
Semi-Dense Filter-Based Visual Odometry for
Automotive Augmented Reality Applications

A thesis accepted by the Faculty of Aerospace Engineering and Geodesy of the
University of Stuttgart in partial fulfilment of the requirements for the degree of

Doctor of Engineering Sciences (Dr.-Ing.)

by

MSc. Stephan Schmid

born in Böblingen

Main referee: Prof. Dr.-Ing. Dieter Fritsch

Co-referee: Prof. Dr. Luc Van Gool

Date of defense: 29.3.2019

Institute for Photogrammetry
University of Stuttgart

2019

2

Contents

Abstract . 5
Zusammenfassung . 7

1 Introduction 9
1.1 Motivation . 9
1.2 Objectives . 11
1.3 Main contributions . 13
1.4 Outline . 16
1.5 Abbreviations & definitions . 18

2 Introduction to depth estimation and visual navigation 19
2.1 Animal vision . 19
2.2 Brief history of stereo triangulation, visual odometry and structure from

motion . 20

3 Related work 23
3.1 Overview over Structure from motion, visual odometry and visual SLAM . 23
3.2 Treatment of combined camera pose and scene point uncertainty 24
3.3 Forward motion . 26
3.4 Occlusion in Augmented Reality . 26

4 Basic concepts 30
4.1 Geometric concepts . 30
4.2 Camera systems and models . 31
4.3 Estimation . 42

5 Long-Range forward triangulation 58

6 Structure from motion in forward motion 70
6.1 Introduction . 70
6.2 Rationale for approximating the information matrix in filter-based visual

odometry . 70
6.3 Introduction to C-LSD-SLAM . 72
6.4 C-LSD-SLAM: Implementation . 73
6.5 Instability in forward motion . 80
6.6 Reweighting scheme against singular behaviour near the epipolar line . . . 85
6.7 Evaluation . 87
6.8 Conclusion . 93

3

7 Efficient approximation of the information matrix 94
7.1 Introduction . 94
7.2 Implementation in pinhole coordinates for direct methods 97
7.3 Implementation . 107

8 Evaluation of C-LSD-SLAM 108
8.1 Datasets . 108
8.2 Terminology and default parameters . 108
8.3 Robustness and repeatability . 109
8.4 Accuracy . 113

9 Densification 117
9.1 Introduction . 117
9.2 Raycasting method . 118

10 Summary 125

11 Appendix 126

12 Bibliography 131

4

Abstract

In order to integrate virtual objects convincingly into a real scene, Augmented Reality (AR)
systems typically need to solve two problems: Firstly, the movement and position of the AR
system within the environment needs to be known to be able to compensate the motion of
the AR system in order to make placement of the virtual objects stable relative to the real
world and to provide overall correct placement of virtual objects. Secondly, an AR system
needs to have a notion of the geometry of the real environment to be able to properly
integrate virtual objects into the real scene via techniques such as the determination of
the occlusion relation between real and virtual objects or context-aware positioning of
virtual content. To solve the second problem, the following two approaches have emerged:
A simple solution is to create a map of the real scene a priori by whatever means and to
then use this map in real-time operation of the AR system. A more challenging, but also
more flexible solution is to create a map of the environment dynamically from real time
data of sensors of the AR-system.

Our target applications are Augmented Reality in-car infotainment systems in which a
video of a forward facing camera is augmented. Using map data to determine the geometry
of the environment of the vehicle is limited by the fact that currently available digital
maps only provide a rather coarse and abstract picture of the world. Furthermore, map
coverage and amount of detail vary greatly regionally and between different maps.

Hence, the objective of the presented thesis is to obtain the geometry of the environment
in real time from vehicle sensors. More specifically, the aim is to obtain the scene geometry
by triangulating it from the camera images at different camera positions (i.e. stereo
computation) while the vehicle moves.

The problem of estimating geometry from camera images where the camera positions are
not (exactly) known is investigated in the (overlapping) fields of visual odometry (VO)
and structure from motion (SfM). Since Augmented Reality applications have tight latency
requirements, it is necessary to obtain an estimate of the current scene geometry for each
frame of the video stream without delay. Furthermore, Augmented Reality applications
need detailed information about the scene geometry, which means dense (or semi-dense)
depth estimation, that is one depth estimate per pixel. The capability of low-latency
geometry estimation is currently only found in filter based VO methods, which model the
depth estimates of the pixels as the state vector of a probabilistic filter (e.g. Kalman filter).
However, such filters maintain a covariance matrix for the uncertainty of the pixel depth
estimates whose complexity is quadratic in the number of estimated pixel depths, which
causes infeasible complexity for dense depth estimation.

To resolve this conflict, the (full) covariance matrix will be replaced by a matrix requiring
only linear complexity in processing and storage. This way, filter-based VO methods can

5

be combined with dense estimation techniques and efficiently scaled up to arbitrarily large
image sizes while allowing easy parallelization.

For treating the covariance matrix of the filter state, two methods are introduced and
discussed. These methods are implemented as modifications to the (existing) VO method
LSD-SLAM, yielding the "continuous" variant C-LSD-SLAM. In the first method, a
diagonal matrix is used as the covariance matrix. In particular, the correlation between
different scene point estimates is neglected. For stabilizing the resulting VO method in
forward motion, a reweighting scheme is introduced based on how far scene point estimates
are moved when reprojecting them from one frame to the next frame. This way, erroneous
scene point estimates are prevented from causing the VO method to diverge.

The second method for treating the covariance matrix models the correlation of the
scene point estimates caused by camera pose uncertainty by approximating the combined
influence of all camera pose estimates in a small subspace of the scene point estimates.
This subspace has fixed dimension 15, which forces the complexity of the replacement of
the covariance matrix to be linear in the number of scene point estimates.

6

Zusammenfassung

Um virtuelle Objekte überzeugend in eine reale Szene einzufügen, müssen Augmented
Reality-Systeme (AR-Systeme) typischerweise zwei Probleme lösen. Einerseits muss die
Bewegung und die Position des AR-Systems in der Umgebung bekannt sein, um eine
stabile Positionierung der virtuellen Inhalte relativ zur realen Szene zu gewährleisten
und um insgesamt eine korrekte Positionierung zu ermöglichen. Andererseits muss ein
AR-System Kenntnis der Geometrie der realen Umgebung besitzen, um virtuelle Inhalte
mittels Techniken wie Verdeckungsbestimmung oder umgebungsadaptiver Positionierung
sauber in die reale Szene einfügen zu können. Zur Lösung des letzteren Problems haben
sich die folgenden beiden Ansätze herausgebildet: Eine einfache Lösungsmöglichkeit ist, a
priori mit beliebiger Technik ein Modell der realen Szene zu erstellen und dieses Modell
dann schlicht im Realbetrieb des AR-Systems zu verwenden. Eine anspruchsvollere, aber
auch flexiblere Lösungsmöglichkeit ist, das benötigte Modell der Umgebung dynamisch
aus den Sensordaten des AR-Systems zu erzeugen.

Unsere Zielanwendung ist ein AR-System als Teil eines Infotainmentsystems für die Pas-
sagiere eines Automobils. Dabei wird der Bildstrom einer vorwärts gerichteten Kamera mit
Augmentierungen versehen und den Passagieren des Fahrzeugs angezeigt. Die Verwendung
von Kartendaten zur Bestimmung der Geometrie der Umgebung wird durch die Tatsache
eingeschränkt, dass aktuell verfügbare Karten die Welt nur in stark abstrahierter Form und
sehr grobmaschig darstellen. Weiterhin variiert die Vollständigkeit und Detaillierungsgrad
der Karten regional und zwischen unterschiedlichen Karten.

Somit ist die Zielsetzung der vorliegenden Dissertation, die Geometrie der Umgebung
in Echtzeit aus Daten der Fahrzeugsensorik zu bestimmen. Im Detail wird der Ansatz
verfolgt, dass die Szenengeometrie während der Fahrzeugbewegung durch Triangulation
aus den Kamerabildern an verschiedenen Kameraposition (d.h. Stereorechnung) bestimmt
wird.

Die Problemstellung, die Geometrie einer Szene aus Kamerabildern bei gleichzeitig nicht
(genau) bekannten Kamerapositionen zu bestimmen wird in den (überlappenden) Gebieten
der visuellen Odometrie (VO) und Structure from Motion (SfM) untersucht. Da Augmented
Reality-Anwendungen enge Latenzanforderungen haben, ist es notwendig für jedes einzelne
Kamerabild verzögerungsfrei eine Schätzung der jeweiligen Szenengeometrie bereitzustellen.
Weiterhin benötigen Augmented Reality-Anwendungen detaillierte Information über die
Szenengeometrie. Dies bedeutet typischerweise, dass die Geometrieschätzung in der
Form einer dichten Tiefenkarte bereitgestellt wird, d.h. für jedes Bildpixel wird eine
Entfernungsschätzung bereitgestellt. Die Fähigkeit zur latenzarmen Generierung von
Geometrieschätzungen findet sich derzeit nur in filterbasierten VO-Verfahren. Bei diesen
werden die Entfernungschätzungen der Pixel als Zustandsvektor eines probabilistischen

7

Filters (z.B. Kalman-Filter) aufgefasst. Bei diesen Filtern wird jedoch eine Kovarianzmatrix
zur Beschreibung der Unsicherheit der Schätzungen der Szenenpunkte mitgeführt. Da
deren Komplexität quadratisch in der Anzahl der Szenenpunkte ist, verursacht dies bei
dichter Tiefenschätzung prohibitiv hohe Komplexität.

Um diesen Widerspruch aufzulösen werden wir die (voll besetzte) Kovarianzmatrix durch
eine Matrix mit linearer Speicher- und Laufzeitkomplexität ersetzen. Dies ermöglicht
die Kombination von filterbasierten VO-Verfahren mit dichter Tiefenschätzung und er-
laubt es, solche Techniken effizient auf große Bildgrößen hochzusklalieren und einfach zu
parallelisieren.

Es werden zwei Methoden zur Ersetzung der Kovarianzmatrix des Filterzustands eingeführt
und diskutiert. Diese Methoden werden aufbauend auf dem (bestehenden) VO-Verfahrens
LSD-SLAM implementiert. Diese so resultierende, "kontinuierliche" Variante von LSD-
SLAM wird als C-LSD-SLAM bezeichnet. In der ersten Methode wird die Kovarianzmatrix
durch eine Diagonalmatrix ersetzt. Insbesondere wird dadurch die Korrelation der Position-
sschätzungen der Szenenpunkte vernachlässigt. Um C-LSD-SLAM bei Vorwärtsbewegung
zu stabilisieren, wird eine Umgewichtungsregel für die Szenenpunktschätzungen eingeführt.
Diese führt die Umgewichtung auf Basis der Bewegung der Szenenpunktschätzungen bei
Reprojektion von einer Kameraposition zur nächsten durch. Damit werden fehlerhafte
Szenenpunktschätzungen daran gehindert, im VO-Verfahren Divergenz zu verursachen.

Die zweite Methode zur Ersetzung der Kovarianzmatrix modelliert die durch die Unsicher-
heit der Kameraposen verursachte Korrelation der Szenenpunktschätzungen, in dem der
Einfluss aller Kameraposenschätzungen in einem kleinen Unterraum des Vektorraums der
Szenenpunktschätzungen approximiert wird. Dieser Unterraum hat die feste Dimension
15, wodurch erzwungen wird, dass der Ersatz der Kovarianzmatrix lineare Komplexität in
der Anzahl der Szenenpunkte hat.

8

1 Introduction

1.1 Motivation

The aim of this research is to provide intuitive means of visualizing information for the
passengers of a car by integrating suitable virtual objects into the real world, e.g. by drawing
the virtual objects on a live camera feed of the vehicle surrounding and showing this
augmented camera feed to the passengers. Natural use-cases are e.g. providing navigation
directions by drawing navigation arrows onto the street or providing information about
nearby locations by displaying points of interest (POIs), cf. fig. 1.

Figure 1: Concept art and prototype of vehicular AR-System. Navigation directions, street
names and house numbers as well as POIs are shown

Conventionally, camera images are augmented by just painting the virtual objects over
the camera images. I.e. it is assumed that the virtual objects are always in front of the
real objects, which means that virtual objects are assumed to never be occluded by real
objects. This is an assumption made frequently e.g. when augmenting objects onto a flat
surface such as a tabletop. It quickly fails though in complex, cluttered environments
such as traffic scenes. Here, drawing virtual content in an occlusion-correct fashion is an
important factor for integration virtual content into the real world. Indeed, occlusion is
an important component in the depth perception of humans. E.g. navigation directions
benefit greatly from the increased intuitiveness provided by navigation arrows drawn in an
occlusion-correct fashion.

Hence, a key motivation of this thesis is to find methods to determine which parts of the
virtual scene are occluded by or occlude parts of the real scene. In particular, we want
to know for each pixel of the virtual scene whether that pixel is in front or behind the
corresponding pixel of the camera image.

The virtual scene is generated algorithmically and is thus perfectly known to the Augmented
Reality system. Thus, information about the geometry of the real scene needs to be obtained
for occlusion.

There are several sources for information on the scene geometry available to vehicular

9

AR systems. One source is to obtain information from digital maps, that is from data
sources outside the vehicle. Digital maps such as OpenStreetMap and Google maps
currently feature geometry information such as building footprints or 3D building models.
A technical obstacle in this approach is that for accurate usage, the vehicle pose needs
to be determined precisely relative to the map, which is difficult with current absolute
localization technologies such as GNSS. If implemented successfully, a major advantage
of this method is that its range is essentially infinite. On the other hand, this approach
is bound to the fidelity and accuracy of the map data: Current digital maps model the
real world typically in a highly abstract fashion. For example, most maps are designed for
navigation so roads are typically represented as edges in a road graph. That means the
two-/three-dimensional road is reduced to an one-dimensional object. It is often impossible
to recover the geometry of even the most important structures such as roads and buildings
from this abstract representation.

The second source for information on the geometry of the real scene are the vehicle sensors.
Due to the current development effort towards autonomous driving, there is a wide variety
of sensors and systems available for vehicles for environment perception. In particular,
a major portion of these systems aim at perceiving traffic participants, that is moving
objects in the scene. Due to being designed as safety-critical components and constraints
posed by the communication networks within the vehicle, these systems typically provide
a schematic representation of the environment. Thus, they cannot be used directly for
occlusion determination. In this venue, note that in the AR-system a live camera feed is
augmented. This camera can also be used for environmental perception. In particular, it
can be used via stereo computation to obtain a dense distance maps for the images of the
camera, which can then be used for occlusion computation. By reusing the camera images,
this approach is highly self-contained, which offers several advantages. In particular,
dependency on other sensors is avoided, which would introduce issues such as cross-sensor
calibration and communication between different electronic control units (ECUs) in the
vehicle, which are complex in a multi-stakeholder mass-production environment.

Hence, the aim of this thesis is to obtain depth information from a monocular camera
image stream and to use this depth information for occlusion computation in a vehicular
Augmented Reality system. We assume that the image stream being augmented is the
same as the image stream used for depth determination, so no additional alignment step
is needed. Figure 2 shows a possible processing pipeline for such an Augmented Reality
system.

10

camera

images

visual

odometry

absolute pose

estimation
sensor data

digital map

data

AR

enrichment AR content

dense distance

images

vehicle

pose
transform to

local coordinates

rasterization,

blending

output

images

Figure 2: Processing pipeline for a video-based Augmented Reality system incorporating
visual odometry for depth estimation and occlusion determination

1.2 Objectives

The objective of this thesis is to investigate and develop systems for the determination of
the occlusion relation between real and virtual objects in a vehicular AR system. Such
a system generally consists of a component for the depth estimation of the real world
pixels and of a component which composes the real image and the virtual scene in an
occlusion-correct fashion using data provided by the first component.

In more detail, we have the following objectives in the development of these components.

• Long range: View ranges of several hundreds of meters are common in traffic scenes.
Vehicle speeds in urban areas typically range from 10m/s (residential area) to about
20m/s. Hence in order to integrate virtual objects into the scene several seconds
in advance, the depth estimation component should be able to estimate object
distances up to a range of about 100m. This contrasts the short ranges encountered
in the majority of Augmented Reality applications which are designed for providing
augmentations in a very small region such as on and above a table or inside a room
or a building or generally the immediate surrounding of a mostly stationary user.

• Capability of high speed forward movement: This is the most challenging situation
for visual odometry and visual SLAM systems. Our system is always in this situation
since the AR system looks in the direction of vehicle movement, so the depth
estimation component must be well capable of functioning in this situation.

11

• Parallelization and efficiency of algorithms: The algorithms used are computationally
fairly expensive since they typically involve performing some operation for each pixel
of each camera frame. In particular, stereo matching involves performing many
iterations for each pixel of each camera frame. The only processors available on
vehicle ECUs capable of performing this amount of number crunching and data
crunching are automotive-grade GPUs or other devices with limited instruction
control flow flexibility such as FPGAs or DSPs. Hence, the algorithms should feature
a high level of data independence for parallel processing and the control flow should
be largely independent of the data to facilitate efficient usage of vectorized (SIMD)
processing units.

• Optimization for determination of occlusion relation: The depth estimation com-
ponent should be optimized in such a way that errors affect occlusion relations as
little as possible. In particular, it should avoid outliers since these introduce highly
visible artifacts in occlusion calculation. Furthermore, the composition component
should compose the virtual scene and the real image in such a way that the effects
of misocclusion are de-emphasized.

Initially, a main focus was on how to achieve occlusion with given dense depth information
(depth maps) and how to enhance these depth maps in such a way that occlusion can be
determined well. However, the key problem with this approach is the fact that trying to
enhance depth maps is essentially just reprocessing of existing data. By feeding additional
data (apart from the bare depth information) such as the color information from camera
images into the enhancement process, results can be improved with regard to regularity
issues such as smoothness and edge fidelity. Ultimately, however there is a limit on how
much existing depth maps can be enhanced by post-processing, and this limit is given by
the quality of the input depth maps. In particular, range accuracy may be improved e.g.
by averaging only up to the limit given by the noise level of the input depth maps and
the number of samples that can be aggregated into an output value. As accuracy at long
range is particularly important for urban scenes, this limit needs to be circumvented.

Hence, the main focus of this work is on how to extract as much depth information
as possible from the camera images. In particular, this means triangulating the object
positions directly from the camera images to obtain sufficiently accurate depth maps even
in long-range situation.

These high-quality, raw depth maps may then be used in succeeding processing steps
such as densification and enhancement, with the ultimate step being usage in occlusion
computation.

12

1.3 Main contributions

The first main contribution is the revival of the filter-based visual odometry (VO) methods
and modification of this concept in such a fashion that our methods can scale well up to
large numbers of scene points: Filter-based VO methods traditionally treat uncertainty in
the position estimates of the scene points by maintaining a covariance matrix in the style
of a Kalman filter. The number of entries of this covariance matrix is quadratic in the
number of scene points. Thus filter-based VO methods do not scale well to large numbers
of scene points, so it is highly impractical to do depth estimation for large numbers of
pixels. In particular, real-time dense depth estimation is currently virtually impossible
for anything larger than tiny image resolutions. The method developed here, C-LSD-
SLAM, is derived from the existing method LSD-SLAM: Large-Scale Direct Monocular
SLAM[Engel et al., 2014] (LSD-SLAM). Note that LSD-SLAM is a keyframe-based SLAM
method. For scene point triangulation and camera tracking, it employs direct image
matching and alignment on the images, which are restricted to the semi-dense image
regions with highest intensity gradient. The desire to obtain a depth map for each frame
instead for each keyframe in LSD-SLAM (i.e. continuous operation and output) motivated
evolving LSD-SLAM into C-LSD-SLAM. This essentially meant making each frame into a
keyframe and transforming the method into a filter-based method.

Note that this method treats the uncertainty of each point depth estimate individually
without any treatment for the correlation in the scene point depth estimates caused by
misestimation of the camera movement. That is, instead of a densely populated covariance
matrix for the depth estimates, the covariance estimate is a diagonal matrix, which can be
considered as an approximation of the "true" densely populated covariance matrix. The
main advantage of this approximation is that the diagonal matrix has linear complexity in
the number of estimated points, which is much less complex than the quadratic complexity
of a densely populated matrix. This way, the computational complexity is essentially linear
in the number of scene point depth estimates, which is the key mechanism allowing us to
efficiently scale filter based visual odometry methods up to large image resolutions with
large number of tracked scene points, which in turn improves robustness and accuracy. A
summary of the problem structures of the different strategies for visual odometry is given
in figures 3 and 4.

In a subsequent step, we investigate how to approximate the densely populated covariance
matrix in such a way that the most significant effects of pose uncertainty are captured by
the approximation while still featuring linear complexity in the number of estimated scene
points.

As a second main contribution, the introduction of C-LSD-SLAM shows that the concept
of a filter-based direct method for visual odometry is feasible and effective. A majority

13

P
1

P
2

P
3

P
4

P
5

K
1

K
2

K
3

K
4

P
6

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

P
7

P
8

K
11

K
10

K
9

K
8

K
7

K
6

K
5

K
12

P
1

P
2

P
3

P
4

P
5

K
1

K
2

K
3

K
4

P
6

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

P
7

P
8

K
11

K
10

K
9

K
8

K
7

K
6

K
5

K
12

Figure 3: Sparsity structure for bundle adjustment (top) and keyframe-based visual odom-
etry (bottom). The Pi represent the (unknown) scene point positions. The
Ki represent the (not exactly known) camera poses. A line is drawn for each
scene point observed in a camera image. Each line gives a summand in the
log-likelihood function used for optimization. Thus when solving the nonlinear
optimization problem via linearization (e.g. in the Gauss-Newton algorithm),
the lines give the sparsity structure of the system matrix. In traditional bundle
adjustment, the whole optimization problem is solved via offline global optimiza-
tion. Keyframe-based visual odometry methods divide the sequence of images
into smaller sections which overlap at keyframes (marked in blue). Optimization
is done for each section separately, which allows obtaining intermediate results
after each keyframe in online processing.

14

P
1

P
2

P
3

P
4

P
5

K
1

K
2

K
3

K
4

P
6

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

P
7

P
8

K
11

K
10

K
9

K
8

K
7

K
6

K
5

K
12

(a)

P
1

P
2

P
3

P
4

P
5

K
1

K
2

K
3

K
4

P
6

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

P
7

P
8

K
11

K
10

K
9

K
8

K
7

K
6

K
5

K
12

(b)

P
1

P
2

P
3

P
4

P
5

K
1

K
2

K
3

K
4

P
6

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

P
7

P
8

K
11

K
10

K
9

K
8

K
7

K
6

K
5

K
12

(c)

Figure 4: Sparsity structure of filter-based visual odometry methods (notation used as in
fig. 3): (a) Orthodox probabilistic filter (e.g. [Davison et al., 2007]) (b) diagonal
C-LSD-SLAM (c) extended C-LSD-SLAM. Eliminating the previous camera
poses and all scene points not visible in the current image (drawn in grey)
destroys the sparsity structure from fig. 3 since in bundle adjustment, relations
between different scene points are only possible via an intermediate camera pose
whereas here, these relations must connect scene points directly and they usually
connect virtually all pairs of scene points. Hence the computational complexity
per frame is approximately quadratic in the number of scene points visible in
that frame. Diagonal C-LSD-SLAM approximates the relations between different
scene points by zero, thus giving an approximately linear complexity. Extended
C-LSD-SLAM approximates the relations between different scene points with
a structure of linear complexity in the number of number scene points in the
current frame.

15

of VO methods are feature based, meaning that an essential step of image preprocessing
is the extraction of (usually point-like) features from the image. This serves as a way
of creating an abstract representation of the images. The central routines of the VO
method (association of different images via matching, triangulation, inference of the camera
position, etc.) then all operate on features. In particular, this means that the reconstructed
geometry of the scene visible to the camera is represented as a collection of features with
estimated position, that is as a sparse point cloud. In contrast, direct methods skip the
(often computationally expensive) step of feature extraction and operate directly on the
image intensities. While this exposes most of the VO pipeline to image defects such as e.g.
image noise, it provides a natural path to a dense representation of the scene in front of
the camera, which is a key motivation for us provided by our intended application.

To our knowledge, filter-based methods have exclusively been feature-based until now.
The reason for this is the fact that filter-based methods traditionally do not scale well to
large number of estimated scene points as outlined above, which motivates restricting the
estimation of scene points to a sparse set of pre-selected, "valuable" points, which are the
feature points. The efficiency improvements given above to the concept of filter-based VO
allow us to completely bypass this constraint on the number of estimated scene points and
to obtain the filter-based direct method C-LSD-SLAM.

The third main contribution is to devise a reweighting strategy for the confidence of scene
point estimates in filter-based VO which gives C-LSD-SLAM the capability of working
well in situations of fast forward motion. Such situations are challenging to VO methods
(in particular to monocular VO methods) since they involve strong nonlinearities near the
epipolar direction, which are directly in the image center in these situations.

The final main contribution is investigating the application of visual odometry to the
problem of drawing augmentations into the video stream of a forward facing vehicle
mounted camera in an occlusion correct fashion. Here, we analyse whether the range
accuracy of distance estimates obtained from monocular visual odometry is sufficient to
solve this problem and investigate how to densify the (possibly semi-dense) depth maps
provided by a VO method in a robust fashion.

1.4 Outline

The text is structured as follows. Sections 2 and 3 give brief introductions of visual
odometry within visual navigation and surveying and relate our contributions to the state
of the art.

Section 4 introduces basic concepts, in particular to fix notations. In section 5, we
determine the statistical limits for estimating depth near the singularity at the image

16

centre with forward-moving monocular cameras and compare them to binocular systems.

In section 6, the main method C-LSD-SLAM is introduced and discussed in detail. Besides
the design of C-LSD-SLAM as a filter-based method capable of continuously outputting
depth maps, the implementation of C-LSD-SLAM, the mitigation of instability in forward
motion and the performance of C-LSD-SLAM are presented.

As C-LSD-SLAM approximates the information (inverse of covariance) matrix of the filter
state with a diagonal matrix, section 7 investigates the concept of finding an approximation
of the information matrix which better models the joint uncertainty in the scene point
estimates caused by camera pose uncertainty.

In section 8, C-LSD-SLAM is evaluated. In particular, the two variants of C-LSD-SLAM
dubbed diagonal C-LSD-SLAM (as described in section 6) and extended C-LSD-SLAM
(as described in section 7) are compared and discussed.

Finally, in section 9, we investigate methods for obtaining dense depth maps from the
semi-dense depth maps provided by C-LSD-SLAM.

17

1.5 Abbreviations & definitions

AR Augmented Reality.
DSP Digital signal processor.
ECU Electronic control unit. An embedded system performing a certain

function in a vehicle.
FoV Field of view.
FPGA Field-programmable gate array. A type of programmable logic device.
GNSS Global navigation satellite system.
GPS Global Positioning System. A GNSS system operated by the USA.

As GPS is the oldest GNSS system, GPS is often used synonymously
with GNSS.

IMU Inertial measurement unit. A combination of a triaxial gyroscope and
a triaxial accelerometer, often in a single sensor package.

LSD-SLAM,
C-LSD-SLAM

LSD-SLAM[Engel et al., 2014] is a visual SLAM method. C-LSD-
SLAM was developed from LSD-SLAM as part of the work presented
here, cf. section 6.

POI Point of interest.
Pose Position and orientation of an object (e.g. a camera or a robot). Poses

are typically formulated as a Euclidean transformation relative to a
reference frame.

RGB-D camera A combination of an RGB (color) camera and a depth sensor such
that the depth sensor provides depth information for the RGB image.
Implementations may use e.g. a time-of-flight camera or a structured-
light 3D scanner for depth sensing.

SfM Structure from motion, cf. e.g. section 3.1.
SIMD Single-instruction, multiple data. This is a class of parallel processing

characterized by performing the same operation (instruction) for
multiple items (data).

SLAM Simultaneous localization and mapping, cf. e.g. section 3.1.
VO Visual odometry, cf. e.g. section 3.1.

18

2 Introduction to depth estimation and visual

navigation

2.1 Animal vision

Many animals have some form of vision. As vision may provide detailed information of the
environment over a wide range of distances, it is often an important sense. To that end,
visual systems feature a large and complex amount of specialized machinery. For example,
it is known that the retinas found in mammals feature both light-sensitive structures
and neuronal structures for initial processing. This initial processing already performs
extraction of "interesting" components of data such as temporal changes (e.g. due to
movement), edge and contrast enhancement.

It is known that mammals and birds both have the capability to perform stabilization of
their eyes hardwired into their nervous system via reflexes. In mammals, this is called the
vestibulo-ocular reflex. At detection of head movement by the vestibular apparatus in the
inner ear, this reflex quickly rotates the eyes in the opposite direction such that overall,
the images on the retinas are stabilized.

Birds stabilize their vision by holding their head steady via movement of the neck. Moving
the neck is required by the fact that most birds can not move or can only slightly move
their eyes. This method gives rise to the head bobbing of e.g. pigeons and chickens when
walking on the ground: When walking, the head stays absolutely in the same position
while the body moves forward. This means that relative to the body, the head moves
backwards. The neck cannot stretch infinitely to the back, so at a certain point the bird
will quickly move or "bob" its head forward to a new, stationary position. This method
for head stabilization is highly accurate. A well-publicized way of demonstrating this is to
pick up a chicken and move its body (in a sufficiently small area) around, whereupon its
head will typically stay in exactly the same spot despite the movement of the body.

Animals use vision to both perceive their environment (often in a three-dimensional fashion)
and to navigate within their environment. As cameras capture the same information as the
vision of animals, it should be possible to also use camera information in a similar fashion.
This problem is addressed in the fields of visual odometry, structure from motion and
visual SLAM. Note however that while by now, it is possible to compute highly accurate
geometrical data from camera images, the algorithms used for this purpose are typically
vastly less robust than the perception of animals.

19

2.2 Brief history of stereo triangulation, visual odometry and

structure from motion

2.2.1 Stereo and triangulation

Triangulation has been used by humans as a means for accurately determining distances
for a very long time. The necessity and ability of measuring distances precisely can
be traced to surveying and construction efforts of ancient cultures. Indeed, the basic
tenets of geometry were already established by the time of Thales in early antiquity.
Antique geometers strived to invent increasingly more powerful methods, in particular
the systematic application of deduction, to be able to solve highly non-trivial questions
such as Archimedes’ determination of the ratio of the volume ball and the volume of a
circumscribed cylinder. Antique mathematics culminated in Euclid’s elements, which
provided an axiomatic framework for classical, Euclidean geometry and codified the concept
of a formal proof. In particular, the notion of dividing mathematical texts into definitions,
theorems and proofs has remained unchanged since then with the effect that the structure
of modern texts bears a striking resemblance to Euclid’s elements.

Antique techniques relied heavily on geometrical constructions to solve problems, which
can be traced to the fact that the numeric systems (e.g. Roman numerals) prevalent at
the time could essentially only perform addition and subtraction in an efficient way. The
systematic development of efficient arithmetic methods based on the decimal system during
the Middle Ages caused a shift from construction to calculation, with extensive results on
trigonometry being obtained in the medieval Islamic world. The subsequent evolution of
mathematical methods necessary for triangulation is mainly centered on the introduction
of the usage of overdetermined systems to decrease errors in the 18th century and, since
then, an ever-increasing collection of numerical and statistical machinery to describe and
solve complex systems.

For most of history, surveying was the main driver for developing triangulation techniques.
Large surveying campaigns for mapping whole countries in the late 18th and early 19th
century are perhaps the most famous applications of triangulation in surveying. The
industrial revolution and its numerous construction efforts increased demand for surveying
drastically. Finally, the end of the 19th century saw the introduction of photography
sparking the beginnings of photogrammetry.

2.2.2 Photogrammetry, structure from motion and visual odometry

Basically, the usage of cameras for obtaining geometrical information in photogrammetry
yields the same kind of information as e.g. a theodolite as both are fundamentally devices

20

for measuring angles. The qualitative difference (aside from the typically lower angular
resolution of cameras) is the fact that cameras are capable of performing many angular
observations at once and, in the case of e.g. video cameras, are capable of performing
many such collective measurements in a short time. In short, cameras are a means to very
quickly (and often inexpensively) obtain much information on the captured scene.

However, the usage of cameras as measurement devices raised several issues with some of
them unique to photogrammetry and others being vastly amplified versions of problems
also present in surveying:

• Automation: The vast data acquisition rate of cameras is a powerful motivator for
developing automated solutions.

• Camera calibration: Cameras are not perfect angular measurement devices. The
mapping from view ray directions to positions on the image differs from the ideal
mapping due to various effects such as distortion by the optics caused by various
aberration effects and misalignment and deformation of the components of the optics
due to manufacturing tolerances and / or mechanical stress due to a wide selection of
sources such as mounting stress, mechanical shock, vibration, thermal deformation,
gravity and others. To resolve this discrepancy, this deviation from the ideal mapping
is determined in a step called calibration. The knowledge of the deviation can then
be used to remove the effects of the deviation computationally from the captured
images in a step called rectification of the images.

• Point association: To perform triangulation, a scene point needs to be found in two
or more images. The result of this task is the association of image points in different
images as being the image of the same scene point. This association should yield
many correct associations while yielding only few misassociations. Geometrically,
associations should be as precise as possible. The main approach here is to extract
features from the image, that is (in a certain sense) easily recognizable points,
and then solving the association problem on the extracted feature points. While
extraction of features also makes sense from the point of view of data reduction,
there is also the approach of direct matching in which image patches are compared
directly to determine whether they correspond to the same scene part or not.

• Numerical treatment of large nonlinear systems of equations: These arise e.g. in the
context of bundle adjustment, where all estimated parameters (scene point positions,
camera poses, calibration parameters and others) are fitted to the measurement data.
Another aspect of this problem is to find good initial estimates, which leads to the
technique of combining exact techniques for determining camera alignment such as
the 5-point and 8-point algorithm (cf. e.g. [Nistér, 2004]) with the iterative outlier
rejection method RANSAC.

21

• Tolerance against outliers: There are various components in a photogrammetry
pipeline that can be a source of wholly incorrect results, also called outliers. The
most important and most well-known source of these are point association errors as
they happen frequently and are also unavoidable due to the fact that different real
structures can look exactly the same, thus fooling any appearance-based association
technique. A common technique to deal with outliers is to use robust objective
functions in optimization as these objective functions are less sensitive to outliers
than non-robustified objective functions such as the quadratic loss function used in
least-squares optimizations.

The advent of digital cameras and a large increase in available computational resources at
the end of the 20th and beginning of the 21th century has led to greatly increased adoption
of and interest in photogrammetric techniques in particular in areas such as computer
vision, robotics and 3D modelling. Here, a particular advance for 3D reconstruction has
been the introduction of Semi Global Matching (SGM) [Hirschmüller, 2005] in 2005, which
has made dense reconstruction from stereo images practical, sparking a large variety of
variants and implementations.

22

3 Related work

3.1 Overview over Structure from motion, visual odometry and

visual SLAM

This section gives a short overview over the problem of determining both the scene geometry
and the camera poses from camera images (we call this the SfM problem in the sequel, cf.
below for the associated terminology) and over associated terminology.

Note that the individual problems of determining the scene geometry from known camera
poses (solved by triangulation) and of determining camera poses from a known scene
geometry (solved by resection) are simpler than the problem of solving both subproblems
in combination. As the solution of one subproblem affects the solution of the other
subproblem and vice-versa, the SfM problem can be considered a chicken-egg problem. In
fact, since one cannot distinguish between a "real" scene and an upscaled or downscaled
model of the scene from camera images alone, the problem of absolute scale determination
is actually unsolvable in SfM without some additional absolute scale reference.

The SfM problem lies at the intersection of the fields photogrammetry, computer vision
and robotics. The different points of views have resulted in somewhat different approaches
and different terminology, even though the large majority of knowledge and techniques is
shared.

The approach of Structure from Motion (SfM), which we use here to denote the SfM
problem has its roots in photogrammetry. A major aspect of photogrammetry is large-scale
surveying (e.g. aerial surveying or surveying of complex objects). Thus typically, methods
for processing large collections of unordered images in an offline fashion with a particular
focus on accuracy are found under the notion of SfM. The other direction is from the side
of robotics and computer vision, giving rise to visual odometry (VO) and visual SLAM.
Here, the origins are the desire to obtain the pose of a robot (or other moving object)
as well as three-dimensional perception of the environment from the images of a camera
mounted on the robot. Hence, VO methods often assume that the images are ordered
sequentially by their location in the image stream provided by the camera. Furthermore,
the capability of online and real time operation is often found in VO methods caused
by the real time nature of robot operation. Visual SLAM is the extension of VO by the
SLAM concept, that is by the objective to create a global map and to localize the robot
within this global map.

There are several other characteristics by which approaches to the SfM problem can be
classified:

• Direct methods vs. feature based methods

23

• Filter based methods vs. keyframe based methods vs. other approaches (e.g. deep
learning based methods inspired by biology)

• Monocular vs. stereo methods

• Offline (batch) methods vs. online or real-time methods

• Matching methods, feature descriptors

• Methods for loop closure detection and place recognition in SLAM methods

As our focus is on online direct filter-based monocular methods, the first three characteristics
are the most relevant to us. For a more thorough discussion, confer e.g. the surveys
[Fuentes-Pacheco et al., 2015, Younes et al., 2016, Yousif et al., 2015].

3.2 Treatment of combined camera pose and scene point

uncertainty

If the camera poses are known, the observation and triangulation of scene points can
be performed for each scene point individually. If the camera poses are not known, the
estimation of the camera poses affects the estimation of scene point locations and vice
versa, thus requiring a combined approach.

From the viewpoint of computational complexity, the pose uncertainty affects each scene
point estimation, hence this mechanism potentially connects each scene point estimate
with each other scene point estimate. As the number of scene point is typically large (or
is desired to be large to improve noise rejection in the method), this often contributes
essentially to the computational complexity of a VO method.

There are two main branches for the treatment of the combined uncertainty of camera
poses and scene points:

The first main branch is probabilistic filtering of the scene points and camera poses. In
this approach, uncertainty of camera poses and scene point estimates is maintained in a
combined fashion in a probabilistic filter such as an extended Kalman filter or a particle
filter.

Due to its conceptual simplicity, probabilistic filtering is featured in many older VO methods,
cf. [Davison, 2003, Davison et al., 2007, Eade and Drummond, 2006, Holmes et al., 2008,
Kwon and Lee, 2010].

The main disadvantage of methods based on probabilistic filtering is their high compu-
tational complexity: Methods based on the Kalman filter maintain a covariance matrix
for the scene point estimates and the size of this densely populated matrix is quadratic
in the number of scene points, yielding at least quadratic complexity in the number of

24

scene points. Methods based on particle filtering often need many particles to capture the
underlying distribution.

A major innovation in this branch is the combination of a Kalman filter with a particle filter
in FastSLAM and its successors [Montemerlo et al., 2002, Montemerlo and Thrun, 2007,
Lee et al., 2016a, Lee et al., 2016b, Shiguang et al., 2017]. It is based on the observation
mentioned above that for fixed camera poses, the scene point observations are independent.
I.e. the covariance matrix of the scene point estimates is diagonal, yielding linear complexity
in the number of scene points. The uncertainty in the camera pose trajectory is modelled
via a particle filter. Each of these particles has its own collection of scene point estimates,
yielding a complexity of O(mn), with n the number of scene points and m the number of
particles. Hence, the computational efficiency depends mainly on the number of particles
required for modelling the camera trajectory.

The observation that under certain conditions, the covariance matrix of an extended
Kalman filter can be replaced by a diagonal matrix, is crucial to this text: It facilitates
great reductions in computational complexity and thus serves as a main starting point for
the research presented in this text.

The second main branch for the treatment of the combined uncertainty of camera poses and
scene points is local bundle adjustment. Bundle adjustment has its origins in photogramme-
try. It formulates the problem of determining the camera poses and scene point positions
as a (global) optimization problem. As all relations are between a camera pose and a
scene point (and in particular not between different scene points), the problem can be kept
sparse at all times [Triggs et al., 1999]. This allows highly efficient implementations. As
much of the statistical properties of the problem can be encoded in the objective function
and as bundle adjustment aims to find an optimal solution to this optimization problem,
highly accurate results can be obtained by bundle adjustment. In visual odometry, bundle
adjustment is developed into local bundle adjustment. Here, the camera trajectory is
divided into short sections (with the start of a new section usually marked by a keyframe)
and bundle adjustment is performed locally on the sections. This way, the accuracy of
bundle adjustment can be leveraged while keeping the individual problem size to the size
of the sections and allowing incremental (and online) estimation by simply adding sections
successively to the end of the trajectory.

After an influential analysis[Strasdat et al., 2010], which showed that methods based on lo-
cal bundle adjustment generally outperform methods based on the Extended Kalman filter
regarding the ratio of accuracy to computational cost, methods based on local bundle adjust-
ment have become much more popular in visual odometry, with prominent examples being
[Klein and Murray, 2007, Forster et al., 2014, Mur-Artal et al., 2015, Engel et al., 2014].

In addition to these two main branches, there are lesser-known branches for the treatment

25

of the combined uncertainty of camera poses and scene points formed such as biologically
inspired methods (e.g. [Milford et al., 2004]) as well as methods employing deep neural
networks [Fanani et al., 2017].

3.3 Forward motion

Movement in the view direction is well-known to be problematic in monocular visual
odometry. The source of these problems is the fact that in these situations, errors in the
estimation of the epipolar direction can cause large errors in the position triangulation
of scene points near the epipolar direction. In fact, the objective function for the estima-
tion of the epipolar direction often features multiple singularities near the true epipolar
direction[Oliensis, 2005, Vedaldi et al., 2007, Chiuso et al., 2000].

While [Vedaldi et al., 2007] suggests to regularize the problem by constraining the absolute
size of the inverse depth of scene point estimates and shows that this makes objective
functions become continuous, we follow the suggestion provided e.g. in [Oliensis, 2005]
to simply increase the number of tracked scene points. This essentially increases the
signal to noise ratio for the camera pose estimation, which increases the reliability of all
components.

3.4 Occlusion in Augmented Reality

Traditionally, virtual objects are simply drawn over the real scene in Augmented Reality.
This is perfectly acceptable as long as all virtual objects are strictly in front of their
background. As soon as a virtual object is partially or totally occluded by real objects,
immersion and in particular the distance perception for virtual objects is impaired. The
latter is especially important for Automotive Augmented Reality applications since correct
distance cues are crucial for e.g. interpreting navigation directives presented in the form of
navigation arrows correctly and easily.

The resolution of occlusion in Augmented Reality requires to determine for each pixel of
the virtual scene whether that pixel is in front or behind the real scene. Since the geometry
of the virtual scene is known perfectly as it is generated synthetically, occlusion handling
requires knowledge about the geometry of the real scene, in particular its distance relative
to the viewer.

There are two approaches for obtaining information on the geometry of the real scene,
called the model-based and the depth-based approach, cf. e.g. [Shah et al., 2012]. In the
model-based approach, a 3D model of the real scene is available a-priori, making this ideal
for controlled environments without too high complexity. In the depth-based approach,

26

the Augmented Reality device infers the geometry of the real scene in real time from
sensor data. The latter approach combines well with the concept of SLAM: This way, the
device maps its surrounding continuously and uses the obtained 3D map for occlusion.

A technique for enhancing low quality or low resolution information on the scene geometry
is to use detection of contours in a camera image to increase the edge fidelity of the
contours.

Furthermore, the aspect of automatic object placement interacts with occlusion in Aug-
mented Reality. If there is flexibility in the choice of object positions, clever placement
strategies may mitigate problems such as occlusion with real objects, self-occlusion of
virtual content and bad visibility of virtual objects and cluttering of the scene with virtual
content. This problem has been studied extensively in the context of view management,
with a key objective of finding good placements for annotation to real or virtual scenes.

3.4.1 Model-based

In [Fuhrmann et al., 1999], each moving object of the scene is tracked with a separate
tracking module. Previously obtained models of all real objects in the scene are then
used for performing occlusion. A similar approach is applied in [Frikha et al., 2016] in the
context of AR surgical training for integrating a tracked real instrument into a virtual
medical scene.

[Hayashi et al., 2005] proposes a method detecting dynamic objects in the real scene. The
model of the real scene includes a set of images of the real scene called keyframes covering
the whole scene. In real-time, the camera image of the AR device is compared with a
synthetic image for that camera pose generated from a nearby keyframe. Since dynamic
objects appear as discrepancies (background subtraction), this is used for extracting the
dynamic objects. Their 3D position is then obtained from stereo matching along their
contours.

3.4.2 Depth-based

In the system proposed in [Kanbara et al., 2000], a stereo camera is mounted on an HMD
to provide occlusion via stereo computation. To decrease computational load, depth
estimation is limited to a region surrounding the virtual objects.

An early system for performing (offline) occlusion by foreground objects in a video sequence
is described in [Lepetit and Berger, 2000]. The contours of the occluding real objects are
outlined manually for a subset of the video frames (i.e. keyframes) and the system uses this
information to perform occlusion in the intermediate frames via monocular SfM techniques.

27

Occlusion handling via the depth-based approach has by now been present in consumer sys-
tems for several years. The reason for this is that mapping the surrounding is a component
essential to many AR applications. Since targeting the mass market also means providing
ease of adoption by developers, such AR systems often already provide a component for map-
ping, which already provided a certain level of occlusion capability based on the depth-based
approach. Well known systems include Microsoft’s Kinect/KinectFusion[Izadi et al., 2011]
based on a structured-light RGB-D sensor, with a huge amount of applications built on
top of this platform, and its later HoloLens which combines a see-through HMD with a
time-of-flight RGB-D sensor.

3.4.3 Edge enhancement

The core concept underlying the usage of scene edges is that in certain situations, the
occlusion boundaries consist of scene edges. This was first explored in [Berger, 1997]
with the observation that if the volumes of real and virtual objects do not intersect, the
boundaries regions of occlusion and non-occlusion between real and virtual scene consist
entirely of contours of the real objects and of contours of virtual objects. The presented
approach then infers the regions of occlusion from the binary occlusion relation on contours
obtained from SfM.

In the approach proposed in [Tian et al., 2010], a single real object is allowed to occlude
the scene. The occluding object is marked by the user and its silhouette is then tracked
and used for occlusion.

In [Du et al., 2016], an RGB-D camera is used for providing an initial estimate of occlusion
boundaries. This estimate is then refined by searching for the corresponding contours in
the color image via an implicit "edge-snapping" method.

The problem of non-sharp occlusion boundaries is addressed in [Hebborn et al., 2017].
The proposed method uses data from a depth sensor to provide an initial estimate of
occlusion. The refinement of this estimate generates translucency values for boundary
pixels (alpha matting) to provide translucent, "soft" occlusion for unsharp occlusion
boundaries. A refinement of this method is given in [Kremer, 2017], which improves the
occlusion estimation by employing optical flow to be able to reuse information across
multiple frame and to provide temporal consistency.

3.4.4 View management

A view management system for labels in a mixed reality scene is introduced and analyzed in
[Bell et al., 2001]. Label placement near the 3D object centres is compared with placement
on or near the visible surfaces of the object. It is shown that combining the latter with

28

temporally stable label placement and additional techniques such as adaptive switching
between internal and external labels yields highly intuitive labels and eases association to
the real objects.

[Makita et al., 2009] proposes a multi-user view management system for indoor Augmented
reality applications. The labels are placed dynamically but label positions are the same
for the different users. The systems minimizes occlusion among labels and collisions with
users jointly for the points of view of all users.

In the context of video-based Augmented Reality browsers, an approach for view-
management based on image analysis is introduced in [Grasset et al., 2012]. The described
method analyses the camera image to be augmented for "interesting" regions (i.e. regions
with many features such as edges) and avoids placing labels in interesting regions to avoid
covering real objects with labels.

3.4.5 Outdoor methods

As current low cost depth sensors typically do not have suitable range or cannot han-
dle outdoor lighting conditions, most methods for providing occlusion in outdoor AR
applications follow the model-based approach for occlusion.

[Kasapakis and Gavalas, 2017] intersects view rays with building footprints provided by
OpenStreetMap to obtain a 2D variant of occlusion in urban scenarios. A similar method
is used in [Galatis et al., 2016] in conjunction with manually created building footprint
data to provide occlusion in a cultural heritage site.

Approximate 3D occlusion is provided in urban scenarios in [Kasperi et al., 2017] from
OpenStreetMap data. The proposed method guesses the 3D geometry of buildings from
building footprint data and the number of building levels provided by OpenStreetMap.
The generated 3D geometry is then used for occlusion.

29

4 Basic concepts

In this section, we review some basic concepts to provide a clean introduction and to fix
notation.

4.1 Geometric concepts

4.1.1 Projective spaces and homogeneous coordinates

We shall use real projective spaces RP n for n ≥ 1. Such a projective space can be
modelled as the set of lines in Rn+1 passing the origin. More formally, we can model
RP n as the quotient set (Rn+1 \ {0})/ ∼, where the equivalence relation ∼ is defined for
p, q ∈ Rn+1 \ {0} as follows.

p ∼q :⇔ ∃λ ∈ R \ {0} : q = λp

Note that for given p ∈ Rn+1 \ {0}, its equivalence class [p] = {λp | λ ∈ R \ {0}} is the
line in Rn+1 passing through p and the origin point 0, excluding the origin. Hence, we
recover our original model.

Given some p ∈ Rn+1 \ {0}, its equivalence class [p] is called a point in projective space.
The element p ∈ Rn+1 is called a homogeneous coordinate for the point [p]. Note that
[p] = [λp] for all λ ∈ R \ {0}, i.e. a homogenous coordinate representing a projective point
can be rescaled arbitrarily without changing the represented projective point. This fact is
often used for rewriting homogeneous coordinates.

Note that we can embed the (affine/Euclidean) n-dimensional space Rn into RP n via the
following map.

ι : Rn ↪→ RP n

x ∈ Rn 7→

[
x

1

]

We will use this embedding canonically. In particular, we will usually assume that the
affine space extends continuously to the points at infinity, cf. e.g. [Triggs et al., 1999,
section 2.2].

The space RP 2 is also called the (real) projective plane. The lines of the projective plane
are defined as follows. Suppose given a non-zero linear map l : Rn+1 → R. From l, we
obtain a line by

gl := {[p] | p ∈ Rn+1 \ {0} : lp = 0}.

30

The collection of all such lines gives the set of lines on the projective plane. Note that if
we restrict these lines to the image of the inclusion ι, we obtain exactly the set of lines in
R2.

An important property of projective lines is the fact that any two distinct projective lines
intersect at exactly one point. This contrasts the behaviour of distinct lines on the affine
plane, which either intersect at one point or are parallel.

4.1.2 Orthogonal projections

Suppose given a real Hilbert space V . For a closed1 subspace W 6 V , we denote by
πW the orthogonal projection to W . Likewise, πW⊥ is the projection of the orthogonal
complement W⊥ of W in V . For a vector 0 6= v ∈ V , we write πv for π〈v〉 and πv⊥ for
π〈v〉⊥ .

Remark 1. If ‖v‖ = 1 in the above, we have

πv(w) =v〈v, w〉

πv⊥(w) =v − v〈v, w〉

for all w ∈ V .

4.2 Camera systems and models

4.2.1 Camera models and rectification

In this text, we assume that cameras observe the scene by central projection to a point,
called the camera center. We use the pinhole camera model as well as the spherical camera
model to describe the imaging process for such cameras.

Definition 2 (pinhole camera model). Suppose given a point p =

xy
z

 in the camera

coordinate system. Then p is projected by a pinhole camera to the following point on the
image plane.

f(p) =

(
u

v

)
:=

(
fx

x
z

+ cx

fy
y
z

+ cy

)

1W is always closed e.g. if W is finite-dimensional

31

The parameters fx, fy are the focal lengths of the camera2. The point

(
cx

cy

)
is the principal

point of the camera. The z-direction is distinguished being the direction of the optical axis
of the camera. For real cameras, this is the direction the camera is looking at.

An important property of the pinhole camera model is the fact that the projection can be
expressed using projective geometry as follows. We define the camera matrix

C :=

fx 0 cx

0 fy cy

0 0 1

 .

Then, we have in homogeneous coordinates

[f(p)] =


fxx+cxz

z
fyy+cyz

z

1

 =

fxx+ cxz

fyy + cyz

z

 = [Cp] .

This rather elegant description often allows calculations to be made explicit when involving
cameras modelled as pinhole cameras.

One main use of the pinhole camera model is for theoretical analyses of processes involving

image capture. Here, a common variant is to just set fx = fy = 1 and

(
cx

cy

)
=

(
0

0

)
for

simplicity.

The pinhole camera model is also used to unify the behaviour of the wide variety of camera
optics by employing calibration and rectification. In calibration, it is determined how rays
of light entering the camera (view rays seen from the camera) are mapped to points on
the image plane. This is done in order to determine how to make the camera behave like
a pinhole camera by distorting the raw camera images in a suitable way. This distortion
process is called rectification. Subsequent processing steps (e.g. photogrammetry) then
only need to be capable of processing the rectified images, which means we can hide most
of the complexity of the optics of cameras from them. Note that rectification is also done
with cameras models other than the pinhole model, e.g. there are specialized models in
particular for cameras with very large FoVs.

The pinhole camera model works best for cameras whose FoV does not extend too far from
the optical axis of the camera. Indeed, the model becomes singular for view directions
perpendicular to the optical axis (z = 0). In order to not have constraints on the FoV for

2As the focal length is a proportionality factor between angles and image coordinates, it is measured
in the units of the image coordinates. E.g. if physical coordinates of the photographic film or image
sensors are used as image coordinates, physical sizes (e.g. Millimeters) are used. If pixel coordinates
are used as image coordinates, the focal length is given in pixels.

32

theoretical analysis, we will also use the following omnidirectional model.

Definition 3 (spherical camera model). Suppose given a point p =

xy
z

 in the camera

coordinate system. Then p is projected by a spherical camera to the following point on
the image sphere S2 ⊂ R3.

f(p) :=
p

‖p‖
∈ S2

This model has mainly importance for theoretical analysis. Direct usage in algorithms is
prevented by the fact that images are typically stored as rectangular arrays of pixels and
the most practical way of covering the sphere with rectangle is cube-mapping. However,
cube-mapping means essentially that the above spherical camera model is simply split into
six pinhole cameras.

Note that from both the pinhole camera model and the omnidirectional model we obtain
the same kind of information, which is the directions of observed scene points relative to
the camera. I.e. the information provided differs quantitatively due to different distribution
of angular resolution, but not qualitatively. Aside from the singularities of the pinhole
model, the difference between both models is essentially a choice of parametrization. Hence,
results obtained using one model can be transferred to the other model and vice versa.
We will usually choose the model fitting the situation best.

For theoretical analysis, we also introduce the following two-dimensional models.

Definition 4 (2D pinhole camera model). Suppose given a point p =

(
x

z

)
∈ R2 in the

camera coordinate system. Then p is projected by the 2D pinhole camera model to the
following point on the (one-dimensional) image plane.

f(p) =
(
u
)

=
x

z

In homogeneous coordinates, we have

[f(p)] =

[
x
z

1

]
=

[
x

z

]
= [p].

Note that this model features neither focal length nor a principal point since it is used
exclusively for theoretical analysis.

Definition 5 (2D omnidirectional model). Suppose given a point p =

(
x

z

)
∈ R2 in the

camera coordinate system. Then p is projected by the circular camera model (2D equivalent

33

of the spherical camera model) to the following point on the image circle S1 ⊂ R2.

f(p) :=
p

‖p‖
∈ S1

4.2.2 Inverse depth parametrizations

It is well known in photogrammetry that for the problem of triangulating points from
multiple camera observations, the traditional parametrization of points with Cartesian
coordinates is often ill-behaved, cf. e.g. [Triggs et al., 1999], [Civera et al., 2008]. The
reason for this is that for a far-away point, the view rays to the cameras are always nearly
parallel, with variation in the distance of the point causing only little change in how close
to parallel these view rays are. Conversely, errors in in the estimates for the directions
of the view rays (e.g. due to measurement errors or due to misestimation of the camera
poses), cause large effects in the position estimate of the point. This may even cause the
position estimate to cross the plane at infinity, thus crossing a singularity when using
Cartesian parametrization.

The solution to this issue is the usage of parametrizations which are better suited for
triangulation and the kind of information provided by camera observations.

The general idea for such parametrizations is to describe the position of a point by a
direction component and an inverse distance component. Using directions for parametriza-
tion is completely natural since cameras essentially measure directions. The usage of
inverse distances can be motivated by the fact that they smoothly describe distances up
to infinity and beyond. Furthermore, the triangulation problem is often roughly linear (cf.
e.g. Example 8 for a perfect example) when parametrized by direction and inverse distance.
This way, nonlinear effects are reduced. In particular, the uncertainty of coordinate
estimation is roughly independent of distance which contrasts the Cartesian case, for
which uncertainty in the distance component increases quadratically with distance (cf.
Example 8).

The usage of parametrizations featuring inverse distances is a well-known and well
established concept in triangulation, cf. e.g. [Triggs et al., 1999], [Civera et al., 2008],
[Hoelzer et al., 1978]. In the sequel, we provide formalization to some of these parametriza-
tions, in particular to fix notation.

Definition/Remark 6 (pinhole coordinates3). Given a point p ∈ R3 with Cartesian

3There does not seem to be an established name for this parametrization, which is well-known, cf. e.g.
[Civera et al., 2008]. In computer graphics, the transform between Cartesian and pinhole coordinates is
used in a technique known as reverse z with infinite far plane [Upchurch and Desbrun, 2012, Reed, 2015]

34

coordinates

xy
z

, we define its pinhole coordinates by

u

v

d

 :=
1

z

xy
1

 =


x
z
y
z
1
z

 .

Note that u and v give the direction from the coordinate center to p, while d is the inverse
distance.

The Cartesian coordinates can be recovered from the pinhole coordinates viaxy
z

 =
1

d

u

v

1

 .

Pinhole coordinates can be obtained via a projective transformation from the Cartesian
coordinates as follows. In homogeneous coordinates, we have

u

v

d

1

 =


x
z
y
z
1
z

1

 =


x

y

1

z

 =

C

x

y

z

1




for the matrix

C :=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

Hence, the transformation between Cartesian and pinhole coordinates is a projective
transformation and thus can be easily combined with other projective transformations.
Furthermore, it preserves planes as projective transformations preserve (hyper)planes.

For a point q ∈ R2 with coordinates

(
x′

y′

)
, we define analogously its (planar) pinhole

coordinates (
u′

d′

)
:=

1

y′

(
x′

1

)
=

(
x′

y′

1
y′

)
.

As with the 3D case, the transformation between Cartesian coordinates and pinhole coor-
dinates is projective. The hyperplane preservation property of projective transformation

35

implies that this transformation preserves lines.

Definition 7 (reverse spherical coordinates). Suppose given a point p ∈ R3 \ {0} with

Cartesian coordinates

xy
z

 =: cp. We define its reverse spherical coordinates by

(U,D) :=

(
cp
‖cp‖

,
1

‖cp‖

)
∈ S2 × R \ {0}.

We may recover the Cartesian coordinates via

cp = U · 1

D
.

Note that the spherical coordinates (U,D) and (−U,−D) denote the same point. This
phenomenon appears due to the fact that the region surrounding the plane at infinity
is topologically non-orientable, so parametrizations with unique coordinates (which are
inherently orientable) are impossible without cutting.

For a point q ∈ R2 \ {0} with coordinates

(
x′

y′

)
=: cq, we define analogously its reverse

polar coordinates by

(U′,D′) :=

(
cq
‖cq‖

,
1

‖cq‖

)
∈ S1 × R \ {0}.

Example 8 (The triangulation problem for parallel cameras in pinhole coordinates).

Suppose given n pinhole cameras at positions

akbk
0

 , k = 1, . . . , n such that all cameras

are oriented in the same way, looking in the direction of the z-coordinate. I.e. a point

p =

xy
z

 is observed by the k-th camera at position

fk(p) =

(
x−ak
z

y−bk
z

)

of its image plane.

36

Let us formulate fk in pinhole coordinates. p has pinhole coordinates

u

v

d

. We have

fk(p) =

(
x−ak
z

y−bk
z

)
=

(
x
z
− ak

z
y
z
− bk

z

)

=

(
u− dak

v − dbk

)
.

Hence, the projection of p on the image plane depends linearly on its pinhole coordinates.
Thus in this particular variant, the problem of triangulating p from the camera observations
becomes a linear problem.

Note that in Cartesian coordinates, measurements and stereo disparities are proportional
the inverse 1

z
of the distance z. Hence, the sensitivity of the measurement to variation of z

is proportional to d
dz

1
z

= − 1
z2
. Thus in stereo and multi-view triangulation, the error of

the distance estimate increases quadratically with distance.

Example 9 (Reprojection in pinhole coordinates). Suppose given a point p with Cartesian

coordinates pc =

xy
z

 and pinhole coordinates

u

v

d

. An Euclidean transformation T

given by (q ∈ R3 7→ Rq + t) for an orthonormal matrix R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 and a

translation vector t =

t1t2
t3

 maps p in Cartesian coordinates to p′c =

x
′

y′

z′

 = Rpc + t. In

homogeneous coordinates, we have
u′

v′

1

d′

 =


x′

y′

z′

1

 =

[
Rpc + t

1

]

=

[(
R t

0 1

)(
pc

1

)]
=


(
R t

0 1

)
u

v

1

d




37

By splitting the rotation matrix R into rows R =

R1,−

R2,−

R3,−

 and setting U :=

u

v

1

, we

obtain

(
R t

0 1

)
u

v

1

d

 =

(
R t

0 1

)(
U

d

)
=


R1,−U + t1d

R2,−U + t2d

R3,−U + t3d

d

 = (R3,−U + t3d)


R1,−U+t1d

R3,−U+t3d
R2,−U+t2d

R3,−U+t3d

1
d

R3,−U+t3d

 .

Since

[(
R t

0 1

)(
U

d

)]
=


u′

v′

1

d′

, we obtain

u′

v′

d′

 =


R1,−U+t1d

R3,−U+t3d
R2,−U+t2d

R3,−U+t3d

d
R3,−U+t3d

 =
1

R3,−U + t3d

R1,−U + t1d

R2,−U + t2d

d


Note that this transformation is perfectly well-behaved near d = 0. Instead, singular
behaviour is determined by the denominator R2,−U + t2d. Note that R2,−U + t2d < 0

if and only if d′ has a different sign than d. I.e. a negative denominator indicates that
T moves p from in front of the virtual camera to behind the camera or vice versa. The
singular condition R2,−U + t2d = 0 indicates that p is moved onto the plane perpendicular
to the optical axis containing the camera origin.

Note that estimation errors in triangulation may result in negative inverse depths, i.e. it
may result in points which lie "beyond infinity". Hence, the inverse depth d cannot be
used to reliably detect whether a point lies in front or behind the virtual camera. Instead,
the sign of the denominator above can be used for this purpose: In practice, visible points
lie in front of the camera. When reprojecting to new camera poses, a negative sign of the
denominator R2,−U + t2d then indicates that the point has moved behind the camera.

Remark 10 (The derivative of reprojection with regard to inverse depth and approxima-
tions). Note that in the situation of Example 9, we have

d

dd

u′

v′

d′

 =
d

dd

1

R3,−U + t3d

R1,−U + t1d

R2,−U + t2d

d


38

=
d

dd

1

(R3,−U + t3d)2

t1(R3,−U + t3d)− (R1,−U + t1d)t3

t2(R3,−U + t3d)− (R2,−U + t2d)t3

(R3,−U + t3d)− dt3



=

(
d′

d

)2

t1R3,−U − t3R1,−U

t2R3,−U − t3R2,−U

R3,−U



≈
(
d′

d

)2

t1 − t3ut2 − t3v
1


For the approximation, we use the assumption that the rotation between the current and

the new camera pose is small, hence RU ≈ U =

u

v

1

.

Example 11 (Direct image alignment in pinhole coordinates). Suppose given a point

cloud pk =

xkyk
zk

, k = 1, . . . , n with pinhole coordinates

uk

vk

dk

. Suppose each point

has an intensity value jk. Suppose given an intensity image J = J(u, v) for a pinhole

camera with model f :

xy
z

 7→ (
fx

x
z

+ cx

fy
x
z

+ cz

)
=

(
fxu

fyv

)
+

(
cx

cy

)
. The objective is to find

an Euclidean transformation E ∈ SE(3) such that the photometric error

ε(E) :=
n∑
k=1

W (J(f(Epk), jk))

for some functional W describing photometric similarity is minimized. We assume that a
method based on local linearization such as the Gauss-Newton or Levenberg-Marquardt
algorithm is used. Hence, the derivative dε

dE
=
∑n

k=1
dW (J(u,v),jk)

d(u,v)
|f(Epk)

df(Epk)
dE

is required.
In the following, we will compute the "inner" derivative df(Epk)

dE
, which is the part that

does not depend on the similarity functional W or the image J .

Given E = (p 7→ Rp+ t) = (p 7→ R(p−R−1t)), we have the following set of generators of
the tangent space of E in SE(3):

dE(x)

dg1

=

1

0

0

 ,
dE(x)

dg4

=

0 0 0

0 0 −1

0 1 0

E(p),

39

dE(x)

dg2

=

0

1

0

 ,
dE(x)

dg5

=

 0 0 1

0 0 0

−1 0 0

E(p),

dE(x)

dg3

=

0

0

1

 ,
dE(x)

dg6

=

0 −1 0

1 0 0

0 0 0

E(p)

Here, g1, g2, g3 are the generators of the translation component and g4, g5, g6 are the
generators of the rotation component. Note that the transformation function to pinhole
coordinates

q :

xy
z

 7→


x
z
y
z
1
z

 =

u

v

d


has the following derivatives:

dq

dx
=


1
z

0

0

 =

d

0

0


dq

dy
=

0
1
z

0

 =

0

d

0


dq

dz
=− 1

z2

xy
1

 = −1

z


x
z
y
z
1
z

 = −d

u

v

d

 ,

I.e. the total derivative is

Dq

D(x, y, z)
= d

1 0 −u
0 1 −v
0 0 −d

 .

Setting

u

v

d

 := q(E(p)) and

xy
z

 := E(p) and combining the formulas for the derivatives

of E and of q, we obtain

dqE(p)

dg1

=

d

0

0

 dqE(p)

dg2

=

0

d

0

 dqE(p)

dg3

=− d

u

v

d


40

and

dqE(p)

dg4

=

d 0 −du
0 d −dv
0 0 −d2


0 0 0

0 0 −1

0 1 0


xy
z



=

0 −du 0

0 −dv −d
0 −d2 0


xy
z

 =

 −ydu
−ydv − zd
−yd2

 =

 −uv
−(v2 + 1)

−dv


dqE(p)

dg5

=

d 0 −du
0 d −dv
0 0 −d2


 0 0 1

0 0 0

−1 0 0


xy
z



=

du 0 d

dv 0 0

d2 0 0


xy
z

 =

xdu + zd

ydu

xd2

 =

u2 + 1

uv

du


dqE(p)

dg6

=

d 0 −du
0 d −dv
0 0 −d2


0 −1 0

1 0 0

0 0 0


xy
z



=

0 −d 0

d 0 0

0 0 0


xy
z

 =

−ydxd

0

 =

−vu
0


In summary, we have

dqEp

d(g1, g2, g3)
=d

1 0 −u
0 1 −v
0 0 −d


dqEp

d(g4, g5, g6)
=

 −uv u2 + 1 −v
−(v2 + 1) uv u

−dv du 0

 . (1)

Note that the derivatives are expressed as low-order polynomials in u,v,d, which facilitates
analysis and stable and simple implementation.

4.2.3 Monocular and stereo configurations

Camera systems may consist of one or more physical cameras fixed together mechanically
by a camera rig. If there is significant stereo overlap between cameras with different camera
centers, we call such a system a stereo system or stereo camera and assume that image
capture can be triggered for all cameras simultaneously, yielding a collection of images,

41

called stereo image of the system. We call other systems monocular, even if they are e.g.
an omnidirectional camera consisting of multiple cameras looking in different directions to
cover all directions.

4.3 Estimation

4.3.1 Motivation for alternatives to the Kalman filter

The Kalman filter is often used as some kind of jack of all trades, "tunable" method for
estimation, while ignoring that the Kalman filter is designed to estimate a specific class
of systems. In this text, we will use more general approaches for estimation. We would
also like to use this opportunity to emphasize alternatives to the Kalman filter and in
particular the general theory surrounding the Kalman filter which is basically the Kalman
filter without the constraints given by its focus on dynamical systems.

Typically, there are two main problems with using the Kalman filter as a generic estimator.
Firstly, the Kalman filter assumes that the system to be estimated is a dynamical system.
Dynamical systems have the property that they are deterministic system subject to some
stochastic disturbances. In particular, they are essentially deterministic. Many real-world
estimation problems, however, feature some components which are highly deterministic
or sometimes even satisfy some constraints exactly and other components which are
completely unknown, i.e. there is not even any stochastic property known about them (e.g.
deliberate, but unknown external influences such as a human deciding to or deciding to
not to influence the system). Using the Kalman filter for estimating such systems typically
involves complicated modeling to force the system into the form of a dynamical system,
which adds unnecessary complexity and usually makes the estimator suboptimal.

The second problem of the Kalman filter is initialization. The Kalman filter uses a
covariance matrix to model uncertainty in the estimation of the state vector. However,
situations with zero or low knowledge cannot be modelled well using a covariance matrix
since this translates to "infinite covariance" or, in more practical terms, numerical instability
due to divisions by zero or almost zero. This situation is always present in initialization,
which often causes estimators based on the Kalman filter to have fairly complex initialization
routines. This problem can be mitigated e.g. by replacing the covariance matrix in
uncertainty tracking by its inverse, which is called the information matrix. Zero knowledge
can be modeled using the information matrix by just setting it to zero. Modifying the
Kalman filter to use the information matrix yields the information filter.

The general estimation theory surrounding the Kalman filter deals with estimation problems
with normally distributed uncertainties. For such problems, the log-likelihood (motivated
e.g. by maximum-likelihood estimation) is a quadratic functional. Hence, estimation

42

simply reduces to manipulating quadratic functionals in a suitable way. For example, cal-
culating the maximum-likelihood estimate means determining the minimum of a quadratic
functional, which, by Fermat’s theorem on stationary points, means simply solving a linear
equation. Adding constraints (e.g. observations) means adding quadratic functionals (cf.
Remark 15). If components of the estimated vector do not feature in any new constraints
any more, they can be eliminated from the estimated vector and from the quadratic
functional, which means applying the Schur complement in a certain way to the quadratic
term of the quadratic functional.

These three operations (maximum-likelihood estimation, adding constraints and eliminating
components of the estimate vector) are everything necessary for dealing with such problems.
The Kalman filter is a simple application of this framework.

Remark 12 (Notes on random variables and measurability). Note that a random variable
X is by definition a measurable function from a probability space (Ω,A , µ) to a measure
space (E,B). Typically, the precise nature of Ω is of no interest. In fact, we may construct
the distribution µX of X on E by the pushforward construction, which transfers µ to E
using X yielding the µX as the pushforward measure. This way, all relevant operations
can be formulated directly on E thus making the precise nature of Ω irrelevant. Hence,
we will omit Ω.

In this section, we will work with (finite-dimensional) vector-valued random variables.
Hence, the σ-algebra chosen by us for such a finite-dimensional vector space is the Borel
σ-algebra induced by the topology of the vector space. We will construct new random
variables only by composing existing random variables with linear transformation. We
need to ensure that these new random variables are actually random variables, i.e. we
need to ensure that they are measurable (cf. the definition above): Linear transformations
on finite-dimensional vector spaces are continuous. Borel-measurability of continuous
functions is ensured by the design of the Borel σ-algebra. Hence, linear transformations on
finite-dimensional vector spaces are Borel-measurable. As random variables are measurable,
the composition of such a linear transformation with a random variable is measurable, so
our constructions indeed yield random variables.

4.3.2 Quadratic functionals and maximum likelihood estimation for normal
distributions

Remark 13. Suppose given an (unknown) vector of states x0 ∈ Rn. Suppose given a
linear functional H : Rn → Rm and a (known) vector y ∈ Rm such that the residual
Hx0 − y constrains x0, i.e. such that Hx0 − y is a normally distributed, centered random
variable with covariance matrix P for some strictly positive definite symmetric matrix
P ∈ Rm×m.

43

The functional H can encode various ways of gaining or having knowledge about the
vector of states x. Notably, it can encode measurement processes yielding components of y
obtained by measurement with normally distributed measurement error. Furthermore, it
can encode knowledge about constraints within the system such as relationships between
different states subject to random normally distributed influence, e.g. randomly disturbed
deterministic behavior.

The probability distribution of the residual has density

p(Hx− y) = c · exp

(
−1

2
(Hx− y)TP−1(Hx− y)

)
for some normalization constant c. Thus, for the quadratic functional

q(x) := (Hx− y)TP−1(Hx− y), (2)

the log-likelihood function is

log(p(Hx− y)) = log(c)− 1

2
q(x). (3)

Maximum-likelihood estimation of x means maximizing the likelihood function (and thus
the log-likelihood function due to the monotony of the logarithm), which is equivalent
to minimizing q over x. This way, q is a (quadratic) loss function. We are now in the
familiar territory of least-squares optimization. The quadratic functional q encodes all
our knowledge about x. In particular we can recover the original distribution p via (3)
and normalization. Furthermore, a maximum likelihood estimate for x minimizes q by
construction. Hence, such a maximum likelihood estimate may be obtained my minimizing
the quadratic functional q, that is by performing linear least squares optimization.

Lemma 14 (The inverse of the information matrix is the covariance of the ML-estimator).
Suppose given the situation of Remark 13. Suppose that the information matrix I :=

HTP−1H is invertible. Let x̂ be the maximum likelihood estimate for x. Let x0 be the true
value for x. Then, the estimation error e = x̂ − x0 is a normally distributed, centered
random variable with covariance matrix I−1.

Note that the inverse of the measurement variance, the information P−1, can be thought
of as the resolving power of our method in the space of measurements. In this picture, H
is the transmission function from state space to measurement space, which means that
in order to obtain the resolving power of our method in state space, we simply need to
multiply P−1 with H (on both sides), giving the information matrix which is the inverse
of the variance of the reconstruction error.

However, as probability is much more straightforward concept than the multi-faceted

44

concept of information, this lemma is stated and proven using concepts from probability
theory. This yields a more technical, but conceptually simpler proof.

Proof. As the estimate x̂ for x minimizes q(x) as given in Remark 13, Fermat’s theorem
on stationary points implies that

0 =
dq(x)

dx

∣∣∣
x̂

= 2HTP−1Hx̂− 2HTP−1y.

As I = HTP−1H is invertible, we have

x̂ = (HTP−1H)−1HTP−1y.

In the following, we reformulate this using the Moore-Penrose inverse, also known as
pseudoinverse, cf. [Penrose, 1955]. We will refer to several elementary properties of the
pseudoinverse given in Penrose’s original text [Penrose, 1955]. Note that these are also
found in most treatments of the pseudoinverse and are, in fact, rather unsurprising
consequences of the fact that given a singular value decomposition of a matrix A = USV T ,
its pseudoinverse is simply V S+UT , with S+ obtained from S by transposing S and
inverting all non-zero entries.

Since HTP−1H = I is invertible, the matrix

J := P−
1
2H

has full column rank. Hence, we have

(HTP−1H)−1HTP−
1
2 = (JTJ)−1JT = J+

The last identity can be obtained by combining the fact J+ = (JTJ)+JT (cf. [Penrose, 1955,
Comment after Lemma 1] with the fact that for an invertible matrix such as (JTJ), its
pseudoinverse coincides with its inverse, cf. [Penrose, 1955, Lemma 1-3].

I.e. x̂ = J+P−
1
2y. As J has full column rank, the matrix J+ has full row rank. So as Q

is invertible, the map z 7→ J+P−
1
2 z is surjective. As y is a normally distributed random

variable with mean Hx0 and covariance P , x̂ is via Lemma 32 a normally distributed
random variable with mean µ = JP−

1
2Hx0 and covariance Q = (J+P−

1
2)P (J+P−

1
2)T . We

may reformulate the mean as

µ = J+P−
1
2Hx0 = (HTP−1H)−1HTP−

1
2 (P−

1
2Hx0) = (HTP−1H)−1(HTP−1H)x0 = x0.

45

We may reformulate the covariance as

Q =(J+P−
1
2)P (J+P−

1
2)T = J+P−

1
2PP−

1
2 (J+)T = J+(J+)T

∗
= (JTJ)+ = (HTP−

1
2P−

1
2H)+ = I+

∗∗
= I−1.

For (∗), we have used [Penrose, 1955, Lemma 1-5]. For (∗∗), we have used the fact that
the pseudoinverse of an invertible matrix is its inverse. cf. [Penrose, 1955, Lemma 1-3].

Thus, x̂ is a normally distributed random variable with mean x0 and covariance I−1. Hence,
applying Lemma 31 to the error e = x̂− x0 completes the proof.

Remark 15 (Adding constraints). Suppose given a decomposition of the residual space
Rm = Rm1 ⊕Rm2 , m = m1 +m2. Suppose that P has diagonal block structure along that
decomposition, that is

P =

(
P1 0

0 P2

)
with P1 ∈ Rn1×n1 , P2 ∈ Rn2×n2 . This means in particular that the sets of residuals are
statistically independent. We denote this situation as the constraints being composed of
two independent sets of constraints.

Splitting H and y similarly into blocks H =

(
H1

H2

)
, y =

(
y1

y2

)
, we obtain

q(x) =(Hx− y)TP−1(Hx− y)

=

((
H1

H2

)
x−

(
y1

y2

))T (
P1 0

0 P2

)−1((
H1

H2

)
x−

(
y1

y2

))

=

(
H1x− y1

H2x− y2

)T (
P−1

1 0

0 P−1
2

)(
H1x− y1

H2x− y2

)
=(H1x− y1)TP−1

1 (H1x− y1) + (H2x− y2)TP−1
2 (H2x− y2)

=q1(x) + q2(x),

with the quadratic functionals of the sets of constraints denoted by

q1(x) =(H1x− y1)TP−1
1 (H1x− y1)

q2(x) =(H2x− y2)TP−1
2 (H2x− y2).

I.e. we may accumulate independent sets of constraints by simply adding their respective
quadratic functionals.

Remark 16 (Reducing quadratic loss functionals and recursive estimation). Often, there

46

are situations where certain parts of a system are of little interest. Consider for example
real-time estimation problems (e.g. in the context of control problems): Since measurements
and system equations typically relate the system states of different points in time to each
other, the (full) state vector is the vector of all system states of all points in time. This
seems (and is, as shown by the approach of recursive estimation) excessively complex since
one is only interested in the most recent system state. Hence, we need a way to reduce
the state vector to "relevant" components:

Suppose that the state vector x consists of two components, that is x =

(
u

v

)
, u ∈ Rk, v ∈

Rj , for some k, j. For simplicity, we write q(x) =: q(u, v). We define the reduction of q by
v as

q,v(u) := min
v
q(u, v).

Note that q,v is actually a quadratic functional, cf. e.g. the explicit formulas in Remark 23.
Note that

min
u
q,v(u) = min

u
min
v
q(u, v) = min

x
q(x) =: q0,

so the minimum values of q and q,v are equal. Hence, for a given u∗ we have

q,v(u
∗) = q ⇔ min

v
q(u∗, v) =q,

so u∗ is a minimizer of q,v if and only if it is part of a minimizer of q. This allows the
usage of q,v for maximum likelihood estimation of the component u. I.e. reducing q to q,v
discards only information on v.

Remark 17 (constructing reduced quadratic functionals recursively). So suppose that

the (full) vector of states consists of multiple components x =

ru
v

 =

(
r

x̌

)
. Suppose

that the loss function q1 for x has the form

q1(x) = q1(r, x̌) = q1(r, u, v) = q̂1(r, u) + q0(u, v) (4)

for some quadratic functionals q̂1, q0.

A key example for such a separation (4) is in incremental estimation: First, u is the current
system state and v is the previous system state, so there is only the information contained
in q0 available, which relates u to v. At a later point in time, the new system state r
is added to the state vector. As information on the system typically either applies to a
system state individually (i.e. absolute measurements) or relates consecutive system states

47

(such as measurements of change or differential equations governing the system), the new
information gained in the new point in time typically involves r and u, but not v, so it
can be described by q̂1 = q̂1(r, u).

In the following, we will reduce v from q0, q1 and then u.

Let

q̄1(r) := min
x
q1(r, x) = min

u,v
q1(r, u, v)

q̄0(u) := min
v
q0(u, v)

Due to (4), we can obtain q̄1 from q̄0 and q̂ as follows.

q̄1(r) = min
u,v

q1(r, u, v) = min
u

(min
v
q1(r, u, v))

= min
u

(min v(q̂1(r, u) + q0(u, v))

= min
u

(q̂1(r, u) + q̄0(u))

This means that we do not need to know q1 explicitly to compute q̄1. Instead, we may
compute reduced loss functionals incrementally: First, q̄0 is computed from q0. Then, q̄1

can be computed from q̂1 and q̄0. In the next time step, we may than compute q̄2 from a
q̂2 and q̄1 and so forth.

Note that in our example, the q̄i only involve the current system state. In particular, they
do not involve the system states at previous points in time. I.e. q̄i is a quadratic functional
of the current system state and only of the current system state, which means that the
complexity necessary to describe q̄i (matrix size of the quadratic term, vector size of the
linear term) only depends on the dimensionality of the current system state. In particular
if the dimensionality of the current system state is fixed (e.g. for dynamical systems),
the qi have fixed complexity, which facilitates implementations requiring only constant
computational effort per time step.

So far, we have only described the bare theory. In the sequel, we will explain how to
perform the necessary manipulation of quadratic functionals practically.

4.3.3 Quadratic form and square root form

Remark 18 (Quadratic form and square root form). Suppose given a quadratic loss
function q = q(x) for x ∈ Rn, cf. Remark 13. Note that the positive-definiteness of P
implies zTP−1z ≥ 0 for all z ∈ Rm, so via equation (2), we obtain

q(x) ≥0 for all x ∈ Rn. (5)

48

In particular, quadratic loss functions are bounded from below.

Since q is a quadratic functional, it has the form

q(x) = xT Ix+ lx+ d (6)

for a quadratic matrix I, a linear functional l and a constant d. Eq. (2) implies I =

HTP−1H, so I is symmetric and positive semidefinite since P is symmetric positive definite.
The matrix I is called the information matrix.

By Lemma 33, there exists a (not necessarily unique) x∗ ∈ Rn such that q(x∗) = infx∈Rn q(x)

and by Lemma 34, we have

q(x) = (x− x∗)T I(x− x∗) + q(x∗). (7)

eqs. (6) and (7) are the conventional, "quadratic" form of representing quadratic loss
functionals. A main problem of this form is the definiteness of the numerical representation
of the information matrix I: By construction, I is positive semidefinite. This is an
important property since it ensures the convexity of q, thus making maximum-likelihood
estimation via minimization of q possible. However, rounding errors in the numerical
representation of I may make the numerical representation of I become indefinite, thus
possibly causing failure of algorithms relying on the positive-semidefiniteness of I.

This is solved by the square-root form of q: Since I is positive semidefinite, there exists a
matrix S such that I = STS. One way for obtaining such a matrix S is to use the matrix
square root of I, yielding a positive semidefinite square S. Another way is to perform
Cholesky factorization on I, yielding a upper or lower (depending on choice of Cholesky
flavour) triangular matrix S. Finally, a more constructive way is to simply use the choice

S := P−
1
2H (8)

in (2).

Given such a decomposition I = SST , equation (7) becomes

q(x) =(x− x∗)STS(x− x∗) + q(x∗)

=‖S(x− x∗)‖2 + q(x∗)

Sx∗=:b
= ‖Sx− b‖2 + q(x∗)

The form

q(x) = ‖Sx− b‖2 + c (9)

49

for q for a k × n-matrix S, k ≥ 0, a vector b ∈ Rk and a constant c is the square root
form of q. Note that in this form, the information matrix I = STS is always positive
semidefinite regardless of any errors made in the computation of S.

Note also that S does not have to be a square matrix, though most methods for constructing
S (such as those given above) yield square matrices. A particularly beneficial property of
the square root form is that S can be multiplied on the left hand side with an orthogonal
matrix Q ∈ Rk×k without changing q:

‖Q(Sx− b)‖2 =(Sx− b)TQTQ(Sx− b) = (Sx− b)T I(Sx− b)

=(Sx− b)T (Sx− b) = ‖Sx− b‖2 (10)

This is useful for making S into a square matrix if k > n, cf. the following remark.

Remark 19 (Simplification of a given square root form). Suppose given a quadratic loss
function q in a given square root form (9). Suppose that S is a k × n matrix with k > n.
We want to modify the given square root form in such a way that the matrix part S is
replaced by a n× n-matrix. We will actually obtain an upper triangular matrix.

We may obtain a QR-decomposition S = QR of S with an orthogonal matrix Q and a
upper triangular matrix R. Note that R = QTS. We have

q(x)
(10)
= ‖QT (Sx− b)‖2 + c = ‖Rx−QT b‖2 + c

b′:=QT b
= ‖Rx− b′‖2 + c.

Now, note that the k × n-matrix R is upper triangular, so k > n implies that R consists

of an upper triangular n× n matrix R0 and a (k − n)× n zero matrix Z, i.e R =

(
R0

Z

)
.

Thus setting b′′ :=


b′1
...
b′n

 and r :=


b′n+1
...
b′k

, we have

q(x) =‖Rx− b′‖2 + c =

∥∥∥∥∥
(
R0

Z

)
x−

(
b′′

r

)∥∥∥∥∥
2

+ c

Z=0
= ‖R0x− b′′‖2 + ‖r‖2 + c

c′′:=c+‖r‖2
= ‖R0x− b′′‖2 + c′′

S′′:=R0= ‖S ′′x+ b′′‖2 + c′′.

This way, we have transformed the square root form of q in such a way that the replacement
S ′′ for S is a n× n upper triangular matrix.

50

Note that while this is a generic and stable (if suitable QR decomposition methods such
as usage of Householder transforms are employed) methods, this is by no means the only
method for this task. In particular, knowledge about the structure of S such as sparsity
patterns may facilitate the usage of specially tailored simplification methods.

Remark 20 (Adding constraints: implementation). As described in Remark 15, adding
constraints in the quadratic form (6) just means adding the quadratic functionals. In the
modified quadratic form (7), the minimizer x∗ needs to be recomputed.

Concerning adding constraints in square root form, suppose given two quadratic loss
functionals q1, q2 in square root form:

q1(x) =‖S1x− b1‖2 + c1

q2(x) =‖S2x− b2‖2 + c1

We have

q(x) :=q1(x) + q2(x) =

∥∥∥∥∥
(
S1

S2

)
x−

(
b1

b2

)∥∥∥∥∥+ (c1 + c2). (11)

I.e. we may add q1, q2 by concatenating S1, S2 as well as b1, b2 and by adding c1, c2. Note

that the matrix S :=

(
S1

S2

)
is larger than either S1 or S2, so it is often beneficial to

perform simplification in the style of Remark 19 afterwards.

Lemma 21 (Reducing quadratic loss functions: quadratic form). Suppose given a quadratic

loss function q = q(x) = q(u, v) in the form (6) for a decomposition x =

(
u

v

)
. We can

decompose the description (6) of q similarly via splitting I, l

I =

(
Iuu Iuv

Ivu Ivv

)
l =
(
lu lv

)
along the decomposition of x into u and v. Hence, we have

q(x) = q(u, v) = uT Iuuu+ 2uT Iuvv + vT Ivvv + luu+ lvv + d.

If Ivv is invertible, the reduced functional q,v has the form

q,v(u) = uT Īu+ l̄u+ c̄

51

for

Ī =Iuu − IuvI−1
vv I

T
uv

l̄ =lu − lvI−1
vv I

T
uv

c̄ =d− 1

4
lvI
−1
vv l

T
v .

The matrix Ī is also called the Schur complement of the block Ivv in I.

Proof. We need to prove the formula for q,v. Towards that end, let us examine the
minimum of q(u, v) for given u. At the minimal v, we have

0 =
dq(u, v)

dv
= 2uT Iuv + 2vT Ivv + lv.

Solving for v yields

v = −I−1
vv

(
1

2
lTv + ITuvu

)
.

Now, the explicit expression for q,v can be obtained by inserting the above expression for
v into the expression for q.

Remark 22 (Reducing quadratic loss functions: quadratic form in factored form). Suppose
that in the situation of Lemma 21, there are matrices E,F such that

I =

(
Iuu Iuv

Ivu Ivv

)
=
(
E F

)T (
E F

)
and

Iuu = ETE

Iuv = ETF

Ivv = F TF.

I.e. the information matrix is given in a factored form, which is already decomposed along
the decomposition of x in u and v. Then, we have

Ī =Iuu − IuvI+
vvI

T
uv

=ETE − ETF (F TF)+(ETF)T

=ETE − ETF (F TF)+F TE

=ET (1− F (F TF)+F T)E.

52

Remark 23 (Reducing quadratic loss functions: square root form). Suppose given a
quadratic loss function q = q(x) = q(u, v), u ∈ Rnu , v ∈ Rnv in the square root form (9)

for a decomposition x =

(
u

v

)
.

We choose a block decomposition

S = Q

(
S1u S1v

0 S2u

)

for a orthogonal matrix Q and matrices S1u, S1v, S2u such that the matrix S1v has full
column rank, i.e. the map (v 7→ S1vv) is surjective. Such a decomposition can e.g. be
obtained by a rank-revealing QR decomposition (u and v need to be swapped to obtain
an upper triangular matrix as the right hand side factor).

Let b = Q

(
b1

b2

)
be the decomposition of b along the decomposition of S. We have

q(u, v) =‖S

(
u

v

)
+ b‖2 + c = ‖Q−1(S

(
u

v

)
+ b)‖2 + c

=‖S1uu+ S1vv + b1‖2 + ‖S2uu+ b2‖2 + c

Note that since (v 7→ S1vv) is surjective, we have minv ‖S1uu+ S1vv + b1‖2 = ‖0‖2 = 0 for
all u. Hence, we have

q,v(u) = min
v
q(u, v) = ‖S2uu+ b2‖2 + c.

This gives the reduction of q in square root form.

4.3.4 Application

Example 24 (Observing a linear dynamical system. Notes on the information filter and
on the Kalman filter.). Consider the following time discrete dynamical system.

xk =Fkxk−1 +Bkuk + wk

zk =Hkxk + vk (12)

Here, xk is the state vector of the system at time k, zk is the measurement vector at
time k and uk is the (known) control input at time k. Fk, Bk and Hk are the state
transition matrix, the control input matrix and the observation matrix. The vectors wk,
vk are normally distributed random variables with wk ∼ N(0, Qk), vk ∼ N(0, Rk) for some
positive definite covariance matrices Qk, Rk. The first equation of (12) describes how the

53

new system state xk emerges from the previous system state xk−1, the (known) control
input uk and the (unknown) system disturbance wk. The second equation in (12) describes
the measurement process, with measurement error vk.

The objective of the information filter and of its dual cousin, the Kalman filter, is to
incrementally estimate the system state xk. We will apply the methods established above
to this problem:

Suppose that the current knowledge about the state vector xk−1 in the previous time step
is in encoded in the quadratic loss functional q = q(xk−1) = ‖Sx− b‖2 + c in square root
form.

Let qk := Q
− 1

2
k , rk := R

− 1
2

k . Using these, we may add (12) to q: Reformulating (12) as

(−Fkxk−1 + xk)− (Bkuk) =wk

(Hkxk)− (zk) =− vk, (13)

we obtain via (8) and (11) the extended quadratic loss functional

q̂(xk, xk−1) =

∥∥∥∥∥∥∥
 0 S

−qkFk qk

rkHk 0

(xk

xk−1

)
−

 b

qkBkuk

rkzk


∥∥∥∥∥∥∥

2

+ c.

Then, we may perform simplification on q̂ using Remark 19 and eliminate xk−1 from it
using Remark 22 to obtain the quadratic loss function q′ = q′(xk), which encodes our
knowledge our xk. In particular, we may obtain the maximum likelihood estimate for xk
by minimizing q′, cf. Remark 13.

Thus we have arrived at a solution to the (recursive) maximum likelihood estimation
problem for linear dynamical systems with Gaussian disturbance and measurement error.
This solution may be considered as a variant of the square-root form of the information
filter. Note that as we have basically just plugged the equations of a linear dynamical
systems into the general framework, it is a fairly high-level approach. Traditionally, much
more explicit forms of the information filter are used and are also commonly found in
the literature. The same holds for the Kalman filter, which differs from the information
filter mainly in the fact that instead of maintaining an information matrix to quantify the
uncertainty of the state estimate, it uses the covariance matrix, which is the inverse of the
information matrix.

The key advantage of the approach presented here is that while it can be easily applied
to the state estimation problem for linear dynamical systems, it is not restricted to such
systems. Indeed, the state transition equation of dynamical systems is quite specific
to dynamical systems. For example, the problem of refining estimates of a static state

54

(e.g. when estimating the geometry of a static scene) does not feature a state transition.
Another class of problems are problems where parts of the state transition follow complex
rules or depend on something unknown to us (e.g. unknown/foreign control input). Here,
usage of the Kalman filter requires the problem to be forced into the form of a dynamical
system (often at the cost of modelling errors), while in the general framework given above,
we can simply restrict the state transition model to the parts which are treatable.

Remark 25 (Error propagation in least-squares estimation and the singular values of the
Jacobian). Suppose given a function k which maps a (to be estimated) variable p to the
(noise-free) measurements k(p). The examination of the Jacobian J := dk

dp
of k and in

particular of its singular values reveals the sensitivity of the least-squares estimate for p to
measurement errors:

Suppose given a ’true’ value pr for p and corresponding noise-free measurementsmr := k(pr).
Given a vector of measurements m = mr + δ, with measurement noise δ, the least-squares
estimate pls for p is the minimizer for

‖k(p)−m‖2 → min .

By Fermat’s theorem regarding stationary points, pls satisfies the equation JT (k(pls)−m) =

0. By this equation, pls = pls(m) becomes an implicit function of m. The implicit function
theorem allows us to compute the derivative of pls = pls(m) at mr, which is

dpls
dm

∣∣
mr

= (JTJ)−1JT .

That is via the linear approximation pls(m) = pls(mr + δ) ≈ pls(mr) + dpls
dm

∣∣
mr
δ = pr +

(JTJ)−1JT δ, the matrix (JTJ)−1JT describes the first-order sensitivity of the estimate pls
to measurement noise δ. The matrix (JTJ)−1JT equals the Moore-Penrose pseudoinverse
J+ of J and can be computed by transposing the singular value decomposition of J and
inverting the singular values. In particular, the singular values of J+ = (JTJ)−1JT are
the inverses of the singular values of J .

Note that here, the matrix JTJ is a variant of the information matrix in the nonlinear
context, cf. Remark 13 and Lemma 14.

The linear approximation pls(m) = pls(mr + δ) ≈ pr + J+δ implies that if δ is normally
distributed with standard deviation σ (i.e. covariance matrix σ2 · E), then the covariance
matrix of pls(m) − pr can be expected to have the eigenvalues σ2µ2

1, σ
2µ2

2, . . ., where
µ1, µ2, ... are the singular values of J+. As the covariance describes the square of the
distance to the mean, the ’linear scale’ (i.e. the square root of the largest eigenvalue of the
covariance matrix since there is no concept of ’standard deviation’ in higher dimensions)
of the estimation error is given by σµmax = σν−1

min. Here, µmax is the largest singular value

55

of J+ and νmin is the smallest singular value of J (recall that the singular values of J are
the reciprocals of the singular values of J+).

Variants of the least-squares such as robustified least-squares variants behave slightly
differently, but the underlying principle and the importance of J and its pseudoinverse J+

and their singular values remain the same.

Remark 26 (Application of recursive linear filters to nonlinear problems via linearization).
The estimation methods established in the previous sections are designed for linear systems
with normally distributed uncertainties.

The presence of nonlinearity in applications motivates extending these methods to nonlinear
estimation problems.

In this remark, we will describe how to use linearization to apply the previously introduced
estimation techniques to nonlinear problems. In the context of dynamical systems, this
extends the Kalman filter and information filter to the extended Kalman filter (EKF)
and extended information filter (EIF). Note that there exist also alterative techniques
for treating nonlinearity such as the unscented transform employed by the unscented
Kalman filter, which models the nonlinear transformation of distributions by sampling
the distributions at discrete points, which can then be transformed directly by such a
nonlinear transformation.

Generally, linearization is performed by employing first order Taylor approximation
(approximation via the derivative). In the linearized picture, all operations of linear
estimation can then be performed as usual. The expansion point for the linearization
should be near the real system state in order for the approximation to resemble the real
problem closely. Hence, an estimate of the system state (cf. e.g. Remark 13) is typically
used as the expansion point.

So suppose given a quadratic loss function in the form

q(x) = (x− x0)T I(x− x0) + q(x0),

cf. Lemma 34. The estimate x0 is used as expansion point for the substitution x = f(y).
I.e.

x ≈df

dy

∣∣∣∣
y=y0

(y − y0) + x0

=
dx

dy

∣∣∣∣
y=y0

(y − y0) + x0,

56

yielding the transformed quadratic loss function q̃ via

q(x) ≈

(
dx

dy

∣∣∣∣
y=y0

(y − y0)

)T

I

(
dx

dy

∣∣∣∣
y=y0

(y − y0)

)
+ q(x0)

=(y − y0)T

(
dx

dy

∣∣∣∣
y=y0

)T

I

(
dx

dy

∣∣∣∣
y=y0

)
(y − y0) + q(x0) =: q̃(y).

Note that the derivative dx
dy

enters quadratically into the transformation of the information
matrix I.

57

5 Long-Range forward triangulation

In this section, we examine the information about the position of stationary objects gained
by triangulation under the assumption that the camera movement is perfectly known,
which gives an upper bound on the achievable triangulation accuracy for SfM in forward
motion. Here, a particular objective is to compare stereo camera systems with monocular
systems by distinguishing the influence of the stereo camera baseline and of the baseline
caused by vehicle movement.

Forward-facing cameras in (consumer) automobiles are usually mounted in the upper part
of the windscreen directly above or behind the rear-view mirror since this is the only
position outside the field of view of the driver that is both covered by the windscreen wiper
and provides a good position for viewing the outside. Due to the constrained space there,
such camera systems are typically either monocular or binocular with short baselines (up
to ∼ 20cm). See fig. 5 for examples. This is in contrast to research or experimental vehicles,
for which a popular method is to stack a sensor platform onto the roof of the vehicle,
cf. e.g. [Geiger et al., 2013, Urmson et al., 2004], which allows much larger baselines for
stereo camera systems.

Figure 5: Examples of forward facing camera packages in automobiles. Top row: Volvo
XC60 (1st generation). Bottom row: Mercedes-Benz S-Class (W222)

The scenes encountered by a forward-facing vehicle-mounted camera are given by the
vehicle movement. In particular, the most common situation is driving along a more or less
straight road, which means movement along the optical axis. We are mostly interested in

58

obtaining the geometry of stationary objects, since moving objects cannot be recovered by
structure from motion and there exist highly specialized systems for identifying, tracking
and locating moving objects in the context of driver assistance systems.

Due to the requirement that a road needs to be (mostly) flat, there are usually no stationary
objects on the path of movement. This mitigates the fact that for monocular systems
(and to a lesser degree for binocular systems, cf. below), the distance for objects in the
direction of movement cannot determined well. If the vehicle moves in a perfectly straight
line, distance determination is, in fact, impossible for objects on that line. Furthermore,
the obstacle-freeness of the road often causes viewing distances to be quite large. Viewing
distances of several hundreds of meters are common in urban situations, with extreme
cases of several kilometers (e.g. on highways). This is in contrast to most augmented
reality applications where the viewing distance is in the range of meters or a few dozens of
meters.

Scene description We make the following assumptions: The vehicle is driving in a
straight line with constant speed v and the camera system captures the scene N times
consecutively with regularly spaced time-intervals of length ∆t in between. The camera
system is looking into the direction of travel, i.e. the principal axis is parallel to the
direction of movement. It is assumed that the vehicle movement is perfectly known or that
at least its error is negligible for the purpose of triangulating distant objects. Furthermore,
we assume that all other parameters (camera calibration etc.) are perfectly known, i.e.
we only estimate the positions of the triangulated objects. Note that this is actually the
worst case for the purpose of triangulating object positions since the monocular case has a
singularity along the line of movement and the stereo case features a "smudged" version
of that singularity. The baseline of the stereo setup is B = 2h. In order to have the same
number of images captured by both the stereo and the mono setup (otherwise, the stereo
setup has an advantage simply because it captures more images), the monocular setup
is assumed to be a stereo setup with zero baseline, i.e. this is the case h = 0 (one could
similarly assume the monocular setup to have twice the image frequency of the stereo
setup).

We use a Cartesian coordinate system which is centered at the middle of the stereo setup
at the time capturing the last frame, the z-axis is the principal axis, the x-axis is parallel
to the stereo baseline (i.e. horizontal) and the y-axis points upward. In particular, at the
i-th scene capture, the vehicle is at position (0, 0,−wi), with wN = 0 and wi ≥ 0 for all i.

For numerical evaluations, the following assumptions are used.

• The focal length is f ∼ 1000px, which is a typical value for automotive grade
cameras.

59

z

x

y
����	

����	

��	

Figure 6: Coordinate system

• The image frequency is 30Hz

• The vehicle travels with v = 10m/s (≈ speed limit of urban areas)

• Objects are triangulated over a period of 1 second.

• For the stereo setup, the base line is B = 20cm, hence h = 0.1m. For the mono
setup, we set h = 0.

• We constrain the field of view in such a way that x2 + y2 ≤ z2 (i.e. the angle of
view is constrained to ≤ 90◦). Objects outside this region are at the boundary of or
outside the camera field of view. Furthermore, they are at the side of the vehicle
rather than in front and thus well outside the singularity along the axis of movement.

The singular values of the Jacobian Using the pinhole camera model, a point p at
coordinate p = (x, y, z)T is projected by the left camera to the image point k+

i (p) and by
the right camera to the image point k−i (p), where k+

i (p) and k−i (p) are given by

k±i (p) = f

(
x±h
z+wi
y

z+wi

)
,

where f is the focal length. Thus, the vector of the i-th measurement is given by

ki(p) = f


x+h
z+wi

x−h
z+wi
y

z+wi
y

z+wi

 .

The full measurement vector (ki(p))i has the Jacobian (Dki(p))i =: J . The singular
values of J determine the achievable precision when obtaining p by least-squares fitting
to the measured data. To obtain these singular values, we compute the normal matrix

60

JTJ =
∑

i(Dki(p)
TDki(p)). We have the following.

Dki(p) =f


1

z+wi
0 − x+h

(z+wi)2

1
z+wi

0 − x−h
(z+wi)2

0 1
z+wi

− y
(z+wi)2

0 1
z+wi

− y
(z+wi)2



Dki(p)
TDki(p) =2f 2


1

(z+wi)2
0 − x

(z+wi)3

0 1
(z+wi)2

− y
(z+wi)3

− x
(z+wi)3

− y
(z+wi)3

x2+y2+h2

(z+wi)4


Then, setting

S2 :=
∑
i

2

(z + wi)2
, S3 :=

∑
i

2

(z + wi)3
, S4 :=

∑
i

2

(z + wi)4
, (14)

we have

JTJ =f 2

 S2 0 −xS3

0 S2 −yS3

−xS3 −yS3 (x2 + y2 + h2)S4

 . (15)

Note that here, the influence of the direction of the base line has vanished. That is when
triangulating point-like features, the direction of the base line is actually irrelevant. Of
course, this does not hold for the triangulation of anisotropic features such as edges. In
particular, an edge cannot be triangulated at all if the edge is parallel to the camera base
line. Note that algebraically, the variable h vanishes from all non-diagonal elements of
JTJ since the sum of the coordinates (−h, 0)T , (h, 0)T of the two cameras in the plane
perpendicular to the direction of movement is zero. In particular, similar results can be
obtained for multi-view setups as long as the origin of the coordinate system coincides
with the geometric center of the camera positions and as long as the cameras are located
in a plane perpendicular to the direction of movement.

Since we eliminated the influence of the direction of the baseline, we may rotate x and y in
such a way that the y-component vanishes. I.e. without loss of generality, we may assume
that y = 0 and that x is the distance of p to the principal axis. This way, JTJ becomes

JTJ =f 2

 S2 0 −xS3

0 S2 0

−xS3 0 (x2 + h2)S4

 . (16)

We immediately obtain the eigenvector (0, 1, 0)T for the eigenvalue f 2S2 of JTJ . This

61

corresponds to the singular value

s2 = f
√
S2 = f

√∑
i

2

(z + wi)2

of the Jacobian J . We want to obtain the smaller one of the two remaining eigenvalues.
These eigenvalues are solutions of the characteristic equation

χ(λ) = λ2 − f 2(S2 + (x2 + h2)S4)λ+ f 4(S2S4(x2 + h2)− x2S2
3).

Its discriminant divided by f 4 is

∆f−4 = (S2 + (x2 + h2)S4)2 − 4(S2S4(x2 + h2)− x2S2
3),

hence its solutions are given by

λ1,2

f 2
=

(S2 + (x2 + h2)S4)±
√

∆f−4

2

λ2

f 2
=

(S2 + (x2 + h2)S4)−
√

∆f−4

2
=

(S2 + (x2 + h2)S4)2 −∆f−4

2((S2 + (x2 + h2)S4) +
√

∆f−4)

=
4(S2S4(x2 + h2)− x2S2

3)

2((S2 + (x2 + h2)S4) +
√

∆f−4)
=

2(S2S4(x2 + h2)− x2S2
3)

(S2 + (x2 + h2)S4)(1 + φ)
,

where φ :=

√
∆f−4

S2+(x2+h2)S4
. Since the matrix JTJ is the product of a matrix and its conjugate

matrix, all eigenvalues are real and nonnegative. Since the eigenvalues are real, the
discriminant ∆ is nonnegative. Together with S2 > 0, S4 > 0, we obtain φ ≥ 0. The term
(S2S4(x2 + h2)− x2S2

3) is the determinant of a submatrix of JTJ (cf. eq. 16), so since the
eigenvalues of JTJ are nonnegative, we have (S2S4(x2 + h2)− x2S2

3) ≥ 0, which yields

φ =

√
(S2 + (x2 + h2)S4)2 − 4(S2S4(x2 + h2)− x2S2

3)

S2 + (x2 + h2)S4

≤
√

(S2 + (x2 + h2)S4)2

S2 + (x2 + h2)S4

= 1.

Overall, we have

0 ≤ φ ≤ 1. (17)

Let us examine the formula for λ2 further:

λ2 =f 2 2(S2S4(x2 + h2)− x2S2
3)

(S2 + (x2 + h2)S4)(1 + φ)
= 2f 2 h2S2S4 + x2(S2S4 − S2

3)

(S2 + (x2 + h2)S4)(1 + φ)
(18)

62

Note that

S4 · (x2 + h2) =
∑
i

2(x2 + h2)

(z + wi)4
≤
∑
i

2(x2 + h2)

(z + wi)2 · z2
=
x2 + h2

z2
S2.

We typically have |h| � |z|. So since we constrain the field of view in such a way that
x2 + y2 ≤ z2 (recall that we have used rotational symmetry to set y = 0), we obtain

S4 · (x2 + h2) ≤ ChS2,

with Ch := 1 + h2

z2
≈ 1.

Setting

ϕ :=
S4(x2 + h2)

S2

,

we obtain

0 ≤ ϕ ≤ Ch (19)

We can thus refine (18) further to

λ2 =2f 2h
2S2S4 + x2(S2S4 − S2

3)

S2(1 + ϕ)(1 + φ)
. (20)

So eqs. (17) and (19) imply that the denominator of the right hand side of eq. (20) is
asymptotically S2 · θ(1). As S2, S3, S4 depend on z, but not on x, y and h, we may use
eq. (20) as an asymptotic formula describing the influence of x and h on λ2, which is the
square of the smallest singular value νmin of the Jacobian J , that is νmin =

√
λ2.

As a motivation for the subsequent examination of formula (20), we will examine some
values of 1√

λ2
= 1

νmin
.

In fig. 7, the magnitude of (νmin)−1 = λ
− 1

2
2 is plotted. Only values up to 10m/px are

plotted since this prevents crowded diagrams and there is a minimum amount of accuracy
needed for distance information to be useful for augmented reality applications in urban
scenarios.

It can clearly be seen that the monocular setup has a singularity along the axis of movement.
No such singularity is present in the stereo setup, but the area near the axis of movement
is still a zone where λ2 has much lower values than in areas more distant from the axis of
movement. Remarkably, the values of λ2 in the mono and stereo setup are almost identical
for positions several meters away from the axis of movement.

63

1

1

1

1
2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

67

7

7

7

8

8

8

8

8

8 9

9

9

9

9

9

10

10

10 10

10

10

20 40 60 80 100 120 140

distance along movement direction [m]

-10

-8

-6

-4

-2

0

2

4

6

8

10

la
te

ra
l
d
is

ta
n
c
e
 [
m

]

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

10

10

10

20 40 60 80 100 120 140

distance along movement direction [m]

-10

-8

-6

-4

-2

0

2

4

6

8

10

la
te

ra
l
d
is

ta
n
c
e
 [
m

]

Figure 7: Magnitude of 1√
λ2

= 1
νmin

[m/px] for monocular (left diagram) and stereo (right
diagram) setups

Explicit approximations In the following, the formula (20) will be examined in detail.
Here, the main objectives are to find explicit approximation for (20) and to separate the
contribution of the stereo baseline from the contribution of the camera movement to the
position information, that is to relate the contributions of x2 and h2 in (20).

To relate the contributions of the terms with x2 and h2 in eq. (20) to each other, we
compute their quotient:

q :=

(
2f 2 h2S2S4

S2(1 + ϕ)(1 + φ)

)
·
(

2f 2 x2(S2S4 − S2
3)

S2(1 + ϕ)(1 + φ)

)−1

=
h2S2S4

x2(S2S4 − S2
3)

In order to evaluate q, we need a more accessible form for S2, S3 and S4. Recall that the
vehicle travels with constant speed and captures images at equally spaced time intervals.
I.e. we have wi = v∆t(N − i) for i = 1, . . . , N . Using the fact that integrals can be
approximated by sums and vice versa (cf. e.g. the Euler-Maclaurin formula), and setting
wmin := −1

2
v∆t and wmax := (N − 1

2
)v∆t, we obtain approximations for S2, S3 and S4 as

follows:

S2 =
N∑
i=1

2

(z + wi)2
≈
∫ N−1/2

−1/2

2

(z + i · v∆t)2
di =

2

v∆t

∫ wmax

wmin

1

(z + w)2
dw

=
2

v∆t

[
− 1

z + w

]wmax

w=wmin

=
2

v∆t

(
1

z + wmin

− 1

z + wmax

)
=: I2

Analogously, we obtain

S3 =
N∑
i=1

2

(z + wi)3
≈ [. . .] =

2

v∆t

∫ wmax

wmin

1

(z + w)3
dw =

2

v∆t

[
− 1

2(z + w)2

]wmax

w=wmin

64

=
1

v∆t

(
1

(z + wmin)2
− 1

(z + wmax)2

)
=: I3,

S4 =
N∑
i=1

2

(z + wi)4
≈ [. . .] =

2

v∆t

∫ wmax

wmin

1

(z + w)4
dw =

2

v∆t

[
− 1

3(z + w)3

]wmax

w=wmin

=
2

3v∆t

(
1

(z + wmin)3
− 1

(z + wmax)3

)
=: I4.

Setting c := z+wmin

z+wmax
, we obtain

q =
h2S2S4

x2(S2S4 − S2
3)

≈ h2I2I4

x2(I2I4 − I2
3)

=
h2(z + wmin)I2(z + wmin)3I4

x2((z + wmin)I2(z + wmin)3I4 − ((z + wmin)2I3)2)

=
h2 · 2(1− c) · 2

3
(1− c3)

x2(2(1− c) · 2
3
(1− c3)− (1− c2)2)

=
4h2(1− c)(1− c3)

x2(4(1− c)(1− c3)− 3(1− c2)2)
=

4h2(1 + c+ c2)

x2(4(1 + c+ c2)− 3(1 + c)2)

=
4h2(1 + c+ c2)

x2(c2 − 2c+ 1)
=

4h2(1 + c+ c2)

x2(c− 1)2

=
4h2(1 + c+ c2)

x2(z+wmin

z+wmax
− 1)2

=
4h2(1 + c+ c2)

x2(wmin−wmax

z+wmax
)2

=(1 + c+ c2)

(
z + wmax

x

2h

wmax − wmin

)2

.

Note that for z > −wmin, the inequality wmax > wmin implies 0 < c < 1. For long range
situations (i.e. large z), we have c ≈ 1, thus

q ≈3

(
z + wmax

x

2h

wmax − wmin

)2

.

Hence, the ratio of the contributions of h and x in eq. (18) depends mainly on the following
terms:

•
(
z+wmax

x

)−1
= x

z+wmax
: This is the tangens of the angle between the direction of

movement and the direction which the object is first seen. I.e. this corresponds to
distance of the object from the image center.

• 2h
wmax−wmin

: This is the ratio between the stereo baseline and the distance travelled
by the vehicle in the capture time.

Clearly, there is a circular cone around the axis of movement (which coincides with the
view direction) at whose surface the contributions of h and x in eq. (18) are equal. It has
the following properties: For objects inside the cone, the stereo setup gives much better
triangulation results than the mono setup; the latter features a singularity there. For

65

objects outside the cone the mono and stereo setup give similar triangulation performance.
The "width" (aperture) of the cone is determined by the ratio

√
3 2h
wmax−wmin

. Recall that
wmax − wmin = (N + 1)v∆t ≈ Nv∆t is approximately the distance travelled between the
capture of the first camera frame and the capture of the last camera frame. This way,
larger velocity or observation time values result in a smaller width of the cone.

Usually, this cone is quite narrow: In the above example with h = 0.1m and wmax−wmin =

10m (v = 10m/s and 1s observation time), we have
√

3 2h
wmax−wmin

≈ 0.035. That is at a
distance of 100m, the cone extends just 3.5m around the line of movement. In particular,
the influence of the longitudal movement on triangulation performance dominates the
influence of the stereo baseline for most objects encountered in urban scenes for augmented
reality applications.

Let us return to (20). Inserting the approximations I2, I3, I4 for S2, S3, S4 yields

λ2 ≈2f 2h
2I2I4 + x2(I2I4 − I2

3)

I2(1 + ϕ)(1 + φ)

=2f 2
h2(z+wmin)I2(z+wmin)3I4 + x2

(
(z+wmin)I2(z+wmin)3I4 − ((z+wmin)2I3)

2
)

(z + wmin)4I2(1 + ϕ)(1 + φ)

=2f 2
h2 2

v∆t
(1− c) 2

3v∆t
(1− c3) + x2

(
2
v∆t

(1− c) 2
3v∆t

(1− c3)−
(

1
v∆t

(1− c2)
)2
)

(z + wmin)3 2
v∆t

(1− c)(1 + ϕ)(1 + φ)

=
2f 2

v∆t

h2 4
3
(1− c)2(1 + c+ c2) + x2

(
4
3
(1− c)2(1 + c+ c2)− (1− c)2(1 + c)2

)
2(z + wmin)3(1− c)(1 + ϕ)(1 + φ)

=
2f 2(1− c)

v∆t

h2 4
3
(1 + c+ c2) + x2

(
4
3
(1 + c+ c2)− (1 + c)2

)
2(z + wmin)3(1 + ϕ)(1 + φ)

=
2f 2(1− c)

v∆t

h2 4
3
(1 + c+ c2) + x2

3
(1− 2c+ c2)

2(z + wmin)3(1 + ϕ)(1 + φ)

=
f 2(1− c)

3v∆t

B2(1 + c+ c2) + x2(1− c)2

(z + wmin)3(1 + ϕ)(1 + φ)
.

We want to perform long-range asymptotics for this formula. Note that

1− c =1− z + wmin

z + wmax

=
(z + wmax)− (z + wmin)

z + wmax

=
wmax − wmin

z + wmax

.

Hence setting u := x
z
and d := 1

z
, we have

λ2 ≈
f 2(1− c)

3v∆t

B2(1 + c+ c2) + x2(1− c)2

(z + wmin)3(1 + ϕ)(1 + φ)

=
f 2(wmax − wmin)

3v∆t(z + wmax)

B2(1 + c+ c2) + x2
(
wmax−wmin

z+wmax

)2

(z + wmin)3(1 + ϕ)(1 + φ)

66

≈f
2(wmax − wmin)

3v∆t(z + wmax)

B2(1 + c+ c2) + u2 (wmax − wmin)2

(z + wmin)3(1 + ϕ)(1 + φ)

≈f
2(wmax − wmin)d4

3v∆t

B2(1 + c+ c2) + u2 (wmax − wmin)2

(1 + ϕ)(1 + φ)

=
(N + 1)f 2d4

3

B2(1 + c+ c2) + (u(wmax − wmin))2

(1 + ϕ)(1 + φ)

≈Nf 2d4

(
B2 +

1

3
(u(wmax − wmin))2

)
.

Hence, we obtain

1

σmin

=
1√
λ2

≈ 1√
Nfd2

1√
B2 + 1

3
(u(wmax − wmin))2

.

This means that the asymptotic sensitivity of the estimation error to the measurement
error depends on the following variables:

• number of captured frames (information increases linearly with N)

• focal length (linear contribution)

• the inverse of the distance (quadratic contribution)

• stereo baseline B (linear contribution when dominant in sum)

• product of distance from image center u and traveled distance (wmax − wmin) (linear
contribution when dominant in sum)

This concludes the theoretical analysis of the geometry of the triangulation problem.

Numerical simulation In the following, we perform some basic numerical simulations to
evaluate the accuracy of the monocular triangulation of positions in front of the vehicle from
noisy observations. We use the same assumptions on focal length, image frequency, vehicle
speed etc. as before. Furthermore, it is assumed that the measurement noise is normally
distributed (in practice, this assumption must be weakened e.g. due to mismatching of
features, cf. e.g. [Triggs et al., 1999, section 3], but it is a suitable simplification for the
present geometrical analysis) and we use least squares estimation for position triangulation.
We let the standard deviation of the noise be σ = 1px. For least-squares estimation,
a slightly damped variant of the Gauss-Newton algorithm is used. We evaluate the
performance at object positions arranged in a regularly spaced two-dimensional grid (recall
that we may eliminate the third dimension by suitably rotating the scene around the line
of movement). For each position, we perform a Monte-Carlo simulation with 2000 samples
to infer suitably precise estimates of bias and covariance of the triangulation. We calculate
the experimental bias by subtracting the true position of the triangulated point from the

67

sample mean of the position estimates. We use the (unbiased) sample variance as estimate
of the covariance.

In Remark 25, we established that the sensitivity of the triangulation error to measurement
noise can be approximated by ν−1

min, where νmin is the smallest singular value of J (recall
that in our case, we have νmin =

√
λ2). Hence, we expect the triangulation error covariance

to be about σν−1
min. Fig. 8 in combination with σ = 1px shows that this expectation holds,

1

1

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

1
0

10

10

20 40 60 80 100 120

distance along movement direction [m]

1

2

3

4

5

6

7

8

9

10

la
te

ra
l
d
is

ta
n
c
e
 [
m

]

1

1

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

1
0

10

10

20 40 60 80 100 120

distance along movement direction [m]

1

2

3

4

5

6

7

8

9

10

la
te

ra
l
d
is

ta
n
c
e
 [
m

]

Figure 8: Left: Magnitude of 1√
λ2

[m/px] for monocular setup. Right: Monte Carlo
estimation of the squareroot of the largest eigenvalue of the covariance matrix
in meter.

1

1

1

1

1

1

1

1

1

2

2

2

2
5

5

5

10

10

20

20

50

50

100

100

200

200

20 40 60 80 100 120

distance along movement direction [m]

1

2

3

4

5

6

7

8

9

10

la
te

ra
l
d
is

ta
n
c
e
 [
m

]

0.2

0.2

0.2

0.5

0.5

1

1

2

2

5

5
10

20 40 60 80 100 120

distance along movement direction [m]

1

2

3

4

5

6

7

8

9

10

la
te

ra
l
d
is

ta
n
c
e
 [
m

]

Figure 9: Bias of the monocular setup obtained from Monte Carlo simulation [m]. Left:
bias component along movement direction. Right: lateral bias component

which supports the approximations made above.

The Monte Carlo simulation was also used in fig. 9 to experimentally determine the bias of
the triangulation. Note that in case the triangulated object is several meters apart from
the line of movement, the bias is moderate. However, near the line of movement the bias

68

quickly grows to severe overestimation of the true distance. This can be attributed to
the fact that the singularity along the line is the center of a zone of strong nonlinearity
surrounding it, which skews the centered measurement error distribution via nonlinear
effects into the non-centered estimation error distribution. Note that the triangulation
problem is generally much more linear in pinhole coordinates (cf. Example 8), so in
situations where triangulated positions are averaged (e.g. for smoothing a depth map),
pinhole coordinates should be used for averaging to reduce the influence of nonlinearity.

Summary In the above, the triangulation of distant objects for forward-facing vehicle-
mounted monocular and binocular cameras has been analyzed. In particular, the (worst)
case when the vehicle is driving with constant speed in a straight line has been scrutinized
in detail. Despite the nonlinear nature of the measurement process, several quite explicit
formulas for the Jacobian and values derived from it such as its smallest singular values
have been obtained. A key technique for facilitating the analysis of the Jacobian is the
approximation of sums via integrals, which allowed us to simplify the sums appearing in
the Jacobian to a great degree and to interpret the results in simple, geometrical terms. In
particular, we have shown that the geometrical advantage of stereo setups over monocular
setups is mostly restricted to objects in a narrow cone around the principal axis. Outside
this cone, the advantage of a stereo setup is mostly caused by the fact that a stereo camera
captures twice as many images as a monocular camera. We argued that for objects of
interest to triangulation in vehicular Augmented Reality applications, there is typically
several meters distance to the singularity at the principal axis. We have shown that at this
distance to the principal axis, we can recover distance information with sufficient precision
to e.g. distinguish buildings from each other up to a viewing distance of about 100m, even
with a monocular setup.

69

6 Structure from motion in forward motion

6.1 Introduction

Monocular structure from motion has long been known to be problematic in the case of
forward motion. This becomes already apparent when the subproblem of triangulation is
considered, since this problem features a singularity along the movement direction, which
is right in the middle of the camera image. This issue is analyzed in detail in section 5.
When moving to the full SfM problem in forward motion, there arise poles in the objective
function that are caused by the great sensitivity of point estimates near the epipolar
direction to errors in the estimation of the epipolar direction. This phenomenon is an
intrinsic part of the SfM problem in forward motion and lies arguably at the root of why so
many visual odometry methods fail when faced with monocular forward motion. A basic
idea behind our approaches to the SfM problem is the concept that this problem can be
made smaller if the error in the estimation of the epipolar direction can be reduced relative
to the image resolution. We take the somewhat simplistic approach of involving as many
features in the camera image as possible into the estimation of the camera movement.
This means involving (almost) every pixel in the image in visual odometry, hence the
algorithms used need to scale up easily to large amounts of features.

6.2 Rationale for approximating the information matrix in

filter-based visual odometry

Recall that filter-based visual odometry methods maintain a covariance estimate for the
errors of the distance estimates. This covariance estimate typically is in the form of
a covariance matrix or information matrix (for simplicity, we will assume to use the
information variant in the sequel), whose number of rows and columns depend linearly on
the number of tracked features. Thus, the size of this information matrix is quadratic in
the number of features.

An approach for circumventing this is to simply replace the information matrix by a
matrix which is less complex. From estimation theory, we know that we may discard
information by subtracting a positive semidefinite matrix from the information matrix.
Hence, the replacement described above is allowed as long as the difference matrix between
the covariance matrix and the replacement is positive semidefinite. In the following, we will
provide some rough calculations which show that the information matrix becomes nearly
diagonal for large numbers of features, which motivates replacing the information matrix
by a diagonal matrix or a similar structure that can be maintained with low complexity.

The residual of the VO problem for feature position estimates pi and camera pose estimates

70

kj is

r :=
∑
i,j

‖mij − f ·K0(pi, kj)‖2. (21)

Here, f is the camera focal length, mij is the observation of point pi at the j-th camera
position and the function K0 models the observation process. We separate the focal length
from K since we want to examine the influence of the image resolution. Defining the
vectors m := (mij)i,j, k = (kj)j, p = (pi)i and the vector valued function K = K(p, k) =

(K0(pi, kj))i,j, we obtain

r = ‖m− fK(p, k)‖2. (22)

Let fE := dr
dp

= f dK
dp

be the block derivative of all feature positions and fF := dr
dk

=

f dK
dk

be the block derivative of all camera poses. The extended information matrix is

f 2

(
ET

F T

)(
E F

)
, cf. Remark 25. By Remark 22, the information matrix of the pose

estimates is
f 2ET (1− F (F TF)+F T)E.

I.e. this is the matrix ETE, which has diagonal structure (different point estimates are
independent) disturbed by a term describing the pose estimation uncertainty. Let us
consider varying the image size.

Firstly, note that increasing the focal length f (which is a major effect of increasing the
image resolution) increases the overall information. However, changing f does not change
the ratio between the per-point information and the uncertainty due to pose uncertainty.

The second major effect of increasing the image resolution is that the number of scene
points usable for VO is increased, both for feature-based methods and for direct methods.

Let us extend E and F accordingly: E is replaced by a matrix Ē =

(
E 0

0 Ê

)
, F is replaced

by F̄ =

(
F

F̂

)
. This way, we have F̄ T F̄ = F TF + F̂ T F̂ ≥ F TF as quadratic forms. If F

and F̄ have the same column rank (which is satisfied if the increasing the number of scene
points does not change the unobservable degrees of freedom of the system), this implies
(F̄ T F̄)+ ≤ (F TF)+, cf. e.g. [Birman and Solomjak, 1980, 10.2, Theorem 6]. This way, the
influence of the camera pose uncertainty relative to the per-point information is smaller
in f̄ 2ĒT (1 − F̄ (F̄ T F̄)+F̄ T)Ē than in f 2ET (1 − F (F TF)+F T)E. Hence, increasing the
number of scene points makes the information matrix more closely similar to a diagonal
matrix.

This analysis shows that approximating the information matrix by a matrix with diagonal

71

structure is a valid approach for sufficiently large number of scene points. This result is
encouraging since using high resolution images and as many scene points as possible is
already a prerequisite for achieving high accuracy. Furthermore, matrices with diagonal
structure can be maintained much more efficiently computationally than the full information
matrix due to the former having linear complexity in the number of scene points and the
latter having quadratic complexity.

Note however, that in addition to the number of scene points, the efficiency of the above
approximation of the information depends also on the number of observations per scene
point. Hence, there is motivation to develop more exact approximations of the information
matrix, in particular for high speed situations which are common for vehicle-mounted
cameras.

Furthermore, while second-order effects such as bias may be reduced by increasing the
number of scene points, there is probably no simple way of eliminating them. This contrasts
VO methods based on bundle adjustment since for these, (semi-)global optimization
implicitly removes second and higher order effects.

6.3 Introduction to C-LSD-SLAM

The visual odometry method we developed is called C-LSD-SLAM. As its name implies,
it is based on LSD-SLAM, which is a method developed by researchers at TU Munich,
cf. [Engel et al., 2014]. Basing C-LSD-SLAM on LSD-SLAM allowed us to start from an
existing framework, which avoids bootstrapping issues. Furthermore, LSD-SLAM produces
semi-dense depth maps, which is already close to the dense depth map required by the
intended application. Finally as LSD-SLAM is a direct method, the computation steps
typically involve iteration over all pixels, which facilitates parallelization. This contrasts
feature based methods since feature extraction and matching are difficult to parallelize.

LSD-SLAM is a keyframe based method. As such, semi-dense depth maps are only
available for keyframes, which are a strict subset of all frames. As most operations
(tracking, mapping, keyframe reprojection) are performed relative to the most recent
keyframe, this approach is problematic for the fast motion encountered by a vehicle-
mounted camera since there, the distance between a keyframe and its succeeding keyframe
may be too large to give a sufficient overlap. Furthermore, our intended application
needs a depth map for each frame. Hence, the most obvious change from LSD-SLAM to
C-LSD-SLAM is the fact that in C-LSD-SLAM, every frame is a keyframe. Instead of the
asynchronous tracking and mapping used in LSD-SLAM styled after PTAM, C-LSD-SLAM
performs the following steps for each frame in a synchronous fashion. Given the last, "old"
frame, which is a keyframe since it has a depth map, a "new" frame is processed as follows

72

(1) Tracking of the new frame relative to the old frame

(2) Updating of the depth map of the old frame via triangulation with the new frame.

(3) Reprojection of the depth map of the old frame to the new frame. This way, the
new frame obtains a depth map and becomes a keyframe.

In between, there are several smoothing and regularization steps for the depth map, which
we have omitted for simplicity. To simplify the method, the SLAM functionality present in
LSD-SLAM has been removed in C-LSD-SLAM. So despite its name, C-LSD-SLAM is not
a SLAM method but a visual odometry method though arguably the SLAM functionality
could easily be re-integrated.

6.4 C-LSD-SLAM: Implementation

C-LSD-SLAM is a filter-based visual odometry method, so its core state is the filter state.
The filter state is encoded in a central structure ("DepthMap"), which features some global
filter data and, much more importantly, certain per-pixel data. There are the following
core per-pixel data for maintaining the estimated geometry of the scene in front of the
camera:

• inverse depth estimate (float value)

• information value for inverse depth estimate (float value)

• validity flag

The validity flag indicates whether the pixel is valid, that is whether there is actually
an estimate for the pixel present since there are various conditions that can prevent the
method from assigning an estimate to the pixel. Note that it might make sense from the
perspective of data size to encode the validity into the information value (e.g. positive
values indicate a valid pixel). However, as validity is required for several routines without
needing to know the information value and since testing a Boolean value is typically a
well-optimized operation on modern processors (in particular compared to examining a
float value), it does not make much sense in practice.

In addition to the above data, there are the following auxiliary per-pixel data:

• smoothed inverse depth estimate (float value)

• information value of smoothed inverse depth estimate (float value)

• validity counter (integer)

The map of smoothed depth estimates are obtained from the map of "raw" depth estimates
via smoothing. While smoothing is not absolutely necessary, several routines (image
alignment, depth estimation) benefit from the outlier suppression of regularizing the depth

73

map. The validity counter is an auxiliary value that is used for filling gaps in the depth
map.

6.4.1 Some notes on parallelization techniques

Many visual odometry methods follow the parallel tracking and mapping paradigm
for parallelization (e.g. [Forster et al., 2014, Engel et al., 2014, Mur-Artal et al., 2015]),
which was popularized by the method aptly called parallel tracking and mapping (PTAM)
[Klein and Murray, 2007] in 2007. A major reason given for this is the ability to decouple
tracking and mapping in the context of real-time processing. In particular, this allows
different timing constraints for tracking and mapping. E.g. while tracking usually runs
in a real-time fashion, the mapping component can perform more complex processing
on select keyframes or can process batches of consecutive frames in the manner of local
bundle adjustment. Running tracking and mapping in separate threads which can run
concurrently firstly allows the tracking thread to preempt other computations, which may
be used to meet real-time constraints, and secondly improves usage of available resources in
multi-core systems. We argue that the efficient usage of multi-core systems alone does not
justify the high amount of complexity required by this style of concurrent processing any
more. Indeed, since typically tracking uses a map as reference and mapping uses tracking
results for generating and updating maps, tracking and mapping operate on and modify
the very same data, which requires fairly complex synchronization methods to prevent race
conditions without overly harming efficiency. On the other hand, processing units with
multiple cores, each featuring simultaneous multithreading and/or SIMD vectorization,
have as of 2017 become ubiquitous. E.g. in the desktop segment, current high-end systems
have dozens of logical cores and the newest SIMD variant of the x86 architecture (AVX-512)
features 512-bit vector registers. Multi-core systems are standard in the mobile sector, with
SIMD provided e.g. by ARM’s NEON instruction set. GPUs have been using massively
parallel processing for decades, with GPUs featuring high numbers of wide and highly
multithreaded SIMD units.

Thus, in order to effectively make use of these kind of parallelized computing units, each
significant processing step of a visual odometry method should be fully parallelized and
vectorized, otherwise that processing step will become a bottleneck. This way, each
processing step can make usage of all of the available processing power. The choice
whether different processing steps run concurrently or sequentially is then mainly a choice
of latency and of thread synchronization complexity, not of total processing time.

74

6.4.2 Frame tracking

The frame tracking component determines the pose of a new frame relative to a given
keyframe, that is relative to a frame for which a depth map is available.

As in the original LSD-SLAM, frame tracking proceeds via direct image alignment. That
is, the valid pixels of the keyframe are reprojected to the pose candidate and the pixel
intensity of the old and new frame are compared. The intensity difference is robustified
via the Huber loss function and summed over all pixels to obtain the reprojection residual.
Minimization of the nonlinear residual proceeds via Gauss-Newton iteration. To further
facilitate the nonlinear minimization, this is performed in a coarse to fine scheme. That is,
the image resolution (and depth resolution) is halved multiple times and the first instance of
Gauss-Newton optimization is performed on the most coarse resolution. The pose estimate
resulting from this optimization is then used as the initial guess for the optimization on
the next-large resolution. This is repeated, yielding finer and finer estimates until the
native image resolution is reached.

The result of this estimation are the following.

• A pose estimate of the new frame relative to the keyframe

• The reprojection residual

• An estimate of the difference of lighting conditions of the new frame relative to the
keyframe. This estimation is performed simultaneously with the pose estimation
and used in both frame tracking and depth estimation to compensate for lighting
changes.

Compared with LSD-SLAM, the tracking module of C-LSD-SLAM features the following
innovations. Firstly, the reprojection is streamlined via projective formulation. LSD-SLAM
uses Cartesian coordinates in an intermediate step for reprojection, which requires several
excess operations and more importantly is vulnerable to divisions by zero for far away
points. Instead, C-LSD-SLAM performs the transformation fully in pinhole coordinates.
For these, the transformation from old to new frame is a projective transformation, hence
the reprojection is essentially performed by multiplying the pinhole coordinates of a pixel
with a 4 × 4 homogeneous transformation matrix and performing a normalization step
for the resulting homogeneous coordinates. Key advantages of this variant is that it is
simple, it is fast and works with any inverse depth such as points which lie on the plane
at infinity (zero inverse depth) and works even with points which lie beyond the plane at
infinity. This way, the algorithm allows freedom to choose what kind of pixel estimates
are used for image tracking.

Concerning a fast implementation, note that the steps required for each pixel are the
following:

75

• Reproject the pixel (cf. Example 9)

• Check whether it is still in the camera FoV and still in front of the camera (cf.
Example 9 for the latter check), discard the pixel otherwise.

• Calculate residuals and derivatives of residuals

These steps are independent for each pixel, so they lend themselves easily to parallelization.
The resulting residuals and derivatives then have to be summed over all pixels. This feat
is known as a parallel reduction step and is a standard problem in High Performance
Computing. There exist efficient solutions for parallel reduction for almost any system
featuring parallel processing. In the present implementation, both multithreading and SSE2
SIMD vectorization are used for parallelization. Accumulation in thread-local accumulation
variables is used for parallel reduction. Due to the small number of CPU threads available,
the computational cost of summing over the thread-local variables in the end is negligible.

To further reduce the computation time for frame tracking, a subsampling scheme is used
to involve less pixels of the keyframe in the image alignment. This is motivated by the
fact that due to various error sources, image alignment is an inexact process. Indeed, the
information provided by the depth map of the keyframe is much more information than
can be used for image alignment. Hence, image alignment is virtually unaffected if the
collection of input pixels is thinned. Decimation is performed for the various resolution
levels in such a way that for each non-decimated pixel there is a non-decimated pixel in the
next-coarser level covering it. This way, the objective function remains mostly consistent
between resolution levels. Among resolution levels, decimation starts with a decimation
factor of 1 (no decimation) and, beginning with a certain level, the decimation factor is
doubled for each succeeding level. This way, the levels with highest resolution have also
the highest decimation factor. In practice, we decimate by eliminating complete image
rows. That is a decimation factor of 1 means every image row is used. A decimation factor
of 2 means that every other image row is skipped. A decimation factor of 4 means that
only every fourth row is used and so on. Skipping whole rows has the advantage that
the above rule that every non-decimated pixel should have a "parent" in the previous
resolution level can be implemented easily. Furthermore, it results in good data access
patterns, thus improving caching and performance.

In practice, we e.g. obtain a speedup of a factor of about 4 over the variant without
decimation when using a decimation factor of 8 at the level with highest resolution.

Recall that the tracking of a new frame relative to the last frame proceeds by direct
image alignment. In particular for scenes with repetitive structures, the success of this
optimization scheme depends on availability of a reasonable initial guess. To improve
the performance in situations with high turn rates, C-LSD-SLAM uses the pose change
between the last frame and its predecessor as the initial guess for the pose change between

76

the last frame and the new frame.

6.4.3 Reprojection to a new keyframe

Reprojection is performed when the estimated geometry of a keyframe (i.e. its depth
map) is to be transferred to a new keyframe. For this step, the pose of the new keyframe
relative to the old keyframe needs to be known, e.g. from frame tracking. The reprojection
step reprojects the pixels from the depth map of the old keyframe to the new keyframe,
performs information reweighting according to the extended information filter or a variant
thereof and resolves collisions of reprojected pixels.

Reprojection itself is straightforward (cf. Example 9). We discuss information reweighting
in detail in section 6.6. Resolving pixel collisions is the main issue affecting implementation.
By pixel collision we denote the phenomenon that in reprojection, multiple source pixels
may be projected to the same target pixel slot. Without collision handling, the last of these
source pixels would simply fill the target pixel slot, thus overwriting the other source pixels
and destroying their information content unconditionally. LSD-SLAM detects collisions
by checking at reprojection of a source pixel whether there is already a pixel present
in the target pixel slot. Upon detection of a collision, it performs one of the following
operations. If the two pixels are far enough apart that the information values of their
depth estimates (e.g. the inverses of the estimation covariances) indicate that the points
are distinct, the situation is regarded as occlusion, so the closer one of the two pixels is
retained while the more distant one is discarded. Otherwise, the two estimates are merged
as two independent estimates of the same point.

Note that this variant for resolving pixel collisions requires that the source pixels are
processed sequentially since otherwise, several source pixels might arrive at a target pixel
slot concurrently thus breaking the sequential nature of the above collision handling. In
fact, the minimum requirement for this is that for each target pixel, the source pixels
arriving at this target pixel need to be serialized.

There is no efficient way to perform this serialization in parallel: One problem preventing
this is the fact that such a serialization would require parallel computation units to detect
collisions among themselves. Since parallel units generally do not have suitable means for
communicating directly with each other, such a detection would require the computation
units to detect a collision from their interaction with the target pixel slot. I.e. it would
require some sort of locking mechanism for each target pixel. While this might be feasible
with CPU technology with some efficiency decrease, it would likely severely affect efficiency
for other processor types such as GPUs.

The approach used in C-LSD-SLAM uses an approximate variant of collision resolution
which allows it to write a reprojected source pixel to a target slot without checking for

77

collision. We denote this approach stochastic collision avoidance. For this, each target
pixel does not feature one target slot, but multiple target slots called bins. The number of
bins per pixel is constant (e.g. 2 bins per pixel or 4 bins per pixel). When a reprojected
source pixel is to be written to a target pixel, one of the bins of the pixel is selected in
a pseudorandom fashion and the pixel is then written unconditionally to that bin. The
pseudorandom bin selection is designed in such a fashion that only few source pixels are
written to the same bin (in practice this mostly boils down to preventing collisions between
adjacent pixels in the source depth map). After reprojecting all source pixels in this fashion,
a second step is then performed for actually resolving collisions. For each target pixel, this
step regards which bins of the target pixel have been written with transformed source
pixels and then resolves these collisions sequentially. Note that there are no dependencies
between the target pixels, so this step can be performed in parallel for all target pixels.

A technical detail of writing to bins is that if there is concurrent writing to a bin from
multiple source pixels, then the end result should correspond to either of the source pixels
and should not be a mixture of the source pixels. I.e. writing to a bin needs to be an
atomic operation. Hence, the size of a bin should be at most the maximum atomic write
size of the processor (otherwise locking is required, which incurs a performance penalty).
Nowadays, many processors are capable of writing at least 64 bits atomically (in particular,
this is a standard feature of 64bit processors). Larger atomic write sizes are much rarer,
so the data of a bin needs to be fit into 64 bits, which requires a fair amount of data
squeezing.

6.4.4 The frame processing loop

We have already established that in order to process a new frame, several steps including
tracking, mapping and keyframe reprojection are performed. In the following, the frame
processing loop is explained in detail.

At the beginning of a frame cycle, the most recent frame is a keyframe, i.e. it has a depth
map. Let us call this the "old" keyframe. At the arrival of a new frame, the following
steps are performed:

(1) Preprocessing of the new frame (format conversion, rectification etc.)

(2) Tracking of the new frame relative to the old keyframe.

(3) Updating the depth map of the old keyframe by triangulation between the old
keyframe and the new frame

(4) Regularization of the depth map of the old keyframe

(5) Reprojection of the depth map of the old keyframe to the new frame. This way, the

78

new frame becomes the next keyframe.

(6) Regularization of the depth map of the new frame and hole filling

The first regularization (i.e. smoothing) step is necessary since the regularized inverse
depth values of the pixels are used for reprojection. However, note that in order to conserve
the amount of information, the raw (non-regularized) information values of the inverse
depth estimates have to be used for reprojection.

After reprojection, the depth map typically has various types of irregularities (gaps, effects
of spurious occlusions etc.), so the second regularization step mitigates this and provides a
smoothed depth map for both frame tracking and for triangulation.

6.4.5 Initialization

For visual odometry systems, initialization is a delicate step as misestimation of the
initial state may cause the system to diverge due to the nonlinearity of the problem. For
initialization, LSD-SLAM initializes the depth map of the first frame randomly. C-LSD-
SLAM basically follows the same approach, but chooses a different distribution for the
initial candidates. In particular, LSD-SLAM chooses the candidates for the inverse depths
uniformly between a positive minimum value (maximum distance) and a maximum value
(minimum distance). C-LSD-SLAM sets the minimum inverse depth to zero (i.e. infinite
distance). This way, candidates for all distances are provided by the initialization (the
minimum distance has no practical meaning since the scale factor is chosen arbitrarily
by the system) and thus the initial state fits a much wider range of scenes. Notably for
vehicle mounted cameras facing forwards, the region the camera is moving towards is the
road in front of the vehicle, so it typically features large distances. The variant used in
LSD-SLAM does not have viable candidate depths for this region, so the system needs
to first reject all of these candidates before it can create valid depth estimates in this
region, which is a process that often takes many frames. In the C-LSD-SLAM variant,
convergence is much quicker, which also reduces the likelihood of the system diverging at
initialization.

C-LSD-SLAM additionally features an initialization technique specifically targeted at
car-mounted cameras: A car cannot turn without driving a curve, so a car-mounted
camera (approximatively) does not rotate while moving in a straight line. Moving in
straight line is the most difficult situation for initialization. C-LSD-SLAM assumes that
the camera orientation does not change in the first few frames. If the camera orientation
indeed stays approximatively the same (i.e. the vehicle is driving in a straight line), this
greatly helps the initialization process. If the camera turns, the vehicle does not drive
in a straight line, which is a much easier initial situation where the system can usually
initialize successfully despite having made incorrect assumptions.

79

Figure 10: Instability of non-robustified C-LSD-SLAM on sequence 06 of the KITTI
odometry challenge. Distance estimates of the depth maps are colored from
blue (far) over green to red (near).

6.5 Instability in forward motion

In its bare implementation, C-LSD-SLAM suffers from unstable behaviour in forward
motion. Since forward motion is the default situation of our targeted application, this is
important.

In the following we will first describe and analyse this behaviour. Then, our mitigation
method is introduced and analyzed, which is based on a reweighting strategy when
reprojecting pixels from a keyframe to a new keyframe.

6.5.1 Description

For sufficiently fast forward motion, C-LSD-SLAM suffers from a type of instability where
erroneous depth estimates propagate over the image, eventually causing tracking divergence
or failure. For example in the sequence given in fig. 10, the upper image shows invalid
distance estimates appearing near the epipolar direction, which then propagate mainly to
the left. The lower image shows the situation several frames later. Here, invalid distance
estimates have overtaken a large part of the image, causing tracking divergence several
frames later.

The basic mechanism underlying this behaviour is as follows. Near the epipolar direction,
the relative object motions are very small and their interpretation in terms of object distance
is extremely sensitive to errors in the estimate for the epipolar direction, cf. Remark 27.
Hence, distance estimates near the epipolar direction are often highly erroneous. Note
that we assume that we are driving forward, i.e. right in the epipolar direction. I.e. we
drive towards this zone of erroneous estimates near the epipolar direction. Among these
erroneous estimates, those which are much closer than the correct distance are particularly
problematic: Due to their large inverse depth, their predicted apparent motion is large, so

80

they move rather quickly away from the epipolar direction. If such an estimate happens to
be confirmed by a mismatch (which is not uncommon, in particular if the images patches
used for matching are small such as in LSD-SLAM and C-LSD-SLAM), the large apparent
motion causes the incorrect estimate to have a high information value. Such incorrect
estimates with high confidence often accumulate on one side of the epipolar direction
(often covering a large area of the image), which influences the tracking. Tracking errors
in turn cause more errors near the epipolar direction, which tends to cause runaway error
amplification, with the ultimate result being the divergence of the method.

6.5.2 Analysis

In the following, we describe two effects which, in combination, may cause runaway error
amplification as explained below.

Remark 27 (Disparity poles caused by an incorrect epipolar direction, cf. also
[Vedaldi et al., 2007]). In this part, we describe an effect which causes poles of the
disparity estimate near the epipolar direction. This is particularly important in forward
motion since in forward motion, the epipolar direction and thus the poles are in the center
of the camera image. In sideway motion, these poles are usually outside the image and
thus less problematic.

For simplicity, we describe this in the 2D case. Suppose that the camera moves in a
straight line forward. Suppose that the camera moves along two lines which are parallel to
the movement direction, one on each side of the camera. In the 3D case, this is roughly
equivalent to moving along structures parallel to the movement direction such as opposing
building facades and the street surface. We will model the geometry in front of the camera
via pinhole coordinates. As we parametrize the visible scene parts, we can use the image
coordinate u as independent coordinate and model the inverse distance of the visible scene
parts as d = d(u). The transform from Cartesian coordinates to (2D) pinhole coordinates
preserves lines cf. Definition/Remark 6, so the two lines parallel to the movement direction
are also lines in pinhole coordinates. Hence, we may parametrize these lines via the
equations

d1(u) =a1u + b1

d2(u) =a2u + b2.

We assume that the first line is to the left of the camera (u ≤ 0) and the second is to
the right (u ≥ 0). Since the two lines intersect at infinity straight in front of the camera,
we have d1(0) = d2(0) = 0, hence b1 = b2 = 0. For simplicity, we assume that the lines
have both a "unit" distance to the camera, that is a1 = −1 and a2 = 1. Hence, we may

81

combine d1 and d2 to the following scene geometry description:

d(u) = |u|

This concludes the set up of the scene in front of the camera.

Now, suppose that the camera moves infinitesimally with translation

(
∆x

∆z

)
and rotation

angle ∆α. By the infinitesimal transformations given in Example 11, the points of the
scene are reprojected to(

u

d

)
+ ∆x

(
d

0

)
+ ∆z

(
−du
−d2

)
+ ∆α

(
u2 + 1

du

)
.

Since the first component determines the projection to the camera, the transformed points
are visible on the image line at position

u + ∆xd−∆zdu + ∆α(u2 + 1)

and the observed displacement from the original position u is

D(u) = ∆xd−∆zdu + ∆α(u2 + 1).

Now, suppose that the real motion is ∆x = 0, ∆α = 0 and ∆z = 1, i.e.

Dr(u) = −dru.

Performing triangulation from this displacement yields the following equation for the
estimated inverse depth d.

−dru = ∆xd−∆zdu + ∆α(u2 + 1)

Solving for d yields

d =
dru + ∆α(u2 + 1)

∆zu−∆x
.

I.e. the estimate d has a pole at u = −∆x
∆z

.

In fig. 11, we have simulated the resulting inverse depth estimate. It clearly shows that
the continuous ground truth inverse disparity function is distorted into a discontinuous
estimate. In particular, there is a section where the estimate diverges to negative infinity,
meaning that the scene is estimated to be far behind the plane at infinity. For comparison,
fig. 12 shows development of such a singularity in C-LSD-SLAM.

82

0.6

0.4

0.2

0

-0.2

0.40.20-0.2

d_r

d

-0.4
u

Figure 11: Plot of pole development for estimated camera movement α = −0.01, ∆z = 1,
∆x = 0

Remark 28 (Mechanism for error retention). Note that if the camera pose is misestimated,
its effect on triangulation will tend to make future camera pose estimates consistent with
the original error. Consider the case of forward motion, that is the epipolar direction
is at the center of the image. Consider the case that between two frames, there is a
misestimation of the camera yaw motion with the effect that the apparent object motion
relative to a rotation-compensated pose is overestimated to the left of the epipolar direction
and underestimated to the right of the epipolar direction. This will cause the inverse
depths on the left image half to be overestimated and the inverse depth on the right image
half to be underestimated. Note that the uncertainty of the pose estimate causing these
errors of the inverse depth estimates is not regarded in future steps of the algorithm. In
particular, the frame tracking for the succeeding frame will try to find a pose estimate
which fits the incorrect inverse depth estimates as close as possible. Generally, this will
replicate the error of the pose estimate between the original frames to some degree since
this choice of pose estimate generally replicates the errors in the inverse depth estimates.

83

Figure 12: Pole development in the KITTI odometry benchmark challenge 21. color
changes from near to far points from red over green to blue. Points at or behind
infinity are white. Points far beyond infinity are yellow

The combination of the effects described in Remark 27 and Remark 28 yield divergent
behaviour. While the effect described in Remark 27 means that even small errors of the
pose estimate may cause singularities in the inverse depth estimates, that is potentially
unbounded errors, the effect described in Remark 28 means that these effects can only
slowly be eliminated. So a small error in the estimation of the epipolar direction may cause
large errors near the epipolar direction and also (as described in Remark 28) a systematic
error in the inverse depth estimates of the whole depth map. In combination, the result
of these effects is often that the error of the estimation of the epipolar direction is even
worse in the next frame, ultimately leading to the divergence of the method.

6.5.3 Mitigation strategies against divergent behaviour

The analysis above suggests two possible approaches for preventing divergent behaviour.
The first is to mitigate the emergence of singularities near the epipolar direction. The
second is to better remove the effects of incorrect pose estimates from the inverse distance
estimates. In the sequel, we will pursue the former approach. The latter approach will be
discussed in detail in section 7.

84

6.6 Reweighting scheme against singular behaviour near the

epipolar line

The concept underlying our method for mitigating the behaviour described in Remark 27
is to prevent the noisy distance estimates near the epipolar direction from gaining influence
in larger image parts by suitable weighting and depth estimation strategies.

Erroneous distance estimates near the epipolar direction can be separated into two classes,
distinguished by whether they are further away or closer than the real distance. The
estimates which are too far away tend to stay close to the epipolar direction, i.e. they
stay within the region of high uncertainty surrounding the epipolar direction. Our only
measure targeting these estimates is disabling the usage of negative inverse depth results
in the depth estimation component, since negative inverse depth estimates can be caused
by incorrect estimation of the epipolar direction.

On the other hand, distance estimates which are too close tend to move rapidly away from
the epipolar direction, i.e. to a region where depth estimation uncertainties are much lower
than near the epipolar direction. If it happens to be that the bogus estimate is confirmed
in the depth estimation step (by a mismatch), we have an incorrect depth estimate on
which the system places high confidence. Due to their closeness and high confidences,
incorrect depth estimates of this type have the capability of strongly affecting the tracking
component, in particular the estimation of the epipolar direction. Misestimation of the
epipolar direction in turn causes systematic underestimation of pixel distances on one side
of the epipolar direction (on the other side, distances are overestimated), which can cause
error runaway.
To prevent this, we penalize all approaching pixels when reprojecting them from a keyframe
to a new keyframe. In particular, we multiply the information estimate for their inverse
depth by the factor

F (distold, distnew) :=

(
distnew
distold

)c
=

(
d

d′

)c
, (23)

where the exponent c is a positive number and d = 1
distold

, d′ = 1
distnew

are the inverse depths
of the old (original) and new (reprojected) depth values. For distance estimates which are
too small, the fraction

(
distnew

distold

)
is smaller than the "true" value, so these estimates are

penalized more heavily than correct estimates or depth estimates which are too large.

Experimentally, we have found values from c = 8 up to c = 13 to give good results. In this
section, we use c = 13 for evaluation. Higher values for c tend to make the whole system
more stable when faced with high movement speeds or scenes with moving objects near
the epipolar direction. However, it should also be noted that decreasing depth estimate
confidences means increasing the confidence region of the depth estimate. This causes the

85

depth estimation module to perform stereo matching for longer intervals of the epipolar
line, thereby increasing the required computational effort.

Remark 29 (Effect of reweighting strategy on information efficiency). Note that the
reweighting strategy described above actively discards information. Here, we will give an
approximation on how much information is actually discarded.

Note that if a inverse depth d is reprojected with longitudal pose difference ∆z, the new
inverse depth is

d′ =
1

z′
=

1

z −∆z
=

1
1
d
−∆z

=
d

1− d∆z
,

so the reverse is

d =
d′

1 + d′∆z

with the derivative

dd

dd′
=

(1 + d′∆z)− d′∆z
(1 + d′∆z)2

=
1

(1 + d′∆z)2

=

(
1

1 + d′∆z

)2

=

(
d

d′

)2

.

The reweighting factor in an orthodox extended information filter is
(

dd
dd′

)2
=
(
d
d′

)4, cf.
Remark 26, which corresponds to a exponent of c = 4 in eq. (23). Reweighting approaching
pixels with a larger exponent means placing lower weight on more distant estimates than
the extended information filter suggests.

So let us approximate the total information. Suppose that d = 1
z
is the inverse depth at

the last observation. Suppose that the distances of all observations are zk = z + k∆z,
i.e. the vehicle is moving with constant speed toward the object. This yields the inverse
depths

dk :=
1

zk
=

1

z + k∆z
=

1
1
d

+ k∆z
=

d

1 + kd∆z
. (24)

Suppose that the estimation of the object position starts with the estimation of dn and an
information of i. Suppose that in each succeeding estimation step, the information in := i

is gained from observation and fused with (i.e. added to) the reweighted information from
the previous step. I.e.

ik = i+

(
dk+1

dk

)c
ik+1

86

for k = n− 1, . . . , 0. Unrolling this recursion, we obtain

ik =
n∑
j=k

(
dj
dk

)c
i

for k = 0, . . . , n. Using approximation of sums by integrals, this yields the following:

i0 =
n∑
j=0

(
dj
d0

)c
i

(24)
= i

n∑
j=0

(
1

d

d

1 + jd∆z

)c
= i

n∑
j=0

(
1

1 + jd∆z

)c
≈i
∫ n

j=0

(
1

1 + jd∆z

)c
dj =

i

1− c

[
1

(1 + jd∆z)c−1

]n
j=0

=
i

1− c

[
1− 1

(1 + nd∆z)c−1

]
Note that the term 1

1−c is monotonously decreasing in c and that for positive ∆z (which

is always the case for approaching pixels), the term
[
1− 1

(1+nd∆z)c−1

]
is monotonously

increasing in c. I.e. the decrease of 1
1−c is greater than the total information decrease.

Hence, we can obtain a rough upper bound on the information loss caused by increasing c
by examining the behaviour of the term 1

1−c . Recall that the extended information filter
suggests c = 4. Hence, the factor of information decrease caused by setting c > 4 can be
roughly bounded by

q ≈
1

1−c
1

1−4

=
3

c− 1

Hence, the (rather large) choice c := 10 roughly decreases the information by a factor of
q ≈ 1

3
, which is quite significant, but much less dramatic as the appearance of c in the

exponent of (23) might suggest at first glance.

6.7 Evaluation

We use the sequences of the KITTI odometry benchmark[Geiger et al., 2012] for evaluation.
The main reason for this choice is that these datasets feature very long sequences, hence the
stability of C-LSD-SLAM can be investigated which was a key objective of the development
of C-LSD-SLAM.

87

Figure 13: Tracking result for sequence 08 of the KITTI odometry challenge
[Geiger et al., 2012]. Upper plot: full resolution input (1226×370). Lower plot:
half resolution input (584× 184). The trajectories are aligned at the middle
of the sequence. We use a simple variant of ground plane estimation (cf. e.g.
[Song and Chandraker, 2014]) to determine the absolute scale.

Figure 14: Tracking result for the sequence 08 of the KITTI odometry challenge, with
absolute scale estimation enabled only at the beginning of the sequence. The
scale drifts towards larger scales.

88

(a) dataset 01 (b) dataset 02

(c) dataset 03 (d) dataset 04

Figure 15: Trajectories generated by C-LSD-SLAM at full resolution on the training
datasets 01 to 04 of the KITTI odometry challenge

89

(a) dataset 05 (b) dataset 06

(c) dataset 07 (d) dataset 08

Figure 16: Trajectories generated by C-LSD-SLAM at full resolution on the training
datasets 05 to 08 of the KITTI odometry challenge

90

(a) dataset 09 (b) dataset 10

Figure 17: Trajectories generated by C-LSD-SLAM at full resolution on the training
datasets 09 and 10 of the KITTI odometry challenge

6.7.1 Tracking stability

Generally, C-LSD-SLAM is highly stable. We tested C-LSD-SLAM on all 21 sequences of
the KITTI odometry challenge. There are three sequences (01, 12 and 21) on which C-LSD-
SLAM shows signs of instability, that is significant areas near the epipolar direction with
incorrect depth estimates. All of these are on highway scenes, with regions of instability
typically initiating near moving vehicles near the epipolar direction. Only in sequence 21,
the system becomes actually unstable. In sequence 21, the system switches several times
between periods of correct operation and divergent behaviour. This behaviour may be
attributed to the fact that highway scenes have very low scene structure, hence it is difficult
for the system to eliminate the influence of moving objects. C-LSD-SLAM performs very
well in urban scenes. In particular situations where the vehicle turns around corners, which
are difficult for the original LSD-SLAM due to the fast change of perspective, are handled
easily by C-LSD-SLAM. In fact, during turns C-LSD-SLAM reliably recovers even from a
completely diverged tracking state (e.g. due to initialization failure).

6.7.2 Scale drift and absolute scale determination

Without a method to determine the absolute scale, C-LSD-SLAM shows a consistent scale
drift towards increasing scales (cf. fig. 14). In order to make reasonable comparisons
with ground truth trajectories, we use a simple variant of ground plane estimation (cf. e.g.
[Song and Chandraker, 2014]) to determine the absolute scale. It is performed by fitting
a plane to the depth estimates in a small image area corresponding to the road patch in

91

Figure 18: Rotational accuracy of C-LSD-SLAM on the datasets 01 to 10 of the KITTI
odometry challenge as computed by the KITTI development kit. Top: rotational
accuracy relative to travelled distance. Bottom: rotational accuracy relative to
speed

front of the vehicle and then using this plane to estimate the height above the ground.
This method works only if the road in front of the vehicle has sufficient texture to allow
depth estimates, which fails e.g. for very smooth road surfaces or high speeds (motion
blur).

6.7.3 Accuracy

In figs. 15 to 17, we have plotted the trajectories estimated by C-LSD-SLAM for the
training datasets of the KITTI odometry challenge over the ground truth trajectories.
Note that for dataset 01, the absolute scale estimation fails, which is an effect of the
road surface being too smooth for depth estimation by C-LSD-SLAM. The absolute scale

92

estimation also gives incorrect results in dataset 09.

As plotted in fig. 18, the rotational error for longer sub segments of the training datasets
of the KITTI datasets at full resolution is around 0.005deg/m. This is neither particularly
good nor particularly bad for a monocular slam method. Translational errors can be
quite high (e.g. ca. 50% in dataset 01), which is caused by failures of the absolute scale
estimation as described above.

6.7.4 Performance

At full resolution (ca. 1200×370px) of the KITTI datasets, C-LSD-SLAM runs at about
7fps on a (rather old) Intel Core i5 M540 (dual core, 2.53GHz) and at about 30 fps at half
resolution (ca. 600×180px). On a more recent Intel Core i7-6820HQ (quad core, 2.7GHz),
we obtain about 20fps at full resolution.

6.8 Conclusion

C-LSD-SLAM is a variant of LSD-SLAM following the filter-based visual odometry
paradigm. By employing a reweighting scheme for approaching pixels, C-LSD-SLAM
has been made robust for situations with fast forward motion. In particular, C-LSD-
SLAM features stable tracking on the sequences of the KITTI odometry challenge, which
is in the original variants of LSD-SLAM a feature exclusive to the stereo variant of
LSD-SLAM[Engel et al., 2015].

C-LSD-SLAM performs very well in situation with fast changes of perspective as often
encountered in urban scenes. However, it struggles with scenes with little structure, in
particular if there are moving objects present.

93

7 Efficient approximation of the information matrix

In section 6, we have obtained an computationally efficient filter-based direct visual
odometry method by approximating the information matrix of the scene point estimates
with a diagonal matrix. As this is a somewhat crude way to handle the information matrix,
we are interested in more exact techniques for approximating the information matrix,
in particular with regard to the correlation of the scene point estimates introduced by
uncertainty of the camera pose estimates. In this section, we introduce a solution to this
which retains the linear complexity featured by the approximation with diagonal matrices.

Given the vector space H of inverse depth estimates of the scene points, the core idea
underlying this approach is to "compress" the correlations caused by the pose uncertainty
into a subspace L of H of fixed dimension (in our case dimL = 15). A technical challenge
with this approach is the fact that as L needs to be large enough to accommodate all kinds
of pose estimation uncertainties in a unified fashion, it is usually "too large" for the pose
estimation uncertainty encountered in a concrete situation. More precisely, this means that
the important operations typically happen in a strict subspace of L. Preventing degenerate
behaviour in the remaining, unattended components of L is solved in our approach by
some careful manipulation of explicitly rank-deficient matrices.

7.1 Introduction

In section 6.2, we have motivated approximating the information matrix. More specifically,
note that mitigation of the effect described in Remark 28 means being able to efficiently
correct errors of the pose estimation a posteriori. A crucial part for this is being able
to model the effects of these errors of the pose estimates in the approximation of the
information matrix used. In particular this means we need to obtain a more sophisticated
approximation of the information than the approximation by a diagonal matrix used in
section 6:

In eq. (22), the function K models the observation process in the VO problem. Its total
derivative DK has the structure

dK

d(p, k)
=
(

dK
dp

dK
dk

)
obtained by separating the derivatives with respect to the scene point estimates from the
derivatives with respect to the camera pose estimates.

As the extended information matrix is f 2
(

dK
d(p,k)

)T (
dK

d(p,k)

)
, cf. Remark 25, the matrix

f(dK
d(p,k)

) is a square root of the information matrix, cf. Remark 18, thus we can use the
simplification and reduction techniques of the square root form, cf. Remarks 19 and 23.

94

Note that for fixed camera pose estimates, the observations of the scene points are
independent. In practice, this means that we have

〈
∂K
∂pi
, ∂K
∂pi′

〉
= 0 for i 6= i′, i.e. the

columns of dK
dp

are orthogonal, which can be verified by eq. (21).

Thus we may find an orthogonal transformation Q of the columns of f dK
dp

such that Qf dK
dp

has the form

Qf
dK

dp
=

(
E

0

)

for a diagonal matrix E (note that notion of E here differs from the one in section 6.2).
Applying this to the total derivative of K yields the block structure

Qf
dK

d(p, k)
=

(
E F0

0 A0

)

for some matrices F0, A0.

Note that F0 has as many columns as there are degrees of freedom in all pose estimates
combined. Now, if we can find a subspace L such that all columns of F0 (approximatively)
lie in L, we can choose a basis BL of L and represent the columns of F0 approximately as
linear combinations of the elements of BL. Interpreting BL as a matrix and collecting the
coefficients of the linear combinations in a matrix C0, we obtain

F0 ≈ BLC0.

Hence, we have

Qf
dK

d(p, k)
≈

(
E BLC0

0 A0

)
=: S0

By Remark 19, we may replace the square root of the information matix f dK
d(p,k)

with
Qf dK

d(p,k)
, so we may replace it approximately with S0. Consider the case that there are

many camera poses, i.e. the number of degrees of freedom in the camera poses (i.e. the
number of columns in C0) exceeds the fixed dimension dimL (which is the number of rows
of C0). Hence C0 has more columns than rows. By using the LQ decomposition (dual of
QR decomposition), we may find an orthogonal transformation Q̃ such that

C0 =
(
C 0

)
Q̃

95

for an (dimL)× (dimL)-matrix C. For the square root S0, we obtain

S0 =

(
E BL

(
C 0

)
Q̃

0 A0

)
=

(
E BL

(
C 0

)
0 A0Q̃

T

)(
1 0

0 Q̃

)
.

We are now ready to replace the uncertainty of the camera pose estimates in S0 with an

abstract structure in L. Transforming S0 on the right hand side with the matrix

(
1 0

0 Q̃T

)
(thus reparametrizing the camera poses) and splitting this parametrization of the camera
poses along the decomposition of the matrix

(
C 0

)
, we obtain

S̃0 :=S0

(
1 0

0 Q̃T

)
=

(
E BLC BL0

0 A′0 A′′0

)

=

(
E BLC 0

0 A′0 A′′0

)
(25)

for some matrices A′0, A′′0. The columns of S̃0 are now decomposed into three blocks. The
first block consists of the parameters of the scene point estimates. The middle block has
dimL components, and represents the "relevant" components of the pose parameters,
whereas the last block represents "excess" components of the pose parameters.

The last form given in (25) shows that reducing the "excess" components (cf. Remark 22)
from the state vector only affects A′′0 (which is eliminated by the reduction) and A′0 (giving
a reduced matrix A′), yielding the reduced form

S̃ =

(
E BLC

0 A′

)

Recall that C is a (dimL)× (dimL)-matrix, hence A′0 has dimL columns. By simplifying
A′ via Remark 19 until it has only dimL rows or by adding zero-rows to A’ until it has
dimL-rows, we may modify S̃ into the form

S =

(
E BLC

0 A

)
(26)

for a (dimL)× (dimL)-matrix A.

Let n be the number of scene point estimates. Note that for the square root of the (reduced)
information matrix given in eq. (26), the submatrix E is an n× n diagonal matrix, the
matrices A and C are (dimL)× (dimL)-matrices and the matrix BL describing a basis of
L is an n× (dimL)-matrix, giving overall linear complexity in n. As we will see below,
our variant actually does need not store BL explicitly.

96

Note that from a high-level perspective, the essential steps in obtaining this form were:

(1) Approximating the columns of the matrix F0 (which describes how variations of the
pose estimates affect the scene point estimates) with elements of the linear space L,
with L being a subspace of all scene point estimates of fixed dimension.

(2) Reducing the space of camera pose estimates in such a way that the remaining degrees
of freedom have the same dimension as L and can be described using L. These
remaining degrees of freedom describe the uncertainty of the scene pose estimates
incurred by uncertainty of the camera poses in a unified, abstract fashion.

7.2 Implementation in pinhole coordinates for direct methods

In the following we describe how to apply the concept introduced above to the VO
parametrization in pinhole coordinates. In particular:

• The subspace L is defined.

• A method for updating a square root form eq. (26) with the observations of a new
image is given.

• A method for reprojecting a square root form eq. (26) to a new keyframe is given
(square root forms are given relative to a camera pose, cf. below).

7.2.1 Perspective parametrization

In the following, we parametrize all scene point estimates via their 2D-coordinate on the

current camera image u :=

(
u

v

)
, with

u

v

d

 being the pinhole coordinates of a scene point

in pinhole coordinates. While the method does not prevent the usage of more generally
suited parametrizations of the scene points, we use this variant since it simplifies notation
greatly.

For a scene point p with pinhole coordinates

u

v

d

 relative to a certain camera pose, let

Pu :=

(
−uv 1 + u2 −v

−(1 + v2) uv u

)

Su :=

(
1 0 −u
0 1 −v

)

97

Qu :=

(
d 0 −ud
0 d −vd

)
=dSu.

Pu is used for describing uncertainty in the rotation part of camera poses, Qu is used for
the translation part. Note that these formulas can be motivated from the derivatives given
in eq. (1) and we will use eq. (1) to that end later.

Let I(u) be the image intensity at the image coordinate u. Let g(u) be the image gradient
at the image coordinate u.

For δCT , δCR ∈ R3 ⊗ R3 and d = d(u) being the inverse depth estimate of the point
denoted by u, let

F (u, d)

(
δCT

δCR

)
:= d((g(u)fSu)⊗ (g(u)fSu))(δCT) + ((g(u)fSu)⊗ (g(u)fPu))(δCR).

(27)

Here, the row vectors (g(u)fSu) and (g(u)fPu)) are regarded as linear maps R3 → R, with
their tensor products being linear maps R3 ⊗ R3 → R. The usage of the tensor product
here is a crucial technical step which allows us to reformulate a bilinear map as a linear
map. For example, the bilinear map (c, c′) 7→ (g(u)fSu)c · (g(u)fSu)c′ can be reformulated
as the linear map (c⊗ c′) 7→ ((g(u)fSu)c⊗ (g(u)fSu)c′)(c⊗ c′) = (g(u)fSu)c · (g(u)fSu)c′.

Recall that the diagonal matrix E in eq. (26) has one entry diagonal per estimated scene
point. We denote these entries by i(u) and assume by convention that i(u) > 0 for all u
(otherwise, we may change the signs of a row in eq. (26)).

We define the vectors(
1

i(u)
(F (u, d)

(
δCT

δCR

))
u

for δCT , δCR ∈ R3 ⊗ R3

to be the elements of the subspace L. As the tensor product R3⊗R3 has dimension 9, L has
dimension at most 9+9 = 18. Note however that the tensor product ((g(u)fSu)⊗(g(u)fSu))

in eq. (27) is symmetric, so we may restrict δCT to symmetric tensors of R3 ⊗ R3 without
changing L. As the space of symmetric tensors in R3 ⊗ R3 has dimension 6, the linear
space L has dimension 6 + 9 = 15.

In this venue, we suppose the columns of V in eq. (26) to be vectors

(
δCT

δCR

)
, with δCT

being a symmetric tensor in R3⊗R3 (and using a parametrization with 6 parameters) and
with δCR being an element of R3 ⊗ R3.

98

7.2.2 Update in perspective parametrization

Suppose we have a square root form (26). By the above, its precise form is

S =

diag(i(u))u

(
1
i(u)

F (u, d)V
)
u

A


We call such a square root form a standard form. Note that we will sometimes regularize
the denominator of 1

i(u)
with a small regularization term ε > 0, yielding the fraction 1

i(u)+ε
.

For convenience, we introduce the shorthand(
i(u)(δd(u)) 1

i(u)
F (u, d)V c

Ac

)
(28)

for S.

This shorthand uses the convention that if u appears in a block in the first row, the block
is a diagonal matrix, with the diagonal entries given by the formula in the block and
letting u run over all estimated scene points. If u appears in a block in any other row, the
rows of the block are indexed by letting u run over all scene points; a row is then given by
evaluating the formula of the block at its index u. Blocks without u are written literally.
Zero blocks are left empty. Furthermore, instead of writing the degrees of freedom as a
vector multiplied at the right of S, the degrees of freedom δd(u) and c (and later c′ and
d′) are written directly into the blocks for better legibility.

We want to update the standard form S with the observations obtained from a new frame.

To add the new information, the basic concept is to compute the total derivative (Jacobian)
of the function modelling the noise-free observation process and to concatenate the Jacobian
at the end of S, cf. Remark 20. To obtain the update of S in standard form, we cannot
use the Jacobian directly but need to use an approximation.

Suppose the transformation of Cartesian coordinates relative to the current camera pose
to Cartesian coordinates relative to the new camera pose is (x 7→ Rx+ t).

Let π = π(u) := fu+

(
cx

cy

)
be the projection of a scene point to its image coordinate in

the current frame. Similarly, π(u′) = fu′+

(
cx

cy

)
is the projection to its image coordinates

in the new frame. Let I, I ′ be the intensity functions of the current and new frame and let
g, g′ be their gradient.

Suppose given a point p with image coordinate u =

(
u

v

)
and inverse depth d relative

99

to the current camera pose. Setting U :=

u

v

1

, Example 9 shows that the pinhole

coordinates reprojected to the new camera pose areu′

v′

d′

 =
1

R3,−U + t3d

R1,−U + t1d

R2,−U + t2d

d

 .

The derivative of the image coordinates with respect to d is

dπ′(u′)

dd
=

d

dd
f

(
u′

v′

)
R.10
≈ f

(
d′

d

)2
(
t1 − t3u
t2 − t3v

)

≈f

((
t1

t2

)
−

(
u

v

)
t3

)
=fSut.

For the approximations, we use the assumption of Remark 10 that the rotation between
the current and the new camera pose is small and also that the translation between the
poses is small, yielding d′ ≈ d.

For the derivatives of π′(u′) with respect to the pose difference between new and current
camera pose, we use similarly the assumption of small camera movement to obtainu′

v′

d′

 ≈
u

v

d

. Inserting this into (1) yields the approximate derivatives

dπ′(u′)

dt
≈fdSu

dπ′(u′)

dR
≈fPu.

Now, noting that in direct VO methods, we measure the image intensity I ′, which has the
gradient g′(π′(u′)) ≈ g(π(u)), we obtain the approximation of the Jacobian(

(gfSut)δd(u) d(u)(gfSu)(δt) + gfPu(δR)
)

for variation in d, R and t.

100

Adding this to S yields i(u)(δd(u)) 1
i(u)

F (u, d)V c

Ac

(gfSut)δd(u) d(u)(gfSu)(δt) + gfPu(δR)


Setting j(u) := |gfSut| yields
i(u)(δd(u)) 1

i(u)
F (u, d)V c

Ac

j(u)δd(u) 1
j(u)

(d(u)(gfSut)(gfSu(δt)) + (gfSut)(gfPu(δR)))



i(u)(δd(u)) 1

i(u)
F (u, d)V c

Ac

j(u)δd(u) 1
j(u)

(F (u, d)(t⊗ (δt), t⊗ (δR))


Choose W := ((δt, δR) 7→ (t⊗ δt, t⊗ δR)), which is a rank deficient operator,

substitute (δt, δR) with d ∈ R6:
i(u)(δd(u)) 1

i(u)
F (u, d)V c

Ac

j(u)δd(u) 1
j(u)

F (u, d)Wd


Apply rotation matrices

1√
i(u)2 + j(u)2

(
i(u) j(u)

j(u) −i(u)

)
on the left hand side to rotate

the blocks of the left column onto a single block:
√
i(u)2 + j(u)2(δd(u)) 1√

i(u)2+j(u)2
F (u, d)V c 1√

i(u)2+j(u)2
F (u, d)Wd

Ac
j(u)

i(u)
√
i(u)2+j(u)2

F (u, d)V c − i(u)

j(u)
√
i(u)2+j(u)2

F (u, d)Wd


Regularize denominators:
√
i(u)2 + j(u)2(δd(u)) 1√

i(u)2+j(u)2
F (u, d)V c 1√

i(u)2+j(u)2
F (u, d)Wd

Ac
j(u)

(i(u)+ε)
√
i(u)2+j(u)2

F (u, d)V c − i(u)

(j(u)+ε)
√
i(u)2+j(u)2

F (u, d)Wd


Simplify lower row (cf. Remark 19), with the matrices Ĝ, Ĝ′ each

having 15 + 6 = 21 rows:
√
i(u)2 + j(u)2(δd(u)) 1√

i(u)2+j(u)2
F (u, d)V c 1√

i(u)2+j(u)2
F (u, d)Wd

Ac

Gc G′d


Find orthogonal transformation

(
c

d

)
= Q

(
c′

d′

)
, c′ ∈ R15, d′ ∈ R6

101

such that
(
V W

)
Q =

(
V ′ 0

)
via an LQ decomposition of

(
V W

)
:√i(u)2 + j(u)2(δd(u)) 1√

i(u)2+j(u)2
F (u, d)V ′c′

Ĝc′ Ĝ′d′


Eliminate d′ by reduction (cf. Remark 23). As d′ is already isolated, only Ĝ and Ĝ′

are affected:√i(u)2 + j(u)2(δd(u)) 1√
i(u)2+j(u)2

F (u, d)V ′c′

A′c′



Note that this is in standard form, hence it gives the update of S.

7.2.3 Rescaling in perspective parametrization

Note that C-LSD-SLAM (as does LSD-SLAM) tracks the scene scale explicitly by periodi-
cally rescaling the scene point estimates in such a way that their average inverse depth is
1 and by tracking these scale modifications in the pose graph. In the following, we show
how to perform such rescaling for a standard form S.

Rescaling proceeds by rescaling the inverse distance estimates via a substitution

d′(u) := r · d(u)

for some scale factor r ∈ R∗. We have δd′ = rδd, hence

d =
1

r
d, δd =

1

r
δd′.

For convenience, we split the matrix V of the standard form (cf. (28)) along the decompo-

sition

(
δCT

δCR

)
of F (u,d) in (27) into V =

(
Vt

VR

)
.

This yields(
i(u)(δd(u)) 1

i(u)
F (u, d)V c

Ac

)

=

(
i(u)
r

(δd′(u)) 1
i(u)

F (u, d)V c

Ac

)
i′(u):=

i(u)
r=

(
i′(u)(δd′(u)) 1

ri′(u)
F (u, d)V c

Ac

)

102

=

(
i′(u)(δd′(u)) 1

ri′(u)
d(u)((gfSu)⊗ (gfSu))(Vtc) + ((gfSu)⊗ (gfPu))(VRc)

Ac

)

=

(
i′(u)(δd′(u)) 1

i′(u)
d′(u)((gfSu)⊗ (gfSu))(

1
r2
Vtc) + ((gfSu)⊗ (gfPu))(

1
r
VRc)

Ac

)

=

(
i′(u)(δd′(u)) 1

i′(u)
F (u, d′)V ′c

Ac

)

for V ′ :=

(
1
r2
Vt

1
r
VR

)
.

7.2.4 Reprojection

Suppose that we want to transform points as well as a standard form from an (old) camera
pose to a new camera pose. Suppose that the transformation from coordinates relative
to the old camera pose to coordinates relative to the new camera pose is given by the
Euclidean transformation E = (x 7→ Rx+ t) for a rotation matrix R and translation vector
t.

Suppose given p ∈ R3 to be reprojected, with pinhole coordinates

u

v

d

. Let p′ := E(p)

be the transformed point, with pinhole coordinates

u′

v′

d′

. See also Example 9 for a

description of Euclidian transformations in pinhole coordinates. Let π : R3 → R2 be the

projection of a point to its image coordinates, i.e. we have π(p) = f

(
u

v

)
+

(
cx

cy

)
.

Let I, I ′ : R2 → R be the (intensity) images at the old (I) and new (I ′) camera positions.
Let g, g′ be the derivatives in image coordinates.

For a "perfect" image alignment and if p is correctly estimated, we have

I(π(p)) ≈ I ′(π(p′)) (29)

due to the assumption that correctly associated points look similar.

I.e. for on correctly estimated pixels, we have

I ◦ π|{correct estimates} ≈ I ′ ◦ π ◦ E|{correct estimates}

We denote by expse(3) the exponential map from the Lie algebra se(3) of the Euclidean

103

group SE(3) to SE(3). I.e. for g ∈ se(3), expse(3)(g) is an element of SE(3). We obtain

g(π(p))f(d(u)Suδt+ PuδR)

E.11
= g(π(p))

dπ(expse(3)(g)(p))

dg
[(δt, δR)]

=
dI(π(expse(3)(g)(p)))

dg
[(δt, δR)]

≈
dI ′(π(E(expse(3)(g)(p))))

dg
[(δt, δR)]

=g′(π(p′))
dπ(E(expse(3)(g)(p)))

dg
[(δt, δR)]

=g′(π(p′))
dπ((E ◦ expse(3)(g) ◦ E−1)(p′))

dg
[(δt, δR)]

=g′(π(p′))f(d′(u′)Su′(−) + Pu(−))
d(E ◦ expse(3)(g) ◦ E−1)

dg
[(δt, δR)].

Regarding the term d(E◦expse(3)(g)◦E−1)

dg
[(δt, δR)]: An element of h ∈ se(3) acts on R3 via

(x 7→ r × x+ w) for some rotation speed r ∈ R3 and linear velocity w ∈ R3. To compute
the term d(E◦expse(3)(g)◦E−1)

dg
[(δt, δR)]:, we need to represent h as the derivative of an one-

parameter family of operators tangentially to 0 ∈ SE(3). One way of doing this is the
family of operators (x 7→ (λr)× x+ λw), λ ∈ R near λ = 0.

We obtain (note that E−1 = (x 7→ R−1(x− t)))

d(E ◦ expse(3)(g) ◦ E−1)

dg
[h]

=
d

dλ

[
E ◦ (x 7→ (λr)× x+ λw) ◦ E−1

]
=

d

dλ

[
(x 7→ Rx+ t) ◦ (x 7→ (λr)× x+ λw) ◦

(
x 7→ R−1(x− t)

)]
=

d

dλ

[
(x 7→ Rx+ t) ◦

(
x 7→ (λr)× (R−1(x− t)) + λw

)]
=

d

dλ

(
x 7→ R[(λr)× (R−1(x− t)) + λw] + t

)
=
(
x 7→ R[(r)× (R−1(x− t)) + w] + 0

)
= (x 7→ (Rr)× (x− t) +Rw)

= (x 7→ (Rr)× x+Rw − (Rr)× t) .

Hence, the matrix transforming the coefficients

(
w

r

)
of h to the coefficients

(
w′

r′

)
of

104

d(E◦expse(3)(g)◦E−1)

dg
[h] is (

R t× (R(−))

0 R

)
.

Note that from Remark 10, we obtain

(δd′) ≈
(
d′

d

)2

(δd)

for small camera rotations R.

Now we are able to proceed to the reprojection: We set i′(u′) :=
(

d(u)
d′(u′)

)2

i(u). Starting
from a standard form, we obtain(

i(u)(δd(u)) 1
i(u)

F (u, d)V c

Ac

)

=

i(u)
(

d(u)
d′(u′)

)2

(δd′(u′)) 1
i(u)

F (u, d)V c

Ac


=

(
i′(u′)(δd′(u′)) d(u)2

d′(u′)2
1

i′(u′)
F (u, d)V c

Ac

)

=

i
′(u′)(δd′(u′)) d(u)

d′(u′)2
1

i′(u′)
[g(π(p))f(d(u)Su(−)]

⊗[g(π(p))f(d(u)Su(δt) + Pu(δR))]V c

Ac



≈


i′(u′)(δd′(u′)) d(u)

d′(u′)2
1

i′(u′)
[g′(π(p′))f(d′(u′)Su′(−))

d(E◦expse(3)(g)◦E−1)

dg
◦ (δt 7→ (δt, 0))]

⊗[g′(π(p′))f(d′(u′)Su′(−) + Pu(−))
d(E◦expse(3)(g)◦E−1)

dg
]V c

Ac



=


i′(u′)(δd′(u′)) d(u)

d′(u′)
1

i′(u′)
F (u′, d′)

(
d(E◦expse(3)(g)◦E−1)

dg
◦ (δt 7→ (δt, 0))

⊗d(E◦expse(3)(g)◦E−1)

dg

)
V c

Ac



=

i
′(u′)(δd′(u′)) d(u)

d′(u′)
1

i′(u′)
F (u′, d′) ((l 7→ Rl)⊗

((δt, δr) 7→ (−(R(δr))× t+R(δt), R(δr))))V c

Ac


V ′:=(...)

=

(
i′(u′)(δd′(u′)) d(u)

d′(u′)
1

i′(u′)
F (u′, d′)V ′c

Ac

)

≈

(
i′(u′)(δd′(u′)) 1

i′(u′)
F (u′, d′)V ′c

Ac

)
.

105

For the last approximation, we assume small camera movement, yielding d′ ≈ d.

As the last form is in standard form and uses terms relative to the new camera pose, the
procedure given above is a method for reprojecting a standard form to a different camera
pose.

Concerning the regularization by reweighting as described in section 6.6, we simply apply
to the square root information values i(u) the regularization analogously to section 6.6,
which means using the square root of the regularization factor described in section 6.6
since we have a square root form of the information matrix here.

7.2.5 Splitting diagonal terms off

The aim of this section is to modify standard forms in such a way that we have information
terms for the pixels which are completely independent of the pose uncertainty. I.e. we
want to obtain a form  i(u)(δd(u)) 1

i(u)
F (u, d)V c

0 Ac

i∗(u)(δd(u)) 0


Since the diagonal terms i∗(u) are independent of the (complicated) pose uncertainty, they
can be manipulated in a more simple fashion than the coefficients i(u) since for the latter,
there is an intricate connection to the terms of the block 1

i(u)
F (u, d)V c.

So how do we obtain such a form: Consider a standard form(
i(u)(δd(u)) 1

i(u)
F (u, d)V c

0 Ac

)

If nothing is known about c (i.e. A = 0) then the "dangling" degrees of freedom modelled
by c (these are then effectively zero eigenspaces of the information matrix) prevent us from
splitting of positive definite diagonal terms since this would imply the information matrix
to be positive definite. Hence, the information contained in A must restrict c sufficiently
to allow diagonal terms:

Suppose that ATA = (A′)TA′ +
∑

u(
λ
i(u)

F (u, d)V)T (λ
i(u)

F (u, d)V)′ for some λ > 0 and a
matrix A′. I.e. (as motivated above) we assume that we have some "excess" information
in the pose uncertainty. Then, we may modify the standard form as follows:

i(u)(δd(u)) 1
i(u)

F (u, d)V c

0 A′c

0 λ
i(u)

F (u, d)V c


106

Application of the "block row rotation"
1√

1 + λ2

1 λ√
1 + λ2

λ −1

 gives


i(u)√
1+λ2

(δd(u))
√

1+λ2

i(u)
F (u, d)V c

0 A′c
λ√

1+λ2
i(u)(δd(u)) 0


I.e. we have obtained a diagonal block i∗(u)(δd(u)) := λ√

1+λ2
i(u)(δd(u)) by siphoning off

information from the i and from A.

7.3 Implementation

As of the time of writing, there is a partially functioning implementation of the methods
introduced in this chapter available. In the sequel, we denote the variant described in
section 6 as diagonal C-LSD-SLAM since it uses a diagonal matrix to approximate the
information matrix. The more intricate variant described here in section 7 will be denoted
as extended C-LSD-SLAM.

As manipulations of the information matrix should be performed near the maximum
likelihood estimate, cf. e.g. Remark 26, the frame tracking module does not just optimize
the pose of the new frame as in diagonal C-LSD-SLAM, but optimizes both the pose of the
new frame and the degrees of freedom described by c in the standard form (cf. eq. (28))
when performing direct image alignment. This is implemented by first performing the
(normal) hierarchical pose optimization and then performing a final optimization step
involving the pose and c on the full resolution, unsmoothed depth map of the keyframe.

The other steps are performed where appropriate: The update step described in section 7.2.2
is performed when updating a depth map with the triangulations from a new frame.
Reprojection and rescaling as described in sections 7.2.3 and 7.2.4 are implemented as part
of the normal reprojection step. The separation of information described in section 7.2.5
is performed once per frame.

A remaining issue of the implementation is the fact that currently, there is a numerical
stability issue which affects situations where the camera nearly does not move, leading to
system crashes. The problem manifests itself as overflow of the double precision floating
point numbers used, which hints at some issue of the numerical implementation.

107

8 Evaluation of C-LSD-SLAM

8.1 Datasets

We use the KITTI datasets for testing and evaluation[Geiger et al., 2013]. The KITTI
datasets were captured with a car-mounted sensor platform on roads in and surrounding
Karlsruhe, Germany. To us, the most relevant features of the sensor platform are four
forward facing cameras (two monochrome cameras and two color cameras) whose global
shutters are triggered synchronously with a frequency of 10 Hz. Furthermore, the sensor
platform features a precision IMU/GPS module for capturing a ground truth vehicle
trajectory. The KITTI datasets provide pre-rectified camera sequences, with each rectified
camera stream having a resolution of about 1200×370 pixels and a horizontal FoV of
about 90◦ (about 700px focal length).

The set of four cameras is particularly interesting for the purpose of evaluation since it
allows us to effectively test the same situation with different data.

For evaluation, we will use the training datasets of the KITTI odometry challenge
[Geiger et al., 2012]. We select these datasets since they feature pre-synchronized ground
truth trajectory data and, more importantly, they are among the longest of the KITTI
datasets (most sequences consist of several thousand frames), which is particularly suited
for testing and evaluating the stability of the VO method.

8.2 Terminology and default parameters

Recall that we denote the variant of C-LSD-SLAM described in section 6 as diagonal
C-LSD-SLAM whereas the variant described in section 7 is denoted as extended C-LSD-
SLAM.

In developing C-LSD-SLAM, most of the method parameters have been left unchanged
from the default parameters of LSD-SLAM. These include the (assumed) pixel noise, the
minimum intensity gradient for including a pixel in the semi-dense depth map and the
threshold of the huber loss function used in the tracking component for robustifying pixel
matching. In the tracking component, the set of resolution level used for hierarchical
direct image alignment have been extended to include the highest resolution level (native
image resolution) whereas LSD-SLAM stops alignment at half of the native resolution.
Furthermore, C-LSD-SLAM also uses more resolution levels on the coarse end of the
resolution pyramid since the default configuration of LSD-SLAM bases its resolution level
selection on the assumption that the full image size is about 600× 400 pixels, which is too
small for image sizes of the KITTI datasets.

108

Figure 19: Trajectories generated by C-LSD-SLAM at full resolution on the training dataset
07 of the KITTI odometry challenge. Left: diagonal C-LSD-SLAM. Right:
extended C-LSD-SLAM. The frame numbers are plotted along the ground truth
trajectory. The trajectories are aligned at the 200th frame.

C-LSD-SLAM introduces several new parameters which are described below.

parameter default value notes

row decimation in the
tracking module

8/4/2/1/1/1/... On the full resolution level, every eighth im-
age row is used for tracking, at half resolution
level every fourth image row is used and so
forth.

number of bins used
for stochastic collision
avoidance in the repro-
jection step

4 per pixel two bins per pixel is the minimum usable
number of bins

regularization reweight-
ing exponent

11 cf. eq. (23)

regularization constant ε = 0.1 this curtails huge entries of the standard form,
cf. section 7.2.2. For comparison, the informa-
tion value of a pixel is typically much larger
than 1.

8.3 Robustness and repeatability

Note that the current implementation of the extended C-LSD-SLAM suffers from a
numerical corruption which causes it to sometimes crash, cf. section 7.3. As this behaviour
is specifically restricted to situations where the vehicle nearly does not move and thus

109

Figure 20: Trajectories generated by C-LSD-SLAM on the training dataset 08 of the
KITTI odometry challenge. Left: diagonal C-LSD-SLAM. Right: extended
C-LSD-SLAM

Figure 21: Trajectories generated by C-LSD-SLAM on the training dataset 09 of the
KITTI odometry challenge. Left: diagonal C-LSD-SLAM. Right: extended
C-LSD-SLAM

110

Figure 22: Trajectories generated by C-LSD-SLAM on the training dataset 10 of the
KITTI odometry challenge. Left: diagonal C-LSD-SLAM. Right: extended
C-LSD-SLAM

Figure 23: Result of multiple invocation of diagonal C-LSD-SLAM on the same dataset
(camera 0 of dataset 08)

111

seems to be a bug of the current implementation instead of a property of the method itself,
we have discarded results from tests in which the extended C-LSD-SLAM crashed and
simply repeated the particular test to obtain clean results.

Note that there are only two effects that introduces randomness into the behaviour of
the method. The first one is the initialization of the method, which is performed by
random initialization of the depth map, cf. section 6.4.5. The second one is the non-
deterministic behaviour introduced by the usage of multiple processing threads in several
tasks: Although this effect has been minimized greatly in comparison to the original
LSD-SLAM, it manifests itself to a small degree in rounding behaviour as well as the
technique of statistical collision avoidance. In statistical collision avoidance used for
keyframe reprojection (cf. section 6.4.3), this effect is present by design. The differences in
rounding behaviour stem from summing certain floating point values over all pixels of a
frame (e.g. in frame tracking, the coefficients of the normal equation linearized problem
are calculated this way). Here, each thread processes a certain subset of all pixels and
computes a thread-local sum for the pixels it has visited. Afterwards, the sums of the
threads are added to obtain the total sum. Since the pixels a certain thread visits depends
on the run-time behaviour and since the order of floating point additions affects the result
due to rounding, the total sum varies slightly due to run-time thread behaviour.

In fig. 23, the diagonal C-LSD-SLAM was invoked several times on the same data and
the resulting trajectory estimates plotted. Note that in this dataset, even the convergence
phase at the beginning, where the system refines the initial random depth map to a valid
depth map, is almost invisible. Afterwards, the behaviour is nearly deterministic. In
particular, the variance between different invocations is much smaller than the variance
resulting from different camera positions as seen in fig. 20.

In figs. 19 to 22, diagonal C-LSD-SLAM and extended C-LSD-SLAM have been invoked
separately on all four cameras of several datasets of the KITTI odometry challenge. Note
that the cameras are arranged in two pairs of forward facing stereo cameras with each
having a baseline of about 50cm, cf. [Geiger et al., 2013]. Cameras 0 and 1 are monochrome
cameras (camera 0 is the left camera). Cameras 2 and 3 are color cameras (camera 2 is
the left camera). The two stereo pairs are stacked directly on top of each other, hence
cameras 0 and 2 as well as 1 and 3 are close to each other. The variants of C-LSD-SLAM
were invoked separately on the four cameras (i.e. each invocation processes the data of
one of the four cameras) in order to compare the results which allows us to investigate
the effect of different input data in the same situation. As a first result, note that in
figs. 19 to 22, the behaviour of camera 0 is usually similar to the behaviour of camera
2 (blue and yellow graphs). Also, the behaviour of camera 1 is usually similar to the
behaviour of camera 3 (red and purple graphs). This implies that the property whether
the method uses monochrome or color camera data is less important than the mounting

112

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 100 200 300 400 500 600 700 800

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 100 200 300 400 500 600 700 800

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

Figure 24: Rotation error versus track length on dataset 01 of the KITTI odometry
challenge. Left: diagonal C-LSD-SLAM. Right: extended C-LSD-SLAM

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 100 200 300 400 500 600 700 800

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 100 200 300 400 500 600 700 800

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

Figure 25: Rotation error versus track length on dataset 02 of the KITTI odometry
challenge. Left: diagonal C-LSD-SLAM. Right: extended C-LSD-SLAM

position of the cameras for the behaviour of the methods since, as described above, the
cameras with similar behaviour are mounted closely to each other. The second result
is that there are two distinct modes of behaviour: In the first mode, the system state
is converged. Here, the result of the method accumulates errors only gradually. The
second mode is system divergence. Here, the depth map estimate of the current frame is
inconsistent to the geometry in the current frame, thus causing large estimation errors
of the camera trajectory in a very short time. Examples are given by the corners in the
trajectory estimates in fig. 19 as well as the turns at the end of fig. 22. Typically, the
method recovers quickly from divergent behaviour and resumes convergent operation.

8.4 Accuracy

For evaluating the accuracy numerically, we apply the evaluation tools of the KITTI
odometry challenge to the training datasets of the odometry challenge. To obtain a notion
on how the error depends on path length, the evaluation tool does not just compute the
end-to-end error of the whole trajectory, but also of subsections of the trajectory: For a
given path length, the subsections of the trajectory of that length are created. The error
for this path length is obtained by averaging the errors of the individual subsections.

Note that we focus our evaluation on the rotational error since we use a very simple
technique for absolute scale estimation with limited accuracy, cf. section 6.7.2.

113

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 100 150 200 250 300 350 400 450 500

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 100 150 200 250 300 350 400 450 500

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

Figure 26: Rotation error versus track length on dataset 03 of the KITTI odometry
challenge. Left: diagonal C-LSD-SLAM. Right: extended C-LSD-SLAM

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 100 150 200 250 300

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 100 150 200 250 300

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

Figure 27: Rotation error versus track length on dataset 04 of the KITTI odometry
challenge. Left: diagonal C-LSD-SLAM. Right: extended C-LSD-SLAM

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 100 200 300 400 500 600 700 800

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 100 200 300 400 500 600 700 800

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

Figure 28: Rotation error versus track length on dataset 05 of the KITTI odometry
challenge. Left: diagonal C-LSD-SLAM. Right: extended C-LSD-SLAM

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 100 200 300 400 500 600 700 800

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 100 200 300 400 500 600 700 800

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

Figure 29: Rotation error versus track length on dataset 06 of the KITTI odometry
challenge. Left: diagonal C-LSD-SLAM. Right: extended C-LSD-SLAM

114

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 100 200 300 400 500 600

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 100 200 300 400 500 600

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

Figure 30: Rotation error versus track length on dataset 07 of the KITTI odometry
challenge. Left: diagonal C-LSD-SLAM. Right: extended C-LSD-SLAM

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 100 200 300 400 500 600 700 800

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 100 200 300 400 500 600 700 800

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

Figure 31: Rotation error versus track length on dataset 08 of the KITTI odometry
challenge. Left: diagonal C-LSD-SLAM. Right: extended C-LSD-SLAM

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 100 200 300 400 500 600 700 800

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 100 200 300 400 500 600 700 800

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

Figure 32: Rotation error versus track length on dataset 09 of the KITTI odometry
challenge. Left: diagonal C-LSD-SLAM. Right: extended C-LSD-SLAM

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 100 200 300 400 500 600 700 800

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 100 200 300 400 500 600 700 800

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

Figure 33: Rotation error versus track length on dataset 10 of the KITTI odometry
challenge. Left: diagonal C-LSD-SLAM. Right: extended C-LSD-SLAM

115

Let us compare the results of the two variants of C-LSD-SLAM on the datasets:

Dataset Comment
01 Both variants of C-LSD-SLAM take long for initial convergence, resulting in large

total errors.
02 Extended C-LSD-SLAM is slightly better.
03 Extended C-LSD-SLAM is better.
04 Diagonal C-LSD-SLAM is slightly better.
05 Extended C-LSD-SLAM is slightly better.
06 Diagonal C-LSD-SLAM is better.
07 Diagonal C-LSD-SLAM is better due to a divergent section in the operation of

extended C-LSD-SLAM.
08 Extended C-LSD-SLAM is better.
09 Extended C-LSD-SLAM is better.
10 Extended C-LSD-SLAM is better due to a divergent section in the operation of

Diagonal C-LSD-SLAM.
As both variants of C-LSD-SLAM diverge once in the ten datasets, there is no clear winner
regarding stability. In terms of accuracy, there is a clear tendency that the extended
C-LSD-SLAM gives more accurate results. This provides justification for the increased
complexity of the extended C-LSD-SLAM over the diagonal C-LSD-SLAM.

116

9 Densification

9.1 Introduction

Stereo methods estimate distances by performing stereo matching between different images.
While there are many ways of performing stereo matching, they all rely on some form of
image (dis)similarity to accept or reject candidate matches. The existence of dissimilarity
depends on image texture, so stereo matching is fundamentally impossible in untextured
image regions and difficult in regions with low texture. In particular, two surfaces with
different geometrical structure may look exactly the same if they are untextured. In street
scenes, there are many untextured regions such as building facades or the sky.

Thus, there are image regions for which stereo methods can not provide depth estimates.
The image area for which a stereo method actually does not provide depth estimates
is typically even larger due to technical limitations. For example, LSD-SLAM and its
derivates restrict depth estimation to pixels with sufficient intensity gradient, which
roughly means the pixels of edges in the image. This is the semi-dense depth map giving
LSD-SLAM its name. Feature-based methods typically provide even more sparse depth
maps.

Since we want to obtain a distance value for each pixel of an image, we need to densify
the semi-dense depth map provided by LSD-SLAM. Thus we need some way to assign
distance values to untextured regions. The core motivation for this section is to show that
we can successfully densify the depth maps provided by LSD-SLAM with reasonable effort.

Note that the above examination of untextured regions means that we cannot obtain the
structure of an untextured surface by observing it with a camera, so assigning depth values
to an untextured region is ultimately some form of guesswork. So while some guessing
errors will be unavoidable, reasonably accurate guesses can be made by usage of prior
knowledge about the scene such as scene structure.

Thus, a natural approach to develop guessing strategies is to make the guesses consistent
with the geometry of typical scenes. This way, the guessing strategies should produce
correct results when applied to such a typical scene (i.e. prior knowledge is used). Here,
traffic scenes have the property that image regions are usually either planar (road surface,
building faces etc.) or they are well textured (e.g. trees). Note that the sky is an exception
to this since it is both often completely untextured and it has infinite distance.

117

9.2 Raycasting method

For each pixel without depth estimate (we call this a target pixel), this method searches in
several directions on the image for the nearest pixel with a depth estimate. These reference
pixels are then used to find out whether the surrounding of the target pixel seems to be a
plane segment by examining how well these reference pixels can be fitted to a plane. If this
succeeds (i.e. the method decides that the target pixel is part of a plane segment), a depth
estimate is created from the reference pixels via interpolation (cf. below). Otherwise, the
method refrains from creating a depth estimate for the target pixel. This conservative
approach to creating estimates is intended to minimize the number of grossly incorrect
estimates created by the raycasting method. This helps limiting the influence of depth
outliers unavoidably present in the original depth map.

9.2.1 Basic method

For each pixel without a depth estimate (we call such a pixel a target pixel), the raycasting
method checks whether the surrounding of the target pixel seems to be a planar section.
This proceeds in two steps.

Step one: In the first step, several rays are cast from the target pixel into several directions.
The methods searches along each ray for the first pixel with a valid depth estimate,
which is used as a depth reference for the target pixel.

Step two: In the second step, the algorithm decides whether the surrounding of the target
pixel seems to be a planar section by analyzing the depth references collected for
the target pixel in the previous step. Toward that end, it fits a plane to the depth
references, with the confidences of the depth references used as weights. Then, the
plane is re-evaluated at depth references and compared to the original depth values,
with the confidences of the depth references used to generate confidence intervals.
If the re-evaluated depth values are within such a confidence interval, we call the
depth reference consistent with the plane, otherwise inconsistent. If the number of
inconsistent depth references is too large, no depth estimate is generated for the
target pixel. Otherwise, a (new) plane is fitted to the consistent depth references
and the evaluation of this new plane at the target pixel is used as depth estimate for
the target pixel. Furthermore, the new plane is evaluated at the consistent depth
references and compared to the reference value; the largest difference is used as
covariance estimate of the newly created depth estimate of the target pixel.

Multiple iterations The above method will obviously leave pixels without a depth
estimate. To obtain better coverage, the basic method described above is repeated a fixed

118

Figure 34: Densification via raycasting method on a depth map of sequence 08 of the
KITTI odometry benchmark. We use 8 search directions, cf.fig. 37. Top image:
camera image. 2nd image: original depth map provided by C-LSD-SLAM (color
goes from near to far from dark red (black) over green to blue. The remaining
images show densified depth map after each densification iteration.

119

Figure 35: Densification via raycasting method on a depth map of sequence 08 of the
KITTI odometry benchmark. We use 6 search directions, cf.fig. 38. Top image:
camera image. 2nd image: original depth map provided by C-LSD-SLAM (color
goes from near to far from dark red (black) over green to blue. The remaining
images show densified depth map after each densification iteration.

120

Figure 36: Densification via raycasting method on a depth map of sequence 08 of the
KITTI odometry benchmark. We use 4 search directions, cf.fig. 39. Top image:
camera image. 2nd image: original depth map provided by C-LSD-SLAM (color
goes from near to far from dark red (black) over green to blue. The remaining
images show densified depth map after each densification iteration.

121

x

y

x

y

Figure 37: Two sets of search directions, each consisting of 8 directions.

low number of times to increase the coverage successively. For the different iterations,
different sets of ray directions are used to vary the depth references.

9.2.2 Implementation

For implementing step one, we reverse the raycasting: Instead of starting from a target
pixel, the algorithm starts from the boundaries of the image in reverse ray direction. When
going along a ray, the algorithm keeps the location of the last pixel encountered that has
a valid depth map in a variable and disperses this reference to the next valid pixel in
ray direction along the ray to each target pixel encountered as a depth reference (this
approach has some resemblance to the dynamic programming approach used in Semi-
Global Matching, albeit without dynamic programming). This way, the algorithm needs
to visit each pixel only once per ray direction. Furthermore, it can be well parallelized
and vectorized.

For implementing step two, we process each target pixel individually, with a standard
Gauss solver used for plane fitting.

For the view ray directions, we use patterns of 4, 6 or 8 ray directions. The ray vectors are
chosen in such a way that one component is ±1 and the other is a rational number with
small denominator, which simplifies finding consistent ways of rounding to integral pixel
coordinates when moving along a ray, without the formation of gaps between adjacent
rays. For example, we have the sets of vectors consisting of (±1, 0), (0,±1), (±1,±1) and
consisting of (±1,±0.5), (±0.5,±1) as 8-ray direction patterns, cf. fig. 37. We alternate
between these two patters when doing multiple iterations.

9.2.3 Discussion

Consider fig. 34 as it shows the basic properties of densification via the raycasting method:
Note that planar patches can be successfully filled with new depth estimated provided the

122

x

y

x

y

Figure 38: Two sets of search directions, each consisting of 6 directions.

x

y

x

y

Figure 39: Two sets of search directions, each consisting of 4 directions.

boundary and inside of the patch have sufficient numbers of correct depth estimates. This
works even for large patches. Isolated outliers prevent the creation of new estimates in
the ray directions starting from their location. This way, there is typically a star pattern
without new estimates surrounding such outliers after the first iteration of densification.
Since the search direction patterns are alterated between densification iterations and since
newly created depth estimates also serve as reference pixels in succeeding iterations, such
outliers will be successively surrounded with correct depth estimates.

Densification via the raycasting method does not work well in regions with high outlier
density (e.g. lower right corner in fig. 34). Furthermore, as the sky has distance infinity, it
does not fit the assumption of planarity of patches with some correct distance estimates
at the boundary of the patches. Hence, the estimates created for sky pixels are generally
incorrect.

Note that eight search directions is about the minimum number of search directions:
Reduction to six or four search directions reduces the level of redundancy for detecting
whether a target pixel is within a planar patch or not, thus increasing the sensitivity to
outliers significantly, cf. figs. 35 and 36.

The method can be easily parallelized and is computationally reasonably inexpensive. In
our implementation, the configuration of eight search directions and two iterations yield

123

on the KITTI datasets (ca. 500kPx) a runtime of about 40ms per frame on a Intel Core i5
M540 (dual core, 2.53GHz).

124

10 Summary

We have investigated the adaption of monocular visual odometry for the usage in in-car
Augmented Reality infotainment systems. To that end, the geometry of the triangulation
problem was analyzed in detail. Using explicit approximations, it has been shown that
the stereo baseline caused by vehicle movement contributes essentially to the capability of
resolving distant features appearing frequently in traffic scenes.

Concerning visual odometry itself, it has been shown that (semi-)dense direct techniques
can be combined in a scalable fashion with the filter-based approach to visual odometry.
Such VO methods produce semi-dense depth maps with low-latency, which makes these
kind of methods ideally suited for high-speed Augmented Reality applications.

Here, the key obstacle was that traditional filter-based approaches scale poorly to large
number of scene point estimates: Filter-based visual odometry methods traditionally
maintain a (dense) covariance matrix for the uncertainty of the scene point estimates. The
complexity of this covariance matrix is quadratic in the number of scene point estimates,
which prevents scaling filter-based VO methods to large numbers of pixels. Our solution
to this problem is to replace the (dense) inverse of the covariance matrix, which is called
the information matrix, with a structure that has linear complexity in the number of scene
point estimates, thus enabling dense or semi-dense depth estimation. We have proposed
two variants for this: In the first variant, the information matrix is replaced with a diagonal
matrix, thus discarding the correlation between scene point estimates introduced by the
uncertainty of the estimation of the camera poses. In the second variant, the correlation
between scene point estimates caused by camera pose uncertainty is described in a unified,
abstract fashion. This way, linear complexity in the number of scene point estimates is
maintained despite maintaining a notion of the correlation of the scene point estimates
caused by the uncertainty of all pose estimates.

An implementation of these techniques, called C-LSD-SLAM, has been developed based
on the existing visual SLAM method LSD-SLAM. Care has been taken that all relevant
routines of the method are fully parallelized, thus allowing easy scale up to the massive
level of parallelization found in current processing units.

As fast forward motion causes instability in C-LSD-SLAM, a simple reweighting scheme
has been introduced which is capable of stabilizing the system against erroneous scene
point estimates near the epipolar direction.

Finally, C-LSD-SLAM has applied to and evaluated on the odometry benchmark datasets
of the KITTI suite, verifying the suitability of the method on real-world data.

125

11 Appendix

11.0.1 Linear transformation of normal distributions

Lemma 30 (Linear transformation of normal distributions 1). Suppose given a normally
distributed random variable X on Rn, n ≥ 1 with mean µ ∈ Rn and covariance matrix
P ∈ Rn×n.

Suppose given an invertible n× n-matrix L.

Then Y = LX is a normally distributed random variable with mean Lµ and covariance
matrix LPLT .

Proof. Note that by Remark 12, Y = LX is a random variable.

For convenience, let

ν :=Lµ

Q :=LPLT .

The probability density function of the normally distributed random variable X on Rn is

dX(x) =
1√

(2π)n|P |
exp

(
−1

2
(x− µ)TP−1(x− µ)

)
,

with |P | being the absolute value of the determinant of P .

Substituting x = L−1y, we obtain via the substitution rule of integration the probability
density function of Y :

dY (y) =
1√

(2π)n|P |
exp

(
−1

2
(L−1y − µ)TP−1(L−1y − µ)

)
· |L−1|

=
1√

(2π)n|L| · |P | · |LT |
exp

(
−1

2
(L−1(y − ν))TP−1(L−1(y − ν))

)
=

1√
(2π)n|LPLT |

exp

(
−1

2
(y − ν)T (L−1)TP−1(L−1)(y − ν)

)
=

1√
(2π)n|Q|

exp

(
−1

2
(y − ν)T (LPLT)−1(y − ν)

)
=

1√
(2π)n|Q|

exp

(
−1

2
(y − ν)TQ−1(y − ν)

)
This is the probability density of a normally distributed random value with mean ν and
covariance matrix Q.

Lemma 31 (Adding a constant to a normal distribution). Suppose given a normally

126

distributed random variable X on Rn, n ≥ 1 with mean µ ∈ Rn and covariance matrix
P ∈ Rn×n. Suppose given a ∈ Rn.

Then Y = X + a is a normally distributed random variable on Rn with mean µ+ a and
covariance matrix P .

Proof. The probability density function of the normally distributed random variable X on
Rn is

dX(x) =
1√

(2π)n|P |
exp

(
−1

2
(x− µ)TP−1(x− µ)

)
,

with |P | being the absolute value of the determinant of P .

Substituting x = y − a yields the probability density function

dY (y) =
1√

(2π)n|P |
exp

(
−1

2
(y − a− µ)TP−1(y − a− µ)

)
=

1√
(2π)n|P |

exp

(
−1

2
(y − (µ+ a))TP−1(y − (µ+ a))

)
,

of Y , which is the probability density function of a normally distributed random variable
with mean µ+ a and covariance matrix P .

Lemma 32 (Linear transformation of normal distributions 2). Suppose given a normally
distributed random variable X on Rn, n ≥ 1 with mean µ ∈ Rn and covariance matrix
P ∈ Rn×n.

Suppose given m ≥ 1. Suppose given an m× n-matrix L with full row rank (i.e. the linear
transformation L : Rn → Rm, x 7→ Lx is surjective).

Then Y = LX is a normally distributed random variable with mean Lµ and covariance
matrix LPLT .

Proof. For i ≥ 0, let Ei be the i× i-identity matrix. For i, j ≥ 0, let 0i×j be the i× j-zero
matrix.

Let A be the kernel of LP
1
2 . Let k := dimA. Choose a rotation matrix R on Rn such

that R〈e1, . . . , ek〉 = A, i.e. R maps the span of the first k coordinate vectors to A. In
particular, this implies ker(LP

1
2R) = 〈e1, . . . , ek〉 =: B. Note that for the orthogonal

complement B⊥ of B in Rn, this implies B⊥ = 〈ek+1, . . . , en〉.

Let Z := R−1P−
1
2 (X−µ), which is by Lemmas 30 and 31 a normally distributed variable on

Rn with mean 0 and covariance matrix R−1P−
1
2P (R−1P−

1
2)T = R−1(R−1)T = (RTR)−1 =

E−1
n = En. Note that we have Y = LX = (LP

1
2R)Z + Lµ.

127

Let V be the projection of Z to the first k components in Rn. LetW be the projection of Z
to the remaining components k + 1 to n in Rn. I.e. we have the orthogonal decomposition
Z = V +W along the orthogonal decomposition of Rn in B and B⊥.

Note that as the covariance matrix of Z is En (note in particular that its components
in Rn are mutually independent random variables), V is on Rk a normally distributed
random variable with covariance matrix Ek and mean 0 and W is on Rn−k a normally
distributed random variable with covariance matrix En−k and mean 0.

Let ιB be the submatrix of En consisting of the first k columns of En, that is

ιB :=

(
Ek

0n−k×k

)
.

Note that ιB is the matrix of the canonical inclusion map B ↪→ Rn. Let ιB⊥ be the
submatrix of En consisting of the first n− k columns of En, that is

ιB⊥ :=

(
0k×n−k

En−k

)
.

Note that ιB⊥ is the matrix of the canonical inclusion map B⊥ ↪→ Rn.

We obtain

ιBι
T
B + ιB⊥ιB⊥

T =

(
Ek

0n−k×k

)(
Ek 0k×n−k

)
+

(
0k×n−k

En−k

)(
0n−k×k En−k

)
=

(
Ek 0k×n−k

0n−k×k 0n−k×n−k

)
+

(
0k×k 0k×n−k

0n−k×k En−k

)
=En. (30)

As imV = ker(LP
1
2R), we have

LP
1
2RιB = 0. (31)

Also, the decomposition Z = V +W implies

Y = (LP
1
2R)Z + Lµ = (LP

1
2RιB⊥)W + Lµ. (32)

The matrix L has full row rank, so the map x 7→ Lx is surjective (i.e. an epimorphism).
Furthermore, P is invertible and B is the kernel of LP

1
2R, so the matrix LP

1
2RιB⊥ is

invertible. In particular, this implies n− k = m ≥ 1.

Hence, Lemmas 30 and 31 together with eq. (32) imply that Y is a normally distributed

128

variable with mean Lµ and covariance

Q =(LP
1
2RιB⊥)E−1

n−k(LP
1
2RιB⊥)T

(31)
= (LP

1
2RιB⊥)(LP

1
2RιB⊥)T + (LP

1
2RιB)(LP

1
2RιB)T

=(LP
1
2R)(ιBι

T
B + ιB⊥ιB⊥

T)(LP
1
2R)T

(30)
= (LP

1
2R)En(LP

1
2R)T = LP

1
2RRTP

1
2LT = LP

1
2P

1
2LT

=LPLT .

11.0.2 Quadratic functionals

Lemma 33 (semidefinite bounded quadratic functionals attain their minimum). Suppose
given a quadratic functional q(x) = xTAx+ lx+ c, x ∈ Rn. Suppose that A is symmetric
and positive semidefinite. Suppose that q is bounded from below, i.e. there exists d ∈ R
such that q(x) ≥ d for all x ∈ Rn.

Then there exists x0 ∈ Rn such that q(x0) = minx∈Rn q(x), i.e. q attains its minimum.

Proof. Since A is symmetric, it has orthogonal eigenspaces by the principal axis theorem.
Thus via choice of a suitable basis of Rn, we may assume without of generality that A is a
diagonal matrix. I.e. A = diag(a1, . . . , an), with all ai ≥ 0 since A is positive semidefinite.
Hence, introducing the conventions l = (l1, . . . , ln) and x = (x1, . . . , xn)T , we obtain

q(x) = c+
n∑
i=1

(aix
2
i + lixi)︸ ︷︷ ︸

=:qi(xi)

I.e. q is the sum of the scalar functionals qi (plus the constant c), so we may minimize q
by minimize each qi separately. Since q is bounded from below, each qi is bounded from
below. For each i ∈ {1, . . . , n}, there are two cases:

ai = 0: Assume li 6= 0. This would imply qi to be a non-zero linear function. In particular,
it would imply qi to be unbounded, which is impossible. Hence, we have li = 0. Thus,
qi(xi) = const = 0 for all xi ∈ R. Thus, qi attains its minimum e.g. at x∗i := 0.

ai 6= 0: Since A is positive semidefinite, we actually have ai > 0. By completing the square,

we have qi(xi) = ai

(
xi + li

2ai

)2

− l2i
4ai

, hence qi attains its unique global minimum at

x∗i := − li
2ai

.

Setting x0 := (x∗1, . . . , x
∗
n)T , we have q(x0) = minx∈Rn q(x) by construction of x0.

129

Lemma 34. Suppose given a quadratic functional q(x) = xTAx+ lx+ c, x ∈ Rn. Suppose
given a global minimum x0 ∈ Rn of q, that is q(x0) = minx∈Rn q(x). Then

q(x) = (x− x0)TA(x− x0) + q(x0) for all x ∈ Rn. (33)

Proof. Since x0 is a minimum of q, Fermat’s theorem on stationary points implies

0 =
dq

dx

∣∣∣
x=x0

= 2xT0A+ l,

hence

xT0A = −1

2
l. (34)

We have

(x− x0)TA(x− x0) + q(x0) =xTAx− xT0Ax− xTAx0 + xT0Ax0 + q(x0)

(34)
=xTAx+

1

2
lx+

1

2
xT lT + xT0Ax0 + q(x0)

=xTAx+ lx+ xT0Ax0 + xT0Ax0 + lx0 + c

=q(x) + 2xT0Ax0 + lx0

(34)
= q(x)− lx0 + lx0

=q(x).

130

12 Bibliography

[Bell et al., 2001] Bell, B., Feiner, S., and Höllerer, T. (2001). View management for
virtual and augmented reality. In Proceedings of the 14th annual ACM symposium on
User interface software and technology, pages 101–110. ACM.

[Berger, 1997] Berger, M. O. (1997). Resolving occlusion in augmented reality: a contour
based approach without 3D reconstruction. In Conference on Computer Vision and
Pattern Recognition (CVPR) 1997, pages 91–96. IEEE.

[Birman and Solomjak, 1980] Birman, M. S. and Solomjak, M. Z. (1980). Spectral Theory
of Self-Adjoint Operators in Hilbert Space. D. Reidel Publishing Company, Dordrecht,
Holland.

[Chiuso et al., 2000] Chiuso, A., Brockett, R., and Soatto, S. (2000). Optimal structure
from motion: Local ambiguities and global estimates. International journal of computer
vision, 39(3):195–228.

[Civera et al., 2008] Civera, J., Davison, A. J., and Montiel, J. M. (2008). Inverse depth
parametrization for monocular SLAM. IEEE transactions on robotics, 24(5):932–945.

[Davison, 2003] Davison, A. J. (2003). Real-time simultaneous localisation and mapping
with a single camera. In International Conference on Computer Vision (ICCV) 2003,
pages 1403–1210 vol.2. IEEE.

[Davison et al., 2007] Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O. (2007).
Monoslam: Real-time single camera SLAM. IEEE transactions on pattern analysis and
machine intelligence, 29(6):1052–1067.

[Du et al., 2016] Du, C., Chen, Y.-L., Ye, M., and Ren, L. (2016). Edge snapping-based
depth enhancement for dynamic occlusion handling in augmented reality. In International
Symposium on Mixed and Augmented Reality (ISMAR) 2016, pages 54–62. IEEE.

[Eade and Drummond, 2006] Eade, E. and Drummond, T. (2006). Scalable monocular
SLAM. In Conference on Computer Vision and Pattern Recognition (CVPR) 2006,
volume 1, pages 469–476. IEEE Computer Society.

[Engel et al., 2014] Engel, J., Schöps, T., and Cremers, D. (2014). LSD-SLAM: Large-scale
direct monocular SLAM. In European Conference on Computer Vision (ECCV) 2014,
pages 834–849. Springer.

[Engel et al., 2015] Engel, J., Stückler, J., and Cremers, D. (2015). Large-scale direct
SLAM with stereo cameras. In International Conference on Intelligent Robots and
Systems (IROS) 2015, pages 1935–1942. IEEE.

[Fanani et al., 2017] Fanani, N., Stürck, A., Ochs, M., Bradler, H., and Mester, R. (2017).

131

Predictive monocular odometry (PMO): What is possible without RANSAC and multi-
frame bundle adjustment? Image and Vision Computing, 68:3–13.

[Forster et al., 2014] Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). SVO: Fast
semi-direct monocular visual odometry. In International Conference on Robotics and
Automation (ICRA) 2014, pages 15–22. IEEE.

[Frikha et al., 2016] Frikha, R., Ejbali, R., and Zaied, M. (2016). Handling occlusion
in augmented reality surgical training based instrument tracking. In International
Conference of Computer Systems and Applications (AICCSA) 2016, pages 1–5. IEEE.

[Fuentes-Pacheco et al., 2015] Fuentes-Pacheco, J., Ruiz-Ascencio, J., and Rendón-
Mancha, J. M. (2015). Visual simultaneous localization and mapping: a survey. Artificial
Intelligence Review, 43(1):55–81.

[Fuhrmann et al., 1999] Fuhrmann, A., Hesina, G., Faure, F., and Gervautz, M. (1999).
Occlusion in collaborative augmented environments. Computers & Graphics, 23(6):809–
819.

[Galatis et al., 2016] Galatis, P., Gavalas, D., Kasapakis, V., Pantziou, G., and Zaroliagis,
C. (2016). Mobile augmented reality guides in cultural heritage. In Proceedings of the 8th
EAI International Conference on Mobile Computing, Applications and Services, pages 11–
19. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering) Brussels, Belgium.

[Geiger et al., 2013] Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision
meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR),
32(11):1231–1237.

[Geiger et al., 2012] Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for
autonomous driving? The KITTI vision benchmark suite. In Conference on Computer
Vision and Pattern Recognition (CVPR) 2012, pages 3354–3361]. IEEE.

[Grasset et al., 2012] Grasset, R., Langlotz, T., Kalkofen, D., Tatzgern, M., and Schmal-
stieg, D. (2012). Image-driven view management for augmented reality browsers. In
International Symposium on Mixed and Augmented Reality (ISMAR) 2012, pages 177–
186. IEEE.

[Hayashi et al., 2005] Hayashi, K., Kato, H., and Nishida, S. (2005). Occlusion detection of
real objects using contour based stereo matching. In Proceedings of the 2005 international
conference on Augmented tele-existence, pages 180–186. ACM.

[Hebborn et al., 2017] Hebborn, A. K., Höhner, N., and Müller, S. (2017). Occlusion
matting: Realistic occlusion handling for augmented reality applications. In International
Symposium on Mixed and Augmented Reality (ISMAR) 2017, pages 62–71. IEEE.

132

[Hirschmüller, 2005] Hirschmüller, H. (2005). Accurate and efficient stereo processing by
semi-global matching and mutual information. In Conference on Computer Vision and
Pattern Recognition (CVPR) 2005, volume 2, pages 807–814. IEEE.

[Hoelzer et al., 1978] Hoelzer, H., Johnson, G., and Cohen, A. (1978). Modified polar
coordinates-the key to well behaved bearings only ranging. IBM R&D Report 78-M19-
0001A.

[Holmes et al., 2008] Holmes, S., Klein, G., and Murray, D. W. (2008). A square root
unscented kalman filter for visual monoSLAM. In International Conference on Robotics
and Automation (ICRA) 2008, pages 3710–3716. IEEE.

[Izadi et al., 2011] Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli,
P., Shotton, J., Hodges, S., Freeman, D., Davison, A., et al. (2011). Kinectfusion: real-
time 3D reconstruction and interaction using a moving depth camera. In Proceedings
of the 24th annual ACM symposium on User interface software and technology, pages
559–568. ACM.

[Kanbara et al., 2000] Kanbara, M., Okuma, T., Takemura, H., and Yokoya, N. (2000). A
stereoscopic video see-through augmented reality system based on real-time vision-based
registration. In Proceedings IEEE Virtual Reality 2000, pages 255–262. IEEE.

[Kasapakis and Gavalas, 2017] Kasapakis, V. and Gavalas, D. (2017). Occlusion handling
in outdoors augmented reality games. Multimedia Tools and Applications, 76(7):9829–
9854.

[Kasperi et al., 2017] Kasperi, J., Edwardsson, M. P., and Romero, M. (2017). Occlusion
in outdoor augmented reality using geospatial building data. In Proceedings of the 23rd
ACM Symposium on Virtual Reality Software and Technology, page 30. ACM.

[Klein and Murray, 2007] Klein, G. and Murray, D. (2007). Parallel tracking and mapping
for small AR workspaces. In International Symposium on Mixed and Augmented Reality
(ISMAR) 2007, pages 225–234. IEEE.

[Kremer, 2017] Kremer, K. (2017). Tiefen-basierte Verdeckung in Augmented Reality
mittels natural image matting. Master’s thesis, Universität Koblenz-Landau.

[Kwon and Lee, 2010] Kwon, J. and Lee, K. M. (2010). Monocular slam with locally planar
landmarks via geometric rao-blackwellized particle filtering on lie groups. In Conference
on Computer Vision and Pattern Recognition (CVPR) 2010, pages 1522–1529. IEEE.

[Lee et al., 2016a] Lee, S.-H., Eoh, G., and Lee, B. H. (2016a). Relational FastSLAM: an
improved rao-blackwellized particle filtering framework using particle swarm character-
istics. Robotica, 34(6):1282–1296.

[Lee et al., 2016b] Lee, S.-H., Oh, J. H., and Lee, B. H. (2016b). Improved unscented

133

FastSLAM using geometric information of particles. International Journal of Mechanical
Engineering and Robotics Research, 5(1):43.

[Lepetit and Berger, 2000] Lepetit, V. and Berger, M.-O. (2000). A semi-automatic
method for resolving occlusion in augmented reality. In Conference on Computer
Vision and Pattern Recognition (CVPR) 2000, volume 2, pages 225–230. IEEE.

[Makita et al., 2009] Makita, K., Kanbara, M., and Yokoya, N. (2009). View management
of annotations for wearable augmented reality. In International Conference on Multimedia
and Expo (ICME) 2009, pages 982–985. IEEE.

[Milford et al., 2004] Milford, M. J., Wyeth, G. F., and Prasser, D. (2004). RatSLAM:
a hippocampal model for simultaneous localization and mapping. In International
Conference on Robotics and Automation (ICRA) 2004, volume 1, pages 403–408. IEEE.

[Montemerlo and Thrun, 2007] Montemerlo, M. and Thrun, S. (2007). Fastslam 2.0. In
FastSLAM: A scalable method for the simultaneous localization and mapping problem in
robotics, pages 63–90. Springer.

[Montemerlo et al., 2002] Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., et al.
(2002). Fastslam: A factored solution to the simultaneous localization and mapping
problem. In AAAI Conference on Artificial Intelligence 2010, pages 593–598.

[Mur-Artal et al., 2015] Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). ORB-
SLAM: a versatile and accurate monocular SLAM system. IEEE Transactions on
Robotics, 31(5):1147–1163.

[Nistér, 2004] Nistér, D. (2004). An efficient solution to the five-point relative pose problem.
Transactions on pattern analysis and machine intelligence, 26(6):756–770.

[Oliensis, 2005] Oliensis, J. (2005). The least-squares error for structure from infinitesimal
motion. International Journal of Computer Vision, 61(3):259–299.

[Penrose, 1955] Penrose, R. (1955). A generalized inverse for matrices. In Mathematical
proceedings of the Cambridge philosophical society, volume 51, pages 406–413. Cambridge
University Press.

[Reed, 2015] Reed, N. (2015). Depth precision visualized. http://web.

archive.org/web/20170921100911/https://developer.nvidia.com/content/

depth-precision-visualized. Accessed: 2017-09-21.

[Shah et al., 2012] Shah, M. M., Arshad, H., and Sulaiman, R. (2012). Occlusion in
augmented reality. In International Conference on Information Science and Digital
Content Technology (ICIDT) 2012, volume 2, pages 372–378. IEEE.

[Shiguang et al., 2017] Shiguang, W., Mingde, Y., Chengdong, W., and Jun, L. (2017).
An improved FastSLAM2.0 algorithm based on ant colony optimization. In 29th Chinese

134

http://web.archive.org/web/20170921100911/https://developer.nvidia.com/content/depth-precision-visualized
http://web.archive.org/web/20170921100911/https://developer.nvidia.com/content/depth-precision-visualized
http://web.archive.org/web/20170921100911/https://developer.nvidia.com/content/depth-precision-visualized

Control And Decision Conference (CCDC) 2017, pages 7134–7137. IEEE.

[Song and Chandraker, 2014] Song, S. and Chandraker, M. (2014). Robust scale estima-
tion in real-time monocular SFM for autonomous driving. In Conference on Computer
Vision and Pattern Recognition (CVPR) 2014, pages 1566–1573. IEEE.

[Strasdat et al., 2010] Strasdat, H., Montiel, J., and Davison, A. J. (2010). Real-time
monocular SLAM: Why filter? In International Conference on Robotics and Automation
(ICRA) 2010, pages 2657–2664. IEEE.

[Tian et al., 2010] Tian, Y., Guan, T., and Wang, C. (2010). Real-time occlusion handling
in augmented reality based on an object tracking approach. Sensors, 10(4):2885–2900.

[Triggs et al., 1999] Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W.
(1999). Bundle adjustment—a modern synthesis. In International workshop on vision
algorithms, pages 298–372. Springer.

[Upchurch and Desbrun, 2012] Upchurch, P. and Desbrun, M. (2012). Tightening the
precision of perspective rendering. Journal of Graphics Tools, 16(1):40–56.

[Urmson et al., 2004] Urmson, C., Anhalt, J., Clark, M., Galatali, T., Gonzalez, J. P.,
Gowdy, J., Gutierrez, A., Harbaugh, S., Johnson-Roberson, M., Kato, H., et al. (2004).
High speed navigation of unrehearsed terrain: Red team technology for grand challenge
2004. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-
RI-04-37.

[Vedaldi et al., 2007] Vedaldi, A., Guidi, G., and Soatto, S. (2007). Moving forward in
structure from motion. In Conference on Computer Vision and Pattern Recognition
(CVPR) 2007, pages 1–7. IEEE.

[Younes et al., 2016] Younes, G., Asmar, D., and Shammas, E. (2016). A survey on
non-filter-based monocular visual slam systems. arXiv preprint arXiv:1607.00470.

[Yousif et al., 2015] Yousif, K., Bab-Hadiashar, A., and Hoseinnezhad, R. (2015). An
overview to visual odometry and visual slam: Applications to mobile robotics. Intelligent
Industrial Systems, 1(4):289–311.

135

Acknowledgements

I would like to thank my colleagues at Daimler Research & Development, in particular
Team Augmented Reality. The time during my tenure as PhD student at Daimler has
often been quite busy, but also fun, insightful and very rewarding. I am thankful of
being given the opportunity to contribute pushing the boundaries in such a productive
environment. I would like to thank my advisor Prof. Dieter Fritsch of the Institute for
Photogrammetry, University of Stuttgart for his feedback and support, encouraging me
to apply my background from pure mathematics to and and integrate it into engineering
methods for Augmented Reality. I would like Prof. Dr. Luc Van Gool of ETH Zürich for
agreeing to serve as a referee for this thesis. Finally, I would like to thank my family for
their constant support.

136

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Objectives
	Main contributions
	Outline
	Abbreviations & definitions

	Introduction to depth estimation and visual navigation
	Animal vision
	Brief history of stereo triangulation, visual odometry and structure from motion

	Related work
	Overview over Structure from motion, visual odometry and visual SLAM
	Treatment of combined camera pose and scene point uncertainty
	Forward motion
	Occlusion in Augmented Reality

	Basic concepts
	Geometric concepts
	Camera systems and models
	Estimation

	Long-Range forward triangulation
	Structure from motion in forward motion
	Introduction
	Rationale for approximating the information matrix in filter-based visual odometry
	Introduction to C-LSD-SLAM
	C-LSD-SLAM: Implementation
	Instability in forward motion
	Reweighting scheme against singular behaviour near the epipolar line
	Evaluation
	Conclusion

	Efficient approximation of the information matrix
	Introduction
	Implementation in pinhole coordinates for direct methods
	Implementation

	Evaluation of C-LSD-SLAM
	Datasets
	Terminology and default parameters
	Robustness and repeatability
	Accuracy

	Densification
	Introduction
	Raycasting method

	Summary
	Appendix
	Bibliography

