restrains 
improvement of azimuth resolution at reasonable costs. This limitation hampers in-
depth scene investigation. Compared with RAR, SAR, which was later developed, 
improves its azimuth resolution in a cost-effective manner. A long virtual antenna is 
synthesized from successive radar signals received by a moving antenna. Another 
system advancement of SAR is that the signals maintain coherence during transmission. 
Phases can hence be utilized in SAR interferometry (Bamler and Hartl, 1998; Gens and 
Van Genderen, 1996; Hanssen, 2001; Massonnet and Feigl, 1998; Rosen et al., 2000) 
for mapping and monitoring. Among them, InSAR and DInSAR are devoted to 
topography reconstruction and monitoring of ground displacement, respectively. The 
performance of DInSAR can be further improved by an extended technique called PSI.  

2.2 SAR imaging 

Figure 1 illustrates how a scene of interest is imaged by a side-looking SAR. The 
two-way travel times of the received signals backscattered from ground objects 
determine their slant-range positions, i.e., the signals received earlier are imaged closer 
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to the antenna. However, such side-looking imaging causes geometric distortions 
(Schreier, 1993), i.e., foreshortening, layover, and shadow. On the one hand, these 
distortions make image analysis complicated particularly in built-up areas; on the other 
hand, they also pertain to building geometry in 3D modelling (Soergel, 2010). 
Integrating the 1D slant-range data along the azimuth direction forms a 2D SAR image 
(azimuth, slant-range). The azimuth resolution  
  

ρa =
La

2
 (1) 

 
depends on the antenna length La. The slant-range resolution is formulated as 
 

ρsr =
c ⋅ τ

2
 (2) 

 
where c is the speed of light and τ is the pulse duration of a SAR signal. The slant-
range resolution is a constant but varies when it is projected onto the ground range. For 
a flat scene, a ground-range resolution  
 

ρgr =
c ⋅ τ

2 ⋅ sin θ
 (3) 

 
varies with the look angle θ, i.e., towards the nadir it becomes coarser and finally loses 
discrimination. For this reason, SAR imaging must operate under oblique view.  
 

The SAR signal of each image pixel can be expressed as a complex value  
 

s = I ∙ 𝑒𝑒𝑗𝑗∙ϕ (4) 
 
which consists of intensity I and phase ϕ . The intensity is mainly determined by 
geometry, roughness and dielectric constant on ground surface. An intensity image is 
characterized by bright and dark speckles, which are caused by constructive and 
destructive interferences of returned signals from independent and random distributed 
sub-scatterers. The speckle effect leads to granular patterns and so complicates image 
processing, interpretation, and analysis. Many filters can be used to suppress speckle 
for further applications (Lee, 1981a; Lee et al., 1994; Porcello et al., 1976). The phase 
measures the range between an antenna and an object. However, we cannot obtain 
absolute phases directly from SAR processor; instead, wrapped phases subject to 
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modulo 2π (Ghiglia and Pritt, 1998; Goldstein et al., 1988; Judge and Bryanston-Cross, 
1994; Zebker and Lu, 1998). The phases that follow a uniform distribution are usually 
ignored in case of single image analysis. In contrast, the phase differences between two 
or more SAR images provide useful information for InSAR and DInSAR. 
 

 
Figure 1: Side-looking SAR. SAR antenna orbits along azimuth axis perpendicular to ground range axis. 

A sequence of emitted SAR signals illuminates footprint along ground range axis from near to far range. 

Line of sight is defined as slant-range axis. Look angle is included between antenna-to-nadir and slant-

range axis. (This figure is modified from SAR-EDU: https://saredu.dlr.de/) 

2.3 InSAR and DInSAR 

In theory, we can derive an object’s height from a single SAR signal based on 
trigonometry. As shown in Figure 2, considering only the master antenna, the heights 
of object a and b can be computed geometrically by 
 

Ha = Hm − R ∙ cos θa (5) 
 

Hb = Hm − R ∙ cos θb . (6) 
 
However, this geometric approach is not practical because of three limitations. First, 
the SAR sensor is incapable of exactly measuring look angles θa and θb. Second, the 



20 
 

slant-range R can be measured based on the two-way travel time of the SAR signal. The 
required accuracy is millimetre level. However, the accuracy is degraded due to 
atmospheric interference and imprecise timing. In addition, the slant-range resolution 
is normally three orders of magnitude worse than millimetre (Hanssen, 2001). Last but 
not least, SAR imaging is unable to discriminate objects at the same slant-range like 
objects a and b.  
 

 
Figure 2: Repeat-pass InSAR. Master and slave antennas operate at times Tm and Ts whose interval 

BT = Tm − Ts is called temporal baseline. Master antenna receives signals reflected from objects a and 

b at the same slant-range R but with different look angles θa and θb. Slave antenna receives signal 

reflected from object b at slant-range R + 𝛥𝛥R. Spatial distance of master and slave antennas is defined 

as spatial baseline B. α is tilt angle between spatial baseline and horizontal. Component of spatial 

baseline perpendicular to line of sight of slave antenna is called perpendicular baseline 𝐵𝐵⊥ =

B ⋅ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃b − α). Hm, Ha, and Hb are heights of master antenna, object a, and object b. (This figure is 

modified from Hanssen (2001)) 

 
Repeat-pass InSAR (Zebker and Goldstein, 1986) (Figure 2) utilizes the 

interferometric signals from the master and slave antennas to determine the objects’ 
heights with a considerably high accuracy compared with the trigonometry method. 
First of all, the master and slave images are precisely co-registered with sub-pixel 
accuracy or better (Hanssen, 2001). Multiplying the master image by the conjugate 
slave image obtains an interferogram. Given object b, the interferometric signal is 
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expressed as  
 

sb
int = sm ⋅ ss

∗ = (Im ⋅ Is) ⋅ 𝑒𝑒𝑗𝑗⋅�ϕm−ϕs� = Ib ⋅ 𝑒𝑒𝑗𝑗⋅φb (7) 
 
where sm and ss are the master and slave SAR signals. The complex coherence of 
sb

int is defined as (Bamler and Hartl, 1998) 
 

 γ =
E[sm ⋅ ss

∗]

�E[|sm|2] ⋅ E[|ss|2]
. (8) 

 
The magnitude |γ| [0 , 1] ∈ R, customarily called coherence, can be expressed as a 
function of SNR (Zebker and Villasenor, 1992) 
 

|γ| ≅
SNR

SNR + 1
 (9) 

 
which is established for signals of high SNR contaminated by only thermal noise. In 
principle, high-coherence interferometric signals are a prerequisite for accurate InSAR 
results. The noise floors of the interferometric signals are assumed to be the same for 
all acquisitions. Also the signal powers are always large to assure high SNR and so high 
coherence. Suppose that the interferometric phase φb and slant-range difference ΔR 
are subject to the spatial baseline B, their transformation can be expressed as  
 

φb =
4𝜋𝜋
𝜆𝜆
⋅ ΔR =

4𝜋𝜋
𝜆𝜆
⋅ [B ⋅ sin(θb − α)] (10) 

 
where  𝜆𝜆  indicates the signal wavelength. Based on law of cosines, the geometric 
relationship between B, R, and ΔR is formulated as  
 

(R + ΔR)2 = R2 + B2 − 2 ⋅ R ⋅ B ⋅ cos�90° − θb + α� . (11) 
 
By combining and reformulating (6), (10), and (11), we derive the equation between 
the height of object b (Hb) and interferometric phase φb as 
 

Hb =
𝜆𝜆 ⋅ R ⋅ sin θb

4𝜋𝜋 ⋅ B⊥
⋅ φb (12) 

 
whereby Hb  can be calculated given that φb  is correctly unwrapped. A large 
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perpendicular baseline B⊥ seems preferable to achieve a fine height resolution as a 
certain height can be represented by a large range of interferometric phases. On the 
other hand, the coherence becomes lower because the overlap of signal spectra is 
decreased, i.e., geometric decorrelation. The coherence loss results in degradation of 
Hb. The upper limit of perpendicular baseline is called critical baseline (Bamler and 
Hartl, 1998) expressed as  
 

Bc =
𝜆𝜆 ⋅ R ⋅ tan θb

2 ⋅ ρsr
. (13) 

  
An interferogram subject to critical baseline is completely decorrelated and contains 
only noise. 
 

InSAR assumes that the ground surface of interest is stationary between two 
acquisition dates of SAR images. This means, the interferometric phases are caused 
only by topography if the phase noise is not considered. In case ground motions occur, 
the motion-induced phases are added to the interferometric phases. In this situation, the 
slang-range difference ΔR (10) stems from both topography and motion. We resort to 
DInSAR for motion monitoring. For this purpose, topographic phases are first 
subtracted from interferometric phases to obtain differential interferometric phases. The 
topographic phases can be derived from either a DEM (digital elevation model) or an 
InSAR result. According to (10), the differential interferometric phase of object b 
(Figure 2) can be expressed as  
 

φb
′ =

4𝜋𝜋
𝜆𝜆
⋅ ΔR′ (14) 

 
where LoS motion ΔR′  is computed as long as φb

′  is correctly unwrapped. The 
motion sensitivity mainly depends on the signal wavelength 𝜆𝜆 . In principle, short 
wavelength is adequate to detect small motions; however, it is also sensitive to APS and 
therefore leads to phase disturbance.  
 

Thus far, we assume that only topography and motion effects are contained in 
interferometric phases for InSAR and DInSAR. In more detail, an interferometric phase 
can be modelled as  
 

φ = φtopo + φmot + φfE + φorb + φAPS + φdecor + φther + φproc (15) 
 



23 
 

where the topographic and motion phases are denoted by φtopo and φmot, the flat Earth 
phase φfE is caused by the ground range (Figure 1), φorb is related to inaccuracy of 
orbital parameters, φAPS represents APS disturbance, φdecor means phase biases due 
to temporal and geometric decorrelations, the thermal noise φther stems from thermal 
agitation of electrons inside a radar system, and the last component, φproc, is attributed 
to imperfect image processing, including co-registration, resampling, and interpolation. 
The phases φfE, φorb, φAPS, φdecor , φther , and φproc are treated as noise (generally 
assessed by coherence (8)) in InSAR and DInSAR. The phase noise can be diminished 
by proper signal processing and filtering (Hanssen, 2001). Among them, φAPS and 
φdecor are particularly difficult to model and filter out because APS disturbance and 
temporal decorrelation vary arbitrarily in time and space. To overcome this drawback, 
Ferretti et al. (2000, 2001) developed PSI to detect and analyse only PS points, which 
are less affected by phase noise and permanently maintain coherence.  

2.4 PSI 

A time series of N SAR images acquired using the same system parameters is a 
prerequisite for PSI. At first, a set of PS candidates are selected if their amplitudes are 
high enough to pass some threshold, e.g., amplitude dispersion (Ferretti et al., 2001) 
 

𝐷𝐷A =
𝜎𝜎A

𝜇𝜇A
 (16) 

 
where 𝜇𝜇A and 𝜎𝜎A are mean and standard deviation of amplitudes. This concept is 
widely used (Adam et al., 2003; Crosetto et al., 2003; Lyons and Sandwell, 2003; 
Werner et al., 2003) as PS points usually appear to be high amplitude signals. 
Nevertheless, those potential PS points of low amplitude or SNR might be lost. To avoid 
such loss, we estimate phase stability for PS selection, i.e., temporal coherence 
described in the following.  
 

N-1 interferograms are generated based on a master image among others. This 
image is optimally chosen under small baseline constraint (Berardino et al., 2002; 
Lanari et al., 2004) to diminish temporal and geometric decorrelations. The differential 
interferometric phases can be modelled as 
 

φ′int(x) = φres_topo
int (x) + φmot

int (x) + φAPS
int (x) + φnoise

int (x) (17) 
 
where x denotes the pixels in the interferograms indexed by int [1 , N − 1] ∈ N and 
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φres_topo
int  regards residual topographic errors Δh  remained after subtraction of 

topographic phases. φres_topo
int  is formulated as 

 

φres_topo
int (x) =

4𝜋𝜋 ⋅ B⊥int

𝜆𝜆 ⋅ R(x) ⋅ sin[θ(x)] ⋅ Δh(x). (18) 

 
The motion phase φmot

int  is expressed as 
 

φmot
int (x) =

4𝜋𝜋
𝜆𝜆
⋅ BT

int ⋅ v(x) (19) 

 
where v indicates LoS velocity. Both Δh and v are the two unknowns to be solved for 
each pixel. Their optimal estimates, Δh� and v�, are determined by the periodogram 
searching (Ferretti et al., 2001) 
 

argmax
Δh(x) & v(x)

� γT(x)
[0 , 1]∈R

= �
1

N − 1
⋅ � exp 𝑗𝑗�φo

′int(x) − φ′int(x)�
N−1

int=1

�� (20) 

 
where γT  is defined as temporal coherence and φo

′int  indicates the differential 
interferometric phases in the interferograms. However, the APS phases in φo

′int 
degrade the estimates and must be excluded in the second searching to improve the 
precision. After the first searching, the residual phases calculated as 
 

φres
int (x) = φo

′int(x) − φ� res_topo
int (x) − φ�mot

int (x) (21) 

 
are mainly composed of APS phases φAPS

int  and noise φnoise
int . A spatiotemporal filtering 

(Ferretti et al., 2000, 2011) is applied to φres
int  to derive the APS phases φ�APS

int , which are 
modelled to be spatially correlated but temporally uncorrelated. The periodogram 
searching is iterated after subtracting φ�APS

int  from φo
′int . As a result, the estimates’ 

precisions and temporal coherences should be improved; if not, the whole procedure 
must be exhaustively checked to find and solve the problems. For instance, the 
searching ranges of unknowns Δh and v can be adjusted to seek a better fit. This 
requires prior knowledge and operators’ experience. Another alternative is to apply a 
stronger filtering to filter out more APS phases; however, we risk losing also the phases 
related to Δh and v. 
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Generally, the coherence estimates in interferometry tend towards the optimistic 
side in case of low number of samples (i.e., N) and low true coherences (Bamler and 
Hartl, 1998; Touzi et al., 1999). Conventionally, for medium-resolution SAR sensors 
like ERS or Envisat a minimum stack of 15 images is considered a prerequisite for PSI 
(Crosetto et al., 2016). For high-resolution sensors even less images are sufficient 
(Bovenga et al., 2012). We later use a least 12 TerraSAR-X images in the PSI processing 
for an urban scene and a rather high threshold of temporal coherence to select PS points.  
 

Finally, pixels are selected as PS points if their temporal coherences fulfil a 
specified threshold while the unselected pixels are discarded. However, these discarded 
pixels might include change points, which cannot be detected at this stage by PSI. An 
alternative approach can be used for retrieval of such change points.  

2.5 Semi-PS detection 

 Ferretti et al. (2003) first mentioned the concept of semi-PS points, which behave 
as PS either before or after some change event. The PS points are assumed to be 
characterized by consistently high amplitudes subject to Gaussian distribution. Given a 
SAR image stack, this method looks for abrupt amplitude changes of pixels to identify 
semi-PS points. The amplitude is calculated from (4) as 
 

𝐴𝐴 = √𝐼𝐼. (22) 
 
Here amplitude is used rather than intensity because the second’s value range is too 
large and so hampers the analysis. Another reason is that amplitude phase dispersion 
can be utilized later to test whether semi-PS points existed as PS points during a specific 
time period. Bayesian step detector (Ó Ruanaidh and Fitzgerald, 1996) is applied to the 
amplitude sequence of each pixel to locate its abrupt amplitude change, if any. 
Alternatively, we can utilize normality test to seek for semi-PS points. We assume that 
their amplitudes conform to Gaussian when they act as PS either before or after a 
change event. Nevertheless, some semi-PS points of low amplitude do not fulfil the 
assumptions mentioned above and so are missed in this approach. To overcome this 
shortcoming, we can now turn to our novel methodology described in the next section. 
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3. Methodology 

3.1 Basic concept 

Our spatiotemporal change detection approach is inspired and extended from PSI. 
This technique is able to identify DBC and EBC points, which are regarded as big 
changes on ground, along with their occurrence times. To begin with, multi-temporal 
SAR images are divided into several subsets by a sequence of break dates (an interval 
between two successive image acquisitions). We want to detect the change events, 
which takes place during these break dates. The temporal coherence of each pixel in 
each image set is estimated in a standard PSI processing. The change events must cause 
variation of temporal coherences over time. Simply speaking, when the time is passing 
forward, a disappearance or emergence event leads to decrease or increase of temporal 
coherences, respectively. The key idea is to derive a change index sequence for each 
pixel from its temporal coherence estimates spanning different periods. These change 
indices quantify probabilities of change events subject to a break date. The higher the 
change indices are, the more likely there are changes occurring. Change points are 
extracted by statistical analysis on the change indices. We then eliminate the blunders 
by spatial filters, which are designed based on spatial characteristics between change 
points. This step is crucial for a spatiotemporal analysis. Finally, for each change point 
we check the evolution of its change index sequence to identify the occurrence date.  

3.2 Single-break-date scheme 

 
Figure 3: Three sets of time-series SAR images. 
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We first explain how to detect change points, which emerge or disappear 
somewhen close to or after a single break date. A break date is set to divide a complete 
SAR image set into a front and a back sets (Figure 3). The complete set consists of all 
of the images, from which PS points can be detected but change points are missed. The 
front and back sets comprise the images taken before and after the break date, 
respectively. We extract additional information from these two image set to retrieve the 
change points. The basic idea is to find change points that exist as PS points in the front 
set but disappear in the back set and vice versa (emergence). 
 

  

(a)                                (b) 

 

(c) 
Figure 4: Example to detect disappearing buildings, i.e., DBC points. PS points (blue) detected (a) before 

and (b) after construction. (c) DBC points (red) extracted by comparison between PS points (a) and (b). 
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We exemplify the basic idea to detect a construction event (Figure 4), in which 
some buildings were levelled down at a specific time. Normally, all of the available 
SAR images during a time period are involved in PSI to identify PS points for scene 
monitoring. When the image acquisition spans across the construction event, a PSI 
computation is able to recognize many PS points on the steady buildings but not at the 
construction site (Figure 4(b)). Our method first sets a break date, which is supposedly 
prior to the construction. We begin another PSI computation using only the images 
taken before the break date. The result contains also the PS points at the coming 
construction site (Figure 4(a)). Finally, these two PSI results are compared to locate the 
DBC points (Figure 4(c)), i.e., the construction event. 
 

 

Figure 5: Flowchart of single-break-date change detection scheme. Persistence (blue), disappearance 

(red), and emergence (green) scenarios are dedicated to extracting PS, DBC, and EBC points.  

 
The flowchart (Figure 5) constitutes the persistence, disappearance, and 

emergence scenarios, in which the complete, front, and back SAR image sets are 
involved in detecting PS, DBC, and EBC points, respectively. The three image sets are 
processed by a standard PSI procedure to generate three temporal coherence images. 
Pixels are selected as PS points if their temporal coherences of the complete set fulfil a 
specific threshold. The temporal coherence image of the complete set is then subtracted 
from those of the front and back sets to obtain two change index images. The change 
indices in the disappearance scenario reflects how likely objects disappear. The points, 



29 
 

which satisfies PS condition in the front set, are selected as change candidates. These 
candidates either remain as PS points or disappear to be DBC points. We then separate 
these two point types by statistically analysing their change indices. A similar process 
is also used to detect EBC points. Those points, which pertain to both change labels, 
are regarded as errors and so discarded in this step. The remaining pixels without any 
label are labelled as void points. Finally, the PS and change points are combined for 
further analysis.  

3.3 Change index 

We assumes that the temporal coherence estimates of a PS point in complete, front, 
and back SAR image sets are approximately the same. This assumption is sound only 
if all of the PSI computations are strictly controlled to have a consistent and high 
accuracy. For this purpose, we process all of the image sets on the same computer and 
follow the exactly same parameters in PSI processing. In addition, the stack sizes of the 
three image sets must be sufficiently large (at least 12 images in our case). In contrast 
to a PS point, the temporal coherence of a change point in the complete set is partly lost 
as parts of the images lack the signal of this target. The coherence drops severely when 
such irrelevant images take a big part, i.e., the target disappears very early or emerges 
very late. In other words, the time of a change event is related to the evolution of 
temporal coherences subject to a series of break dates. More details will be discussed 
when we talk about how to detect events’ occurrence times in Section 3.6.  
 

We quantify coherence differences among complete, front, and back sets to be 
change indices. The change indices of a pixel x in disappearance (CID) and emergence 
(CIE) scenarios are calculated by 
 

CID(x)
[-1 , +1]∈R

= γT
F(x) − γT

C (23) 

CIE(x)
[-1 , +1]∈R

= γT
B(x) − γT

C (24) 

 
where γT

C, γT
F, and γT

B denote temporal coherences in complete, front, and back sets. 
Images should be equally distributed in a sequence to avoid biases of change indices. 
A pixel is likely a DBC or EBC point when CID or CIE tends towards 1, respectively. 
This indicates a remarkable coherence loss caused by a big change. In contrast, change 
indices of PS points should be around 0. The characteristics of change indices between 
PS and change points are clearly diverse. However, it is difficult to separate these two 



30 
 

point types perfectly by comparing their change indices.  
 

The uncertainty in PSI computations may bias PS points’ change indices away 
from 0. As for change points, their change indices could be too small and so falsely 
selected as PS points. Usually, we can use a thresholding approach as Otsu thresholding 
(Otsu, 1979) to separate these two point types. However, a thresholding approach 
certainly causes missed detection and false alarm because none of thresholds is perfect. 
To overcome this drawback, we developed a statistics-based method, which is 
explained in the next section, rather than thresholding.   

3.4 Change detection 

Based on change indices, we design a global, automatic, and statistical method to 
extract change points. Given that no big change occurs, a change index distribution over 
PS points in disappearance or emergence scenario is assumed to follow a Gaussian 
distribution 
 

N(CIPS(x)|𝜇𝜇,𝜎𝜎) =
1

𝜎𝜎√2𝜋𝜋
exp�

−CIPS
2 (x)

2𝜎𝜎2 � . (25) 

 
This assumption is valid as only random factors are considered to cause variation of 
change indices. For example, disparity of temporal coherences for a PS point between 
different PSI computations should be credited to random phase noise. We regard such 
a disparity as a form of random noise for change indices. The mean 𝜇𝜇  of change 
indices is anticipated to be 0. However, a positive bias is likely to occur due to 
overestimation of temporal coherence (Bamler and Hartl, 1998; Touzi et al., 1999) from 
the shorter front or back SAR image set compared with the complete set. For example, 
as shown in (23), CID tends to positive bias if γT

F  is overestimated. The standard 
deviation 𝜎𝜎 indicates the relative precision between two PSI results. High precision 
give rise to a narrow and tall curve of change index distribution with a small 𝜎𝜎. In 
contrast to PS points, a change index distribution over change points does not conform 
to the Gaussian model because the big changes substantially and arbitrarily alter their 
temporal coherences computed from complete, front, and back sets. This distribution is 
complicated to be modelled but known to repel away from the Gaussian distribution 
towards 1. We utilize the significant difference between change index distributions over 
PS and change points to separate these two point types.  
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We first select PS points from a front or back SAR image set and sketch their 
change index distribution (red curve, Figure 6). Parts of them turn into change points if 
they disappear or emerge in the complete set; the others remain the same as PS points. 
This change index distribution is modelled as the sum of a Gaussian curve plus an 
asymmetric probability distribution function of a large right tail. The Gaussian curve 
originates from the change indices of the PS points that remain in the complete set; the 
right tail is caused mainly by the high change indices of the change points. We observe 
a positive bias of the change index distribution. For this reason, we can no longer regard 
change indices near 0 as an indication of PS points. To compensate for this bias, we 
shift this indication to 0.045 (magenta line, Figure 6), which pertains to the nadir of the 
peak. The asymmetric distribution is mainly subject to the number of change events 
and their temporal distances to the break date. 
 

 
Figure 6: Examples of change index distributions 

 
There are a variety of thresholding approaches to extract the change points. For 

example, we can set an empirical threshold 0.1 (green line, Figure 6) to detect as many 
change points as possible. However, the number of false alarms is unfavourably 
increased. Another way is to look for a threshold, which conforms to an optimization 
assumption. For instance, the Otsu threshold 0.15 (orange line, Figure 6) balances and 
makes the ratio between missed detection and false alarm nearly the same. No matter 
how we optimize thresholding, the PS and change points can never be distinguished 
without errors because their change index distributions are partly overlapped.  
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Rather than thresholding, we propose a workaround to substantially prevent errors. 

Those points on the right side of the PS indication (magenta line, Figure 6) are selected 
as change candidates. These candidates are either PS or change points. Instead of trying 
to directly extract the change points, we first check whether the change candidates are 
PS points in the complete SAR image set. If so, they are classified as PS points; 
otherwise, we label them as change points. As a result, there should be neither missed 
detection nor false alarm. The success of this method relies on precise PSI computations.  

3.5 Limitations 

There are three limitations for the single-break-date scheme. First, how to set up a 
break date? Which and whether big changes can be detected is dependent on the break 
date, which is manually set for specific interests. The changes, which occurred too early 
or late to the break date, do not have a chance to be detected. This requirement restricts 
the applicability particularly when a priori knowledge of scene changes is unavailable. 
Second, accurate occurrence times of big changes are absent as they are only known to 
disappear or emerge close to or after a break date. Last but not least, errors could happen, 
for instance, due to uncertainty and imperfection of a PSI processing. How to deal with 
such errors? To cope with these limitations, we need to integrate several single-break-
date results into multi-break-date scheme. Each single-break-date result contributes a 
hint about which and when exactly changes take place. All of the hints combined 
provide extra information to exclude errors and locate occurrence times of change 
events. 

3.6 Multi-break-date scheme 

The multi-break-date scheme (Figure 7) demands a set of single-break-date results 
as input. Each pixel contains a sequence of change indices along with their 
corresponding initial point labels (PS, DBC, EBC, or void). We compare these initial 
point labels to determine its final label. The principle is to label a pixel as PS if all of 
its initial labels belong to PS. A pixel is labelled as DBC or EBC if any of its initial 
labels as such is found. When initial labels include both DBC and EBC, one of them 
should be wrong coming from the single-break-date results. We then resort to a voting 
step to select the change label in the majority. In case of equality, we deal with a 
contradiction and rather get rid of this pixel as void. We believe that this voting strategy 
is able to prevent false labels effectively. Once PS and change points are confirmed, 
those unlabelled pixels are classified to be void points. We apply spatial filters to further 



33 
 

remove false change points remained. Afterwards, the occurrence date of each change 
point is detected from the break dates based on the temporal variation in its change 
index sequence. In the end, the PS and change points along with the occurrence dates 
are combined to illustrate the spatiotemporal information.  
 

 
Figure 7: Flowchart of multi-break-date change detection scheme. 

 
We exemplify how to detect a DBC point (Figure 8). Suppose the DBC point 

disappears at the middle date. We run a series of single-break-date examples, which 
results in a change index sequence. The break date and front SAR image set refer to the 
first single-break-date example. In the beginning, the change indices maintain 
constantly high and so imply that this point probably disappears sometime later. The 
turning point indicates the exact occurrence date, after which the change indices 
decrease gradually. The evolution of the change indices gives a hint to detect the 
disappearance date. We will discuss this topic later. Each single-break-date example 
supplies an initial point label, i.e., DBC, EBC, or void. Some void labels (grey) are 
present because their change indices are low or erroneous EBC labels coincides. This 
tells us that change points might be missed if only a single-break-date result is 
considered. These void labels are ignored here. Most of the single-break-date results 
show the correct DBC labels (red) when their change indices are high; otherwise, there 
are a few of erroneous EBC labels (green). Such errors are mainly credited to inaccurate 
PSI results at a local or global aspect. The local factors could be, for instance, strong 
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APS turbulence within a limited area. Such APS-induced phase noise may not be 
properly filtered out sometimes as we apply the same spatiotemporal filter to the whole 
image scene. For the global cases, an unsuitable selection of a master image will make 
the entire temporal coherences down. Simply speaking, errors always happen in single-
break-date results. We then apply voting to the initial point labels to determine the final 
one in the majority, which turns out to be the correct DBC label. A similar process is 
also used to detect EBC points. 
 

 
Figure 8: DBC detection in multi-break-date scheme. 

 
We design an automatic way to detect change points’ occurrence dates. Figure 8 is 

modified to Figure 9 for the following explanation. Considering (23), the temporal 
coherence γT

C  over the entire image stack drops because the object of interest 
disappears on some date. In contrast, the temporal coherence γT

F  of the front SAR 
image set stays equally high before the disappearance date. As a result, the change 
indices CID keeps consistently high above 0.5. After the object disappears, however, 
more and more incoherent signals are added to the front set in PSI computations. 
Consequently, γT

F decreases gradually and thereby CID is falling. We figured out that 
detecting a disappearance date is equivalent to locating the turning point in a change 
index sequence. 
 

A simple geometric method is then proposed for this purpose. We consider only 
the break dates, whose initial point labels correctly pertain to DBC (red point), as the 
candidates for the disappearance date. First, a horizontal line 1 extends from the 
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sequence beginning to the left. Starting from this, a straight line 2 is drawn to the end 
of the sequence. We calculate the distances between the red points and the line 2. The 
turning point is then detected by looking for the longest distance (line 3). Finally, the 
corresponding break date is regarded as the disappearance date. We use a similar 
process to detect emergence dates of EBC points as well. The extension of line 1 is to 
ensure that line 2 does not overlap the change index sequence. This step keeps all of the 
red points on the right-hand side to make the distance comparison rational and simple. 
In theory, the length of line 1 does not affect the disappearance date detected while a 
longer length makes the overlap less possible. Our experiences suggest that the same 
length of the horizontal of the change index sequence suits most of the cases.  
 

 
Figure 9: Detection of disappearance date. 

3.7 Spatial error filtering 

Most of the false change points, i.e., errors, can be avoided after voting in multi-
break-date scheme. We resort to spatial characteristics between change points to further 
filter out the errors remained, if any. Our targets of interest are change events on 
structures of a certain size. For example, a demolished house causes a cluster of DBC 
points or a patch of EBC points attached to a building-like PS pattern indicates a partial 
construction. Such a group of change points is assumed to contain only one change 
label. Two kinds of errors are defined here along with their removal strategies operating 
in a sliding window. First, an isolated change point within a window of 3 × 3 is deleted. 
We choose the minimum window size because we intend to remove such errors as far 
as possible. Second, change points within a window are totally deleted if they contain 
different change labels. The larger a window size is, the stronger the filtering effect is 
made while more probably true change points are eliminated. We choose the minimum 
window size of 3 × 3 considering that only a minor portion of errors are remained after 
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the voting. Besides, we prefer to remove local errors clustering in a small size.   
An example is shown in Figure 10. The new headquarters of federal intelligence 

service was erected in 2013. This event is successfully detected as many EBC points 
cluster to be a building-like shape. Before filtering, we observe some DBC points 
mixing with EBC points and regard them as possible errors. Such errors are then 
removed after filtering.  
 

 
(a) 

  
(b)                                   (c) 

Figure 10: Example of spatial filtering. (a) Headquarters of federal intelligence service. Change detection 

result (b) before and (c) after filtering: blue, PS; red, DBC; green, EBC.  
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4. Simulated data test 

4.1 Simulation procedure 

We simulate a time series of M interferograms (int) (Figure 11), where PS, DBC, 
EBC, and void points are randomly generated and distributed, as input data for tests. 
First of all, we assign a stochastic constant phase φcons  to the simulated phases 
φsim

int  [−𝜋𝜋 , 𝜋𝜋) ∈ R of each pixel x: 
 

φsim
int (x) = φcons(x), int = [1 , M]. (26) 

 
Gaussian phase noise φn

int (𝜇𝜇 = 0 , 𝜎𝜎 = [−𝜋𝜋 , 𝜋𝜋) ∈ R) is then added to the simulated 
phases:  
 

φsim
int (x) = φcons(x) + φn

int(x). (27) 
 
Here we consider only random thermal noise. The other noise sources, i.e., residual 
topographic errors, APS, orbital inaccuracy, flat Earth, temporal and geometric 
decorrelations, and image processing, are assumed to be perfectly calibrated or removed. 
All of the PS points are fixed, i.e., deformation velocity is 0. The temporal coherences 
of φsim

int  are calculated by 
 

γT(x)
[0 , 1]∈R

= �
1
M
⋅ � exp �𝑗𝑗 ∙ φsim

int (x)�
M

int=1

� (28) 

 
which is derived from (20). Pixels are selected as PS points if their temporal coherences 
fulfil a specific threshold. Among them, in case a PS point disappears or emerges right 

at a break data (bd), a series of irregular phases φirr
intD or φirr

intE [−𝜋𝜋 , 𝜋𝜋) ∈ R, randomly 

generated, is added to its simulated phases as 
 

φsim
int (x) = φcons(x) + φn

int(x) + φirr
intD(x), intD = [bd + 1 , M] (29) 

φsim
int (x) = φcons(x) + φn

int(x) + φirr
intE(x), intE = [1 , bd], (30) 
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respectively. We then label them as DBC and EBC points. Finally, those pixels without 
any label (PS, DBC, or EBC) are regarded as void points.  
 

 
Figure 11: Simulated interferograms. 

4.2 Simulated data 

We simulated a scene like a developing city with numerous big changes (more 
than 30% coverage) to analyse the performance of our technique. For this purpose, we 
generated 80 time-series interferograms (500 × 500) containing 58% PS, 17% DBC, 
17% EBC, and 8% void points. A temporal coherence threshold of 0.8 is used for PS 
selection. This threshold is also used in the real data tests (Section 5). More details 
about how to determine a suitable temporal coherence threshold refers to Section 5.6. 
The disappearance and emergence dates of the change points are evenly distributed 
from bd: 31 to 51.  
 

One example of a PS point is shown in Figure 12. It is confirmed as a PS point 
because its temporal coherence (nearly 0.9) in the persistence scenario (Figure 3 and 
Figure 5, entire phase series used) exceeds the threshold of 0.8. As a result, all of the 
initial point labels are marked as PS. In the disappearance scenario, the temporal 
coherences at different break dates stay close to 0.9 with a standard deviation of 0.004. 
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Here only the phases before a break date are used to estimate the temporal coherence. 
The emergence scenario shows the same trend of temporal coherence sequence. The 
difference is that we only utilize the phases after a break date for coherence estimation. 
We can see that the temporal coherences are high and almost constant no matter which 
phase sections and break dates are chosen. This agrees with our definition of a PS point 
(Section 3.3). We then check the change index sequences in both the disappearance and 
emergence scenarios. The change indices are close to almost 0, which indicates that this 
point is not a change point.  
 

 
(a) 

 
(b) 

Figure 12: Simulated example of PS point’s (a) temporal coherence sequence and (b) chance index 

sequence along with initial point labels at different break dates. Persistence scenario uses entire phase 

series in coherence estimation; disappearance and emergence scenarios utilizes only phases generated 

before and after a break date, respectively.  

 
Let’s look into the example of a DBC point subject to a disappearance date bd: 41 

(Figure 13). Before bd: 41, the temporal coherences maintain nearly 0.95, which 
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indicates existence of a PS point. Its temporal coherence begins to decline after bd: 41 
as more and more pure phase noise (after this PS point disappears) are involved in 
coherence estimation. The change index sequence shows a typical trend of a DBC point. 
These high change indices imply a high probability of a DBC point. The turning point 
is right at bd: 41. By using our approach, we then successfully detect this DBC point 
and its disappearance date. Note that four initial point labels are void rather than DBC 
because their temporal coherences do not fulfil the threshold of 0.8 to be a DBC 
candidate (a PS point before disappearance). Nevertheless, these void labels in minority 
do not affect the final decision that labels this point as DBC after voting of the initial 
point labels.  
 

 
(a) 

 
(b) 

Figure 13: Simulated example of DBC point’s (a) temporal coherence sequence and (b) chance index 

sequence along with initial point labels at different break dates. Temporal coherence in complete image 

set is 0.42. Disappearance scenario uses only phases generated before a break date to estimate coherence. 
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The example of an EBC point (Figure 14) shows a reverse behaviour to DBC 
(Figure 13). The temporal coherences maintain nearly 0.95 after this point emerges as 
a PS point at bd: 41. Note that only the phases generated after a break date are used to 
calculate the coherences. The temporal coherences are lower when the break dates are 
set earlier. The reason is that more and more pure phase noise (before emergence of the 
PS point) are included to compute the temporal coherences. The change indices are 
sufficiently high to fulfil the condition of an EBC point. They increase gradually from 
the earliest break date and then keep around 0.43 after bd: 41. At bd: 31, the point 
cannot be selected as an EBC candidate because the temporal coherence is below the 
threshold of 0.8. Its initial label is later marked as void since it is neither a PS point. 
During voting, this point is decided to be an EBC point because of initial point labels 
of EBC in majority. 
 

 
(a) 

 
(b) 

Figure 14: Simulated example of EBC point’s (a) temporal coherence sequence and (b) chance index 

sequence along with initial point labels at different break dates. Temporal coherence in complete image 

set is 0.52. Emergence scenario uses only phases generated after a break date to estimate coherence. 
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4.3 Accuracy assessment 

We access the detection accuracy by using confusion matrix (Table I). Four classes 
include PS, DBC, EBC, and void. Each column and row represents the instances in a 
true and detected class, respectively. The diagonal instances are the correctly detected 
points. Dividing the sum of the diagonal instances by the total amount of the instances 
obtains the overall accuracy. However, the overall accuracy might be misleading. For 
instance, an overall accuracy could be high while some classes contain a considerable 
amount of errors. For a complete description of accuracy, we must look into producer’s 
and user’s accuracies for each class. A producer’s accuracy is the number of correctly 
detected instances divided by the number of total instances in a column. It reflects, for 
each true class, the ratio of true instances which are correctly detected. Dividing the 
number of correctly detected instances by the number of total instances in a row derives 
a user’s accuracy. We therefore know the ratio of correctly detected instances in each 
detected class.  
 

Table I Confusion matrix 

 
 

The confusion matrix (Table I) shows that the overall accuracy is 99% and all of 
the producer’s and user’s accuracies are better than 99%. Such high accuracy tells that 
our approach works well given perfect PSI computations. In this test, we assume that 
those PSI-related phase noises caused by residual topographic errors, APS, orbital 
inaccuracy, flat Earth, temporal and geometric decorrelations, and image processing, 
are perfectly calibrated or removed. In practice, they must be delicately handled in a 
PSI processing for an accurate result. This is not an easy task and requires deep 
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expertise and experience. We do not dig into the details in this study. While the overall 
accuracy is high, we also check the producer’s and user’s accuracies as follows.    
 

 
Figure 15: Mean of estimated change dates versus each reference change date. Correlation coefficient of 

0.999, mean (absolute) difference 0.17, maximum (absolute) difference 0.53 for DBC; 0.999, 0.16, and 

0.32 for EBC.  

 

The only errors are the change points falsely labelled as PS, which result in 
producer’s accuracy of 99% for both change labels and user’s accuracy of 99% for PS. 
The temporal coherences of these change points in the complete image set (Figure 3) 
are still above the threshold of 0.8. Consequently, they turn out to be PS points that are 
missed detections of change points. Such errors often happen if a change point emerged 
very early or disappeared very late. In this case, temporal coherences of change points 
in the complete set are overestimated. The reason is that those images, in which the 
change points act as PS points after emergence or before disappearance, account for a 
large proportion of the whole images. The solution is to make sure sufficient images in 
front and back sets when choosing a period of break dates to detect changes of interest. 
According to our experience, a front or back set should occupy at least 30% of a 
complete set. 
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The estimated change dates are compared with the reference (Figure 15). For each 
reference change date, we calculate the mean of the estimated disappearance dates (red) 
and plot it in the vertical axis. The correlation coefficient is 0.999, indicating a high 
agreement between the estimated and reference disappearance dates. The mean 
(absolute) difference is 0.17 and the maximum (absolute) difference is 0.53. The 
accuracy of estimated disappearance date is then regarded as sublevel of break date. 
That is to say, given Sentinel-1 images, the accuracy could be less than 6 days (shortest 
temporal baseline) under optimal conditions, i.e., sufficient images and high-quality 
PSI results. The estimated emergence dates (green) show the same characteristics as the 
disappearance case. The correlation coefficient is also 0.999. The mean difference is 
0.16 and the maximum difference is 0.32. In summary, we prove that our method can 
detect events’ occurrence dates with a considerably high accuracy.  
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5. Real data test 

5.1 Data 

 
Figure 16: Mean TerraSAR-X image over study area. Patches 1 to 6 are used for in-depth analysis. 

 
Our study area (Figure 16) covers the city centre of Berlin (25 km2), containing 

Berlin Central Station, Spree River, governmental offices, commercial buildings, 
houses, sport facilities, highways, metro lines, parks, etc. The mean TerraSAR-X image 
shows many bright clusters of strong signals, which mainly come from structures and 
appear to be potential PS and change points. Patches 1 to 6 are used for in-depth analysis. 
Patch 1 is the main area of interest where different types of construction occurred over 
time, including the new headquarters of federal intelligence service. There were many 
new buildings built in patch 2. We also found reconstruction on Berlin Central Station 
and a bridge. Patch 3 contains several buildings that were demolished or erected in a 
business district. In patch 4, we want to detect the changes of the sport facilities in 
Mauerpark and Friedrich-Ludwig-Jahn-Sportpark. We test whether our approach is able 
to detect a new metro line in patch 5. The last example investigates construction 
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progresses of two single high-rise buildings in patch 6. More details will be discussed 
later.  
 

We used forty TerraSAR-X images (Table II) for our test, which were acquired in 
High Resolution Spotlight mode along an ascending orbit from October 27, 2010 to 
September 4, 2014. The incidence angle is around 30º. The polarization is VV, i.e., 
vertically polarized signals are transmitted and received. The azimuth and slant-range 
resolutions are 0.87 m and 0.45 m, respectively. All of the images were precisely co-
registered and resampled into 5000 × 5000 grid (ground resolution: 1m). We found 
many changes in the city around 2013 from Google Earth’s historical images. The 
thirteen break dates (bd: 16 to 28) were then chosen to detect these changes. We 
compared and analysed our results with three Google Earth’s images (ground truth) 
taken on September 12, 2010, May 20, 2012, and September 5, 2014. 
 

Table II TerraSAR-X images and break date setup 
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(a) 

  
(b)                                       (c) 

Figure 17: Aerial images (Google Earth) over patch 1 (Figure 16) at the north of Berlin Central Station 

acquired on (a) September 12, 2010, (b) May 20, 2012, and (c) September 5, 2014. Building change 

(ground truth): red, disappearance area; green, emergence area; yellow, complex area. 

 
We focus our analysis on patch 1 (Figure 16) at the north of Berlin Central Station 

where various construction events occurred. The three Google Earth images (Figure 17) 
display what happened in this area. The buildings in disappearance areas 1 to 8 (red) 
were demolished over time after September 2010. The building in disappearance area 
7 is gone in Figure 17 (b); the rest in other areas vanish in Figure 17 (c). Accordingly, 
we expect dense DBC points to be detected inside these areas. We observe some new 
buildings in emergence areas 1 to 3 (green) where EBC points are anticipated on the 
newly-built substructures. Parts of these new buildings showed up in 2012 (Figure 17 
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(b)). They appeared to be still under construction at this moment. The complete 
buildings can be seen later in 2014 (Figure 17 (c)). The building changes in complex 
areas 1 to 4 (yellow) cannot be purely attributed to either disappearance or emergence. 
In complex area 1, two different buildings were present at the same place in 2012 
(Figure 17 (b)) and 2014 (Figure 17 (c)). We are not sure whether the old building was 
levelled down in 2013 or the new one was already erected back then. A similar 
ambiguity is also found in complex area 4. The white roof replaced the grey one as 
shown in Figure 17 (b) and Figure 17 (c). Another question is that the roof was replaced 
or merely painted to white? Given the first case, our approach will detect the 
corresponding change points if the old roof disappeared or the new roof emerged in 
2013. Otherwise, PS points will be probably found considering that only the roof color 
was changed. In complex area 2, we see that some constructions were in progress in 
2012 (Figure 17 (b)) and then completed in 2014 (Figure 17 (c)). The completed 
buildings look like the same as those (Figure 17 (a)) in 2010. We thus infer that there 
were renovation activities in this area, in which different point labels should be mixed. 
The new headquarters of federal intelligence service was built in complex area 3. The 
construction took roughly 7 years since 2006 until 2013. However, it is difficult to 
recognize this event and to estimate its progress from the Google Earth images. Our 
aim is to monitor the construction progress in detail to find out where and when the 
substructures were removed or constructed by using our approach. 

5.2 PS extraction 

We show the PS points extracted from all of the SAR images (Table II) and discuss 
their spatial distribution. The temporal coherence image (Figure 18) manifests the 
coherent SAR signals reflected from the intensive structures and those incoherent 
regions such as grass, forest, and river. The high-coherence (brighter) signals indicate 
potential PS points, which fit well the linear velocity model and did not undergo any 
big changes. They can be later extracted by thresholding based on their temporal 
coherences and then used to monitor structural deformations. In our study, we are more 
interested in those low- or moderate-coherence objects. Due to big changes, they were 
likely present during only a certain time window rather than the entire acquisition 
period of the SAR images. This is the reason why their coherences are partly lost. For 
instance, patch 1 (Figure 18) presents rather moderate coherence while lots of buildings 
were present between 2010 and 2014 (Figure 17). This is a hint that constructions took 
place. Our purpose is to detect such change events automatically.  
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Figure 18: Temporal coherence image over study area. Patch 1 is used for in-depth analysis. 

 
We used coherence threshold of 0.8 to extract PS points (Figure 19). We will 

explain in Section 5.6 why we chose 0.8 as the threshold. Most PS points come from 
structures and cluster as various building- and infrastructure-like patterns. For example, 
the PS points on the top-left corner form an outline of a railway system. In contrast, we 
cannot find PS points on the incoherent areas, i.e., grass, forest, and river. Patch 1 
(Figure 20) is enlarged for in-depth investigation. Most of the PS points are located on 
the intact buildings outside the disappearance and emergence areas. Only a few of them 
are found in the complex areas. Without a priori knowledge, people would assume the 
lack of PS points originates from incoherent areas such as vegetation. In fact, the 
buildings were or are there but are present only in some of the SAR images due to big 
changes. Such change information can be retrieved later by using our new technique. 
 



50 
 

 
Figure 19: PS points (blue) over study area. Patch 1 is used for in-depth analysis. 

 

 
Figure 20: PS points within patch 1 (Figure 19). Building change (ground truth): red, disappearance area; 

green, emergence area; yellow, complex area. 
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5.3 Single-break-date result 

 

 
Figure 21: Change index image (disappearance scenario). Patches 1 to 6 are used for in-depth analysis. 

 
We demonstrate a single-break-date result subject to the break date bd: 16 (Table 

II) between February 12, 2012 and June 21, 2013. In the disappearance scenario, PS 
points are extracted from the first 16 images taken before bd: 16 and regarded as change 
candidates. Note that these change candidates are not the normal PS points (Figure 19) 
extracted from the entire SAR stack. These candidates’ change indices quantify their 
probabilities of disappearing since bd: 16, i.e., DBC points (Figure 21). There are no 
information from the inconsistent areas (grass, forest, river, etc.). Most of the structures 
manifest low change indices as no devastating and extensive disasters like earthquake 
hit Berlin. Those structures highlighted by high change indices were likely demolished 
due to construction close to or after the break date. For example, we observe many high 
change indices in patches 1 to 6 (especially the first three).  
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Let’s check the change index image of the emergence scenario (Figure 22). Here 
the change candidates are those PS points that are extracted from the images taken after 
bd: 16. Their change indices are proportional to the probabilities of emerging since bd: 
16. Low change indices are distributed across the whole area. This makes sense because 
Berlin is not a highly developing and expanding city neither a city under reconstruction. 
We observe some high change indices grouped as structure-like shapes in patches 1 to 
6. For instance, the high change indices on the top-right corner of patch 1 come from 
the new headquarters of federal intelligence service.  
 

 

 
Figure 22: Change index image (emergence scenario). Patches 1 to 6 are used for in-depth analysis. 

 
The change index images of the disappearance and emergence scenarios only 

quantify probabilities of being change points (Figure 21 and Figure 22). These change 
indices are then employed to detect initial change labels at the break date bd: 16. The 
change detection result (Figure 23) reveals the steady (PS), disappearing (DBC), and 
emerging (EBC) structures, which are clearly distinguished. The change events in 
patches 1 to 6 are successfully caught. Compared with the pure PS extraction (Figure 
20), we now add also change points into the disappearance, emergence, and complex 
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areas (Figure 24). Overall, these detected changes agree with the ground truth (Figure 
17). More details will be discussed in the multi-break-date result (Section 5.4). Note 
that here these initial change labels are subject to the break date bd: 16. More change 
points might be identified in the multi-break-date result (bd: 16 to 28); on the other 
hand, some of them could be picked up as errors and then deleted after voting. In 
addition, we only know the initial change points disappeared or emerged since bd: 16. 
The accurate occurrence times are still unknown, which is the main limitation of the 
single-break-date scheme. To overcome this weakness, we then consider the multi-
break-date result in the next section. 
 

 
Figure 23: Change detection result: steady, disappearing, and emerging structures represented by PS 

(blue), DBC (red), and EBC (green) points. Patches 1 to 6 are used for in-depth analysis.  
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Figure 24: Change detection result within patch 1 (Figure 23). Building change (ground truth): red, 

disappearance area; green, emergence area; yellow, complex area.  

5.4 Multi-break-date result  

 
(a) 
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(b) 

Figure 25: Spatiotemporal change detection result. Patches 1 to 6 are used for in-depth analysis. (a) 

Steady, disappearing, and emerging structures represented by PS (blue), DBC (red), and EBC (green) 

points. (b) Disappearance and emergence dates: blue to red, earliest to latest in 2013.  

 
All of the single-break-date results (bd: 16 to 28) are involved in the multi-break-

date processing. The spatiotemporal change detection result (Figure 25) reveals where 
the changed structures are along with their occurrence times. We first compare and 
analyse patch 1 (Figure 26) with the ground truth (Figure 17) as follows. The rest of 
patches will be discussed in Section 5.5.  
 

Overall, our results (Figure 26) agree with the ground truth (Figure 17). The 
buildings in disappearance areas 1 and 3 to 7 are detected to be demolished by the 
middle 2013, followed by those in areas 2 and 8. The ground truth shows that the 
building in area 7 was already gone on May 20, 2012 (Figure 17 (b)); in contrast, those 
in other areas were still there and vanished later on September 5, 2014 (Figure 17 (c)). 
This is the reason why the detected disappearance dates in area 7 were earlier than the 
other areas. 
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(a)                                (b) 

Figure 26: Spatiotemporal change detection result in patch 1 (Figure 25). Building change (ground truth): 

red, disappearance area; green, emergence area; yellow, complex area.  
 

Our result reveals that a new building was erected in emergence area 1 in early 
2013 (Figure 26). In fact, parts of this building was completed on May 20, 2012 (Figure 
17 (b)) and the rest should be constructed soon in 2013. In emergence area 2, the 
unfinished new apartments were present on May 20, 2012 (Figure 17 (b)), which leads 
to the EBC points appearing on the early dates. The new office building in emergence 
area 3 was still under construction in 2012 (Figure 17 (b)) and then completed before 
September 5, 2014 (Figure 17 (c)). This fact is consistent with our finding that the 
corresponding EBC points emerged gradually since 2013. 
 

In complex area 1, the ground truth (Figure 17) cannot tell whether the old building 
was demolished or the new one was built in 2013. This question has been answered in 
our result (Figure 26): the old building was gone in 2013. We infer that the new one 
should be erected after 2013. We find that certain substructures in complex area 2 were 
removed or added during the second half of 2013 (Figure 26). This finding corresponds 
to the renovation events shown in the ground truth. We want to monitor the construction 
progress in complex area 3, which is difficult to see even from the ground truth. Our 
result shows that many EBC points form a building-shaped pattern, i.e., the new 
headquarters of federal intelligence service. The main building structure was 
constructed in early 2013 and then other substructures were added to it over time. In 
addition, we also observe some disappearing substructures around. They are considered 
to be some temporary materials on the foundations and were removed in the early stage. 
Some change points are shown in complex area 4. We then prove that the roof (or the 
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entire building) was replaced by a new one after the middle 2013 rather than painted 
into white (Figure 17 (c)).  
 

 
(a) 

 
(b) 

Figure 27: Example of PS point’s (a) temporal coherence sequence and (b) chance index sequence along 

with initial point labels. 

 
So far we have validated our results. Now let’s check the behaviours of PS, DBC, 

and EBC points. Figure 27 displays an example of a PS point, whose temporal 
coherence 0.93 in the persistence scenario (Figure 3 and Figure 5, all of the images 
used) fulfils the threshold of 0.8. All of the initial point labels are thus marked as PS. 
The images taken before and after a break date are used to estimate the temporal 
coherence for the disappearance and emergence scenarios, respectively. In the 
disappearance scenario, the temporal coherences along the break date sequence stay 
averagely 0.92 with a standard deviation of 0.01. The emergence scenario also gives a 
series of high temporal coherences. The average and standard deviation are 0.93 and 
0.02, respectively. Overall, the temporal coherences maintain high without regard to 
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use of images and break date setting. The change index sequences in both the 
disappearance and emergence scenarios move around 0, i.e., unlikely a change point. 
In summary, the characteristics of this PS example conform to our definition of a PS 
point (Section 3.3). 
 

 
(a) 

 
(b) 

Figure 28: Example of DBC point’s (a) temporal coherence sequence and (b) chance index sequence 

along with initial point labels. 

 
The example of a DBC point subject to a disappearance date bd: 21 is shown in 

Figure 28. Since the earliest break date, the temporal coherence series maintain above 
the threshold of 0.8 but then decrease gradually after bd: 21. This behaviour implies a 
DBC point, which disappeared at bd: 21. Therefore, the temporal coherences decline 
because more and more pure phase noise are involved in coherence estimation. The 
same trend can be also found in the change index sequence. These change indices are 
larger than those (Figure 27 (b)) of the PS point. The first five initial point labels are 
correctly detected as DBC; the others are marked as void because their temporal 
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coherences do not pass 0.8 to be a DBC candidate (a PS point before disappearance). 
Our voting method validates this DBC point. The disappearance date (bd: 21) is then 
identified by locating the turning point of the change index series.  
 

 
(a) 

 
(b) 

Figure 29: Example of EBC point’s (a) temporal coherence sequence and (b) chance index sequence 

along with initial point labels.  
 

Figure 29 demonstrates the temporal coherences and change indices of an EBC 
point, which showed up since the break date bd: 21. Since the beginning, the temporal 
coherences increase gradually and then keep above 0.8 after the emergence date. The 
increase can be explained that less and less pure phase noise (before PS emergence) is 
included in coherence estimation. All of the initial point labels after bd: 20 are EBC 
because their change indices fulfil the requirements in the detection processing. In 
contrast, the first five initial labels belong to void rather than EBC as their temporal 
coherences are below the threshold of 0.8 to be EBC candidates. The voting finally 
labelled this point as EBC. The detected emergence date (bd: 21) corresponds to the 
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turning point of the change index sequence.  

5.5 Urban applications 

We discuss five examples regarding urban applications based on Google earth 
images and the spatiotemporal change detection results (patches 2 to 6, Figure 25). First, 
the construction events around Berlin Central Station are investigated (Figure 30). An 
office complex (area 1) was constructed in the second half of 2013. Several construction 
events are shown in area 2. The original structures were removed at the early stage as 
some DBC points are found around this area. Afterwards, the upper-left hotel was built 
gradually in 2013. However, the other two new buildings shown on September 5, 2014 
(Figure 30 (c)) cannot be detected because their constructions are considered to start 
later than the detection period, i.e., within 2013. Certain new substructures in areas 3, 
4, and 7 are revealed by our method while these changes are hardly perceived from the 
Google earth images. In area 5, a bridge renovation was carried out during a couple of 
early months in 2013, which cannot be recognized from the Google earth images. Area 
6 displays two new office buildings that were built under different time schedules. The 
right building was constructed earlier, giving rise to a clear building-shaped pattern of 
clustered EBC points. By comparison, the construction progress of the left building 
delayed as only sparse EBC points appeared in late 2013.  
 

The second example (Figure 31) is about monitoring a business district, in which 
building changes are usually frequent and require cost-effective surveillance schemes. 
In the early 2013, the buildings in areas 1 and 2 were demolished. Meanwhile, the main 
structures of the new buildings in areas 3 to 7 were erected; the other parts were built 
one after another by the end of 2013. Our result shows that certain substructures were 
added to the office complex in area 8 since the second half of 2013. These additions are 
hardly perceivable in the Google Earth images.  
 

The third example is to monitor sports facilities (Figure 32). Our result indicates 
that the roof and right-hand side of the arena (area 1) were renovated mostly in early 
2013. This renovation cannot be seen from the Google Earth images. A new building 
(area 3) was erected beside a sports playground nearly the middle 2013. This building 
was still under construction on September 12, 2010 (Figure 32 (a)) and seemed to be 
nearly finished on May 20, 2012 (Figure 32 (b)). Some structural changes are found on 
the stadium (area 2). They are regarded as a renovation event because the DBC and 
EBC points are mixed.  
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(a) 

  
(b)                                                       (c) 

  
(d)                                                       (e) 

Figure 30: Construction monitoring around Berlin Central Station. Areas 1 to 7 are used for in-depth 

analysis. Google earth images were acquired on (a) September 12, 2010, (b) May 20, 2012, and (c) 

September 5, 2014. (d) and (e): spatiotemporal change detection result in patch 2 (Figure 25). 
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(a) 

  
(b)                                   (c) 

  
(d)                                   (e) 

Figure 31: Business district monitoring. Areas 1 to 8 are used for in-depth analysis. Google earth images 

were acquired on (a) September 12, 2010, (b) May 20, 2012, and (c) September 5, 2014. (d) and (e): 

spatiotemporal change detection result in patch 3 (Figure 25). 
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(a) 

  
(b)                                   (c) 

  
(d)                                   (e) 

Figure 32: Sports facility monitoring. Areas 1 and 3 are used for in-depth analysis. Google earth images 

were acquired on (a) September 12, 2010, (b) May 20, 2012, and (c) September 5, 2014. (d) and (e): 

spatiotemporal change detection result in patch 4 (Figure 25). 
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                (a)                   (b)                   (c) 

  
                         (d)                   (e) 

Figure 33: Monitoring of traffic infrastructure. Google earth images were acquired on (a) September 12, 

2010, (b) May 20, 2012, and (c) September 5, 2014. (d) and (e): spatiotemporal change detection result 

in patch 5 (Figure 25). 
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(a) 

  
(b)                                                    (c) 

  
(d)                                                    (e) 

Figure 34: Construction monitoring of single high-rise buildings (1 and 2). Google earth images were 

acquired on (a) September 12, 2010, (b) May 20, 2012, and (c) September 5, 2014. (d) and (e): 

spatiotemporal change detection result in patch 6 (Figure 25). 

 
Monitoring of traffic infrastructure is useful for transportation management 

especially in busy cities. Our approach discovers a new elevated metro line that was 
under construction across a couple of blocks in 2013 (Figure 33). The main structure 
was accomplished in the early stage. The other substructures were later added into it 
over time. We notice that some canopies were present in 2010 (Figure 33 (a)) but then 
removed in 2012 (Figure 33 (b)). These changes cannot be identified for now because 
the break dates (bd: 16 to 28) were set to detect only the changes occurring in 2013. If 
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the break dates are set before 2013, these roof removals can be detected.  
 

The last example demonstrates a construction monitoring concerning two high-
rise buildings (Figure 34). For building 1, a building-like shape is formed from a group 
of EBC points. Most of them appeared in early 2013 and the others were joined later 
over time. For this reason, we believe that the main structure was erected in the 
beginning of 2013 and the construction continued until the end of this year. Intensive 
PS points, which cluster as a storey-like pattern, account for half of building 2. This 
means, these storeys has been existing since October, 2010 when the first TerraSAR-X 
image was acquired (Table II). The new facades (EBC points) were then built upon the 
old storeys one after another. A handful of DBC points on the top are supposed to be 
the old materials that were removed before adding parts of the new facades. In 
conclusion, our technique is able to provide detailed spatiotemporal information about 
construction progress when focusing on a single event of a certain size.  

5.6 Optimal selection of temporal coherence threshold 

Selection of temporal coherence threshold associates with a trade-off between 
quality and quantity of PS points. Given a high threshold, we anticipate precise 
estimates of deformation velocity and object height while the number of PS points is 
restrained. In addition, we also need to consider different applications and purposes to 
decide a suitable threshold. For instance, a moderate threshold should be applied to 
monitoring of volcanic activity to generate an extensive deformation map. In case of a 
strict threshold used, the sparse and disconnected PS clusters might not deliver 
complete information for volcanological analysis. In contrast, considering built-up 
cities covered with intensive corner reflectors, we prefer a high threshold as both the 
quality and quantity of PS points should satisfy most of the needs. Last but not least, 
system parameters of SAR sensors, in particular spatial resolution, also influence 
threshold selection. Generally speaking, high-resolution images increases PS quantity 
as a small pixel size prevent the coherent signals from being contaminated by the 
incoherent neighbours. Therefore, we can think of raising the threshold in such a case. 
In summary, there is no standard answer to an optimal threshold. We must consider 
actual situations to make an adequate decision.   
 

How to select a suitable threshold in our change detection method becomes even 
more complicated because we deal with PS and change points at the same time. On the 
one hand, raising a threshold decreases PS density as expected; on the other hand, the 
number of change points is reduced or increased? And how about the quality of change 
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points being detected? Does a stricter threshold lead to more precise change detection? 
We will answer these questions in the following. 
 

 
(a) 

 
(b) 

Figure 35: Point density versus temporal coherence threshold. (a) and (b), small and large scales. 

 
We first discuss the correlation between the temporal coherence thresholds (from 

0.4 to 0.9) and the quantities of the PS and change points (Figure 35). The PS density 
slides down as a smooth quadratic curve when the threshold is raised. In contrast, the 
DBC density first reaches the maximum at the threshold of 0.6, after which it becomes 
sparser gradually. We also observe a similar but more drastic course for the EBC density. 
That is to say, a density of change points tends to decrease if high thresholds are chosen.  
 

Now we turn to the change detection results of patch 1 (Figure 36) to discuss the 
accuracy. In the beginning (threshold of 0.4), the scene is overwhelmed by those PS 
points of low quality, which contradicts our ground truth (Figure 17). As the threshold 
is increased, the ratio of PS to change points turns reversely. The clustered change 
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points become more and more while the false PS points are filtered out. This 
phenomenon illustrates that raising a threshold can identify more authentic PS and 
change points. However, the cost is to bring more false change points. We see that the 
extreme example (Figure 36(e), threshold of 0.6) contains the change points everywhere. 
When the threshold (> 0.6) is set larger and larger, the number of the false change 
points decreases to some extent; in contrast, more and more correct ones are identified. 
Although a high threshold seems promising for accuracy, we also notice that the 
quantity of both the PS and change points is underestimated in particular when the 
threshold is larger than 0.8. By comparison, the loss of the change points is more 
restrained. The reason is that our methodology offers more opportunities of being 
change points, which depends on how many break dates are set. In conclusion, the 
optimal result in our case comes out with the threshold of 0.8. We suggest this threshold 
for urban scenes and high-resolution SAR images.  
 

  
(a) 0.40                            (b) 0.45 

  
(c) 0.50                            (d) 0.55 
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(e) 0.60                            (f) 0.65 

  
(g) 0.70                            (h) 0.75 

  
(i) 0.80                            (j) 0.85 
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(k) 0.90 

Figure 36: Change detection results subject to temporal coherence thresholds (from 0.4 to 0.9) in patch 

1 (Figure 25). Building change (ground truth): red, disappearance area; green, emergence area; yellow, 

complex area. 

5.7 Comparison with ratio change detection 

We compared our technique with the conventional ratio change detection (Rignot 
and van Zyl, 1993). For the ratioing method, we chose two images acquired on February 
12, 2012 and June 21, 2013 (Table II). During this period many construction events 
have been confirmed. We first derived two intensity images (dB) from the complex data 
and divided them by each other. The ratio values of unchanged objects concentrate at 0 
as a Gaussian distribution; in contrast, those of changed objects tend towards positives 
or negatives. Finally, we utilized Otsu thresholding (Otsu, 1979) to extract changes.  
 

We focus our comparison and analysis on patch 1 (Figure 26). The ratio image 
(Figure 37(a)) manifests the potential changes highlighted by extreme values towards 
black and red. Among the detected changes (Figure 37(b)) we can identify those 
clusters subject to changes of interest, i.e., building constructions. However, we also 
observe salt-and-pepper noise over the scene, which stem from speckle or image noise. 
Both correct and false results are mixed and therefore lead to difficulty in interpretation. 
To diminish the impact of speckle, we applied Lee speckle filtering (Lee, 1981b) of size 
5 × 5 to the intensity images before ratioing in the second experiment. The changes due 
to construction (Figure 38) can be more clearly identified; however, the false alarms, in 
particular noise, still dominate the result. Finally, we turned to multi-looking by a factor 
of 100 before ratioing to diminish both speckle and image noise in the intensity images. 
As a result, most false alarms have been eliminated (Figure 39). Nevertheless, we also 
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lose spatial details.  
 

  
(a)                                       (b) 

Figure 37: Original example over patch 1 (Figure 16). (a) Ratio image (potential changes towards black 

and red). (b) Detected changes (white). 

 

  
(a)                                       (b) 

Figure 38: Despeckle example over patch 1 (Figure 16). (a) Ratio image (potential changes towards black 

and red). (b) Detected changes (white). 

 
The problems mentioned above exist not only for ratio change detection but also 

for other incoherent approaches. Another common problem is that different change 
types are not easily discriminated. The strategy of our method looks for disappearance 
and emergence of PS points. Therefore, we deal with only constructional changes 
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without disturbance of other change types, speckle, and noise.  
 

  
(a)                                       (b) 

Figure 39: Multi-looking example over patch 1 (Figure 16). (a) Ratio image (potential changes towards 

black and red). (b) Detected changes (white). 

5.8 Comparison with amplitude-based semi-PS method 

 
Figure 40: Amplitude-based semi-PS result within patch 1 (Figure 16). Building change (ground truth): 

red, disappearance area; green, emergence area; yellow, complex area.  

 
We chose an amplitude-based semi-PS method (Ferretti et al., 2003) for 

comparison with our approach. Only the change points among the thirteen break dates 
(Table II) were detected and compared. As a result, the DBC and EBC points are 
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increased by 223% and 498% in our approach. Comparing the patch 1 results (Figure 
26 (a) and Figure 40) shows that the amplitude-based result loses partial details or even 
all the change events. The change points are too few to provide complete information 
of changes. For example, most of the EBC points are missing in complex area 2, which 
fails to convey the renovation activity. In addition, the clustered EBC points in complex 
area 3 becomes very sparse. Compared with an amplitude-based semi-PS method, our 
approach working on phase information has proven capable of detecting more change 
points, i.e., more complete information regarding changes. 

5.9 Computational requirements  

We assess the computational requirements for the proposed approach, which was 
developed on a computer with Intel Core(TM) i7-5820K, CPU running at 3.30 GHz, 
and 64GB RAM. The major computational demand is credited to the PSI computations, 
depending on various parameters. After all of the temporal coherence images were read, 
the detection process of the PS and change points along with the events’ dates was 
completed within 1 minute.  
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6. Conclusions 

6.1 Summaries  

Nowadays, applications using spaceborne SAR images are growing in remote 
sensing. Both systems and techniques have achieved a remarkable advancement along 
with launches of modern SAR satellites, e.g., TerraSAR-X (2007 - now) and COSMO-
SkyMed (2007 - now). Global industries are also motivated as Sentinel-1 was launched 
in April, 2014, which provides high-quality and costless images. There are some 
systems of next generation such as TanDEM-L being planned to be launched in the 
coming years. The trend is to bring affordable (or costless), accurate, and regular SAR 
images for global monitoring. We can see a promising perspective for SAR community.  
 

Based on multi-temporal SAR images, PSI is widely utilized in research and 
commercial fields to monitor structural deformation especially in urban areas. The 
detectable targets of interest, i.e., PS points, are assumed to move merely from 
millimetres to centimetres per year and must not undergo big changes like earthquake 
or demolition. Detecting such big changes resorted to other methodologies and data 
sources. We saw a potential to extend PSI and use only SAR images for change 
detection missions.  
 

This study proposes a spatiotemporal change detection to detect spatial big 
changes along with their occurrence times. Here, the big changes are related to 
disappearance and emergence of PS points, which are coined as change points. For 
instance, such change points in urban scenes are realized as substructures, which were 
removed or newly built under construction. A building-like cluster of change points 
thus indicate a construction event. We introduce point-based change indices calculated 
from temporal coherences of multiple image subsets. A change index indicates a 
probability that a point disappeared or emerged at a specific time period. Instead of 
using heuristic thresholding, change points are extracted by a statistical data-driven 
analysis on the change indices. For each change point, the evolution of change indices 
are then analysed to detect the occurrence time. In practice, the detail level of change 
points depend on spatiotemporal resolution of SAR images. With the use of TerraSAR-
X images, this study identifies the metre-resolution substructures that disappeared or 
emerged within, the shortest, 11 days. The temporal resolution could be up to 6 days if 
Sentinel-1 images are utilized; however, loss of spatial details is unavoidable. Our 
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method is resistive to various kinds of noise because the targets of interest are PS points, 
which are carefully processed and refined to diminish noise interference. Besides, 
irrelevant changes other than structural cases like vegetation growth, moving vehicles, 
temporary activities, etc. are intrinsically excluded. In summary, using only SAR 
images, our new technique can identify change events, detect their occurrence times, 
resist noise, and focus on only structural changes.  
 

A simulated data test is realized to validate the methodology in theory. The 
elements contain 58% PS, 34% change, and 8% void points over a pseudo-developing-
city. As a result, the overall accuracy of confusion matrix is 99%. The producer’s and 
user’s accuracies for change points are 99%. The accuracy of estimated occurrence 
dates achieves a sublevel of temporal baseline. For example, given Sentinel-1 images, 
the temporal accuracy could be less than 6 days (shortest temporal baseline) under 
optimal conditions, i.e., sufficient images and high-quality PSI results. The 
spatiotemporal accuracy proves promising but also seems to be overestimated in 
practice. Note that the data were simulated given ideal PSI processing. Various kinds 
of noise (except random item) are assumed to be perfectly calibrated or removed. We 
can say our approach performs very well as long as high PSI accuracy is guaranteed.  
 
 Our experiment successfully locates the construction events, which occurred in 
Berlin in 2013, and detects their occurrence dates. They have been cross-checked with 
the limited aerial optical images taken at different times. Our approach even catches 
some events, which are difficult to be recognized from the optical images. Some 
examples reveal a bridge renovation, a new metro line built across a couple of blocks, 
certain substructures added to an existing building, and new storeys stacked one after 
another. The spatiotemporal results are able to interpret the change events in more detail. 
For instance, whether a construction event started from scratch or was only under 
renovation. In the latter case, when and which parts were counted. We also see that 
combining our approach with complementary data brings multi-faceted and explainable 
results. A typical example is that a new white building was erected following an old 
grey one at the same place. The position and time of this construction activity are 
provided in our change detection result. The optical images show that its color was 
changed from grey to white.  
 

A temporal coherence threshold plays a crucial role in PSI and our method. For 
PSI, a threshold is chosen considering a trade-off between quality and quantity of PS 
points. There is no absolute principle to determine a best threshold. We must consider 
the needs, requirements, and applications to decide a suitable threshold. This decision 
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becomes even more complicated in our approach, by which both PS and change points 
are detected. We thoroughly investigated the number and accuracy of PS and change 
points subject to different thresholds from low to high. In principle, a higher threshold 
above a certain level leads to a more accurate result and less false negatives; however, 
the true points might be overly filtered out. Based on our tests, we suggest using 
threshold of 0.8 for urban scenes and high-resolution SAR images.  
 

For comparison, we also made tests using classical image ratioing and amplitude-
based semi-PS approach to identify building changes. As expected, image ratioing 
highlights and extracts not only the building changes of interest but also image noise 
and other change types. The latter items were suppressed by speckle filtering and multi-
looking, which causes loss of spatial detail. In addition, irrelevant changes need 
additional efforts and data sources to be separated. To some extent the abovementioned 
difficulties were overcome in the amplitude-based semi-PS result. The concept of the 
amplitude-based semi-PS method is similar to our proposed methodology. The major 
difference is that the former and latter utilize amplitudes and phases of SAR images, 
respectively, to detect change points. As a result, our technique has proven capable of 
detecting more change points, i.e., more complete information regarding change events.  
 

The computational demand is divided into two parts. The heavier part is credited 
to PSI processes, each of which takes hours to days or even longer depending on the 
size of data and various PSI-related parameters. The second part belongs to change 
detection step (our main contribution) and only takes minutes after inputs generated by 
PSI are read. We have seen two prospects for time-consuming PSI to improve efficiency. 
First, the computing power of CPU always keeps increasing to the future. With 
advanced techniques, e.g., parallel computing, we believe that the time required for PSI 
computation will be significantly shortened to enable our approach to be near real-time 
or even real-time monitoring. Second, the PSI procedure can be simplified if accurate 
complementary data and a priori information are available. For example, deformation 
velocities and residual heights, which are usually estimated in PSI, can be preset to null 
if the areas of interest are steady and accurate topography data are available. This preset 
dramatically reduces computing times.  
 

Our method is particularly suitable to monitor built-up areas where lots of PS and 
change points, if any, can be found. For instance, we can distinguish destroyed buildings 
and damaged substructures due to natural disasters, such as earthquake, from other 
structural changes taking place before. The subsequent reconstruction can then be 
monitored as well. As mentioned before, only structural changes can be detected but 
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what kinds of them, e.g., facades, roofs, houses, offices, factories, or infrastructures? 
We can use GIS-based information, like 3D city models or topic maps, to label the 
change points and bring semantic products. For this purpose, points can be first 
clustered and segmented depending on their properties such as labels, spatial proximity, 
occurrence times, geometry, homogeneity, temporal coherences, and so on. A potential 
application is to adapt the proposed approach for DS points. This adapted version 
enables changes on natural objects, such as rocky terrain overwhelmed by magma, to 
be detected.  

6.2 Future works 

We have four plans for the future. First, we will conduct more case studies to 
explore the proposed method’s parameters, potentials, and applications. Second, a 
technical extension will be to combine the current method with other complementary 
data, e.g., SAR amplitude images, to improve its performance. Third, our technique can 
be upgraded to detect a new change point label, which undergoes double big changes 
during a time period. For instance, a new building is erected soon, following a 
demolition event. For this purpose, a pixel will be further analysed if its initial point 
labels contain different change types. Finally, our approach can be adapted to detect 
underground big changes like tunnelling. Normally such events speed up deformation 
velocities of PS points upon the surface. Initially, we derived a new kind of change 
index from variation of PS velocities subject to a set of break dates. However, our test 
showed that the change indices are insensitive to the underground activities of interest, 
which causes a large number of missed detections. Not to mention it is unable to find 
out the accurate occurrence times. For improvement, a possible way is to look for abrupt 
changes along a time series of displacement for each PS point.  
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APS   Atmospheric Phase Screen 
bd   Break Date 
DBC  Disappearing Big Change 
DEM   Digital Elevation Model 
DInSAR  Differential Interferometric Synthetic Aperture Radar 
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InSAR  Interferometric Synthetic Aperture Radar 
LoS   Light-of-Sight 
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MInTS   Multiscale InSAR Time Series 
MLE  Maximum Likelihood Estimation 
PS   Persistent Scatterer 
PSI   Persistent Scatterer Interferometry 
PSP   Persistent Scatterer Pairs 
QPS   Quasi-PS 
radar  RAdio Detection And Ranging 
RAR  Real Aperture Radar 
SAR   Synthetic Aperture Radar 
SBAS  Small BAseline Subset 
SLR   Side-Looking Radar 
SPN   Stable Point Network 
StaMPS  Stanford Method for Persistent Scatterers 
STUN  SpaioTemporal Unwrapping Network 
SVD  Singular Value Decomposition 
V   Void 
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List of symbols 

N   number of SAR images 
M   number of interferograms 
θ    look angle 
ρa   azimuth resolution 
ρsr   slant-range resolution 
ρgr   ground-range resolution 
La    antenna length 
c   speed of light 
τ   pulse length 
s   SAR signal 
A   amplitude 
I   intensity 
ϕ   phase 
𝜑𝜑   interferometric phase 
𝜑𝜑′   differential interferometric phase 
H   height 
Δh   residual topographic error 
v   velocity 
R   slant-range 
ΔR   slant-range difference 
ΔR′   light-of-sight motion 
T   time 
B   base line 
BT    temporal baseline 
B⊥   perpendicular baseline 
α    tilt angle 
γ   complex coherence 
|γ|   coherence 
γT   temporal coherence 
𝜆𝜆   wavelength 
x   pixel index 
int   interferogram index 
CI   change index 
𝐷𝐷A    amplitude dispersion 
𝜇𝜇   mean 
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𝜎𝜎   standard deviation 
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