Geoinformatics and e-Science

Prof. Dr.-Ing. Ralf Bill
Universität Rostock
Agrar- und Umweltwissenschaftliche Fakultät
Professur für Geodäsie und Geoinformatik

Content

- Science paradigms and e-Science
- Terms and components of e-Science
- Geoinformatics and e-Science: Examples
- Conclusions
Science paradigms and e-Science

Science paradigms through the ages

1. Science purely empirically and observationally oriented

2. Science based on theory and model development

3. Science simulating complex phenomena using information technology capabilities

4. Science based on the exploration of abundantly available or collected data ("data-driven science")

=> precondition for such a paradigmatic understood "data-driven science" is a systematic management, in the sense of infrastructure, regulations and - what is often forgotten - additional human resources.

e-Science: Network-based science or "digitally enhanced science" or Data Driven Science => combines theory, experiment, simulation with data

The coinage of modern knowledge and information society with its manifold possibilities of effective communication and the easy access to very large amounts of information and powerful computing technology is a new challenge for science. The chance of achieving a qualitative and quantitative improvement of the scientific results with the new methods have increased significantly; in parallel, but also the difficulty of control of the distributed, dynamic system components.

The focus of the upcoming work is the integration of community-specific applications with a generic middleware services layer. This requires the technical development and the organizational structure of a network and middleware infrastructure, with grid resources that can be (for example, computing power, data, information, application programs) offered on demand.

Source: Adapted from BMBF-Research Management 1/2005

Problem – Linear value-added chain in science

Data .. will be analysed, visualised, interpreted .. get lost.
and result in Information .. will be published .. is reproducible.
and result in Knowledge is accessible.
e-Science Framework

Science communities: Medicine, physics, geo Engineering ...

Advanced Services (disciplinary/interdisciplinary):
- Resources sharing
- Cooperation services
- Communication services
- Data sharing

Middleware/Basic services:
- Collaborative work environments (groupware, conferencing tools)
- Resource brokerage (directories, scheduling, mapping, accounting)
- Mobility and ubiquity services (roaming), Quality services ...

Infrastructure/Content: Networks, Server, Programs, Sensors, Data bases ...

Scientific community

Components
- Virt. research environments
- Research data infrastructures
- Repositories
- Archives

Basic services
- Communication
- Collaboration
- Mobility
- Security

Infrastructure
- Server
- Networks
- Sensors
- Software
e-Science

- Support the complete lifecycle of science

![Diagram showing the lifecycle of science]

- Ideas / hypotheses
- Experiments design
- Controlled experiments
- Data extraction
- Data evaluation
- Simulation
- Publication
- Research background

"Through e-science the insight grows that the value of the research is particularly in the data and therefore science must expand the scope of work on the primary object, the research data." (own translation of Büttner & Rümpel, 2011)

-Challenges for the scientist with respect to a general, cross-curricular as well as a specific, subject-related use of modern digital information infrastructure

Media competence
- Data
- Documents
- Multimedia
- Models
- Simulation
- ...

Communication competence
- Information Services
- Standards
- Web technologies
- Distributed Systems
- ...

Information competence
- Information modeling
- Information retrieval
- Data mining
- Big data
- ...

Research competence
- Search mechanisms
- Search strategies
- Research data infrastructures
- ...

Discipline specific expertise
Terms and components of e-Science

(Primary) Research data

- Research data are **data that are generated, collected, used or assembled in the research process**. Based on these **scientific hypotheses, models or theories are formed**.
- Research data in the broadest sense are: **primary data, secondary analyzes, visualizations, models, analysis tools, collections of objects or products**.
- Primary research data provide a **valuable repository of information** that is collected with **high financial costs**. Depending on the subject area and method they are replicable or not based on repeatable observations, or measurements.
- In any case, the **data collected should be publicly accessible and freely available** after completion of the research. This is the essential precondition for:
 1. **data can be used again in the context of new issues** as well as ensure that
 2. in case of doubt as to the publication, the **data can be used for verification of published results**.

Source: DFG (2008), Jan Brase / Janna Neumann (2013), and others
(Primary) Research data

- Research data also **provide a lasting value per se** and are often the basis for research projects outside the original development context.
- For the storage and availability of primary research data **technical and organizational requirements** must be met, to be developed from the individual disciplines. With regard to offers for archiving and publication of research data it is only important that the data is in digital form or can be brought into this.
- The data generated in the science have to be acquired with **library methods** and **permanently made available for re-use** by future generations of researchers.

![Diagram of different data views and states of research data]

- **Raw data**
 - Measurement data
 - Empirical data
 - Simulated data

- **Formatted data**

- **Evaluated data**

- **Public data**

- **Aggregated data**

- **Archived data**

Data categories in marine research

- Measurement data
- Formatted data
- Empirical data
- Evaluated data
- Simulated data
- Public data
- Aggregated data
- Archived data
Research data: Locations and products

- Data storage in marine research

- Products in marine research

Research data lifecycle

Generate data
- Design research
- Plan data management (Formats, storage, etc.)
- Plan data sharing
- Local existing data
- Collect data (experiment, observe, simulate)
- Capture metadata

Process data
- Digitize data, transform
- Check data, validate, clean
- Anonymize data where necessary
- Describe data
- Organize and store data

Analyze data
- Interpret data
- Derived data
- Produce research results
- Write publications
- Prepare data for preservation

Provide data
- Distribute data
- Share data
- Control access
- Establish copyrights
- Advertise data

Receive data
- Convert data into an appropriate form
- Transfer data on suitable medium
- Backup and store data
- Create and document metadata
- Archive data

Re-use data
- Pursue research
- New research questions
- Undertake research overviews
- Subscribe findings
- Train and learn

Source: after http://data-archive.ac.uk/create-manage/life-cycle
Research Infrastructures

- Research infrastructures are extensive tools, resources or service facilities for research in all scientific fields, which are characterized by at least national importance for the respective scientific field and through a long life (typically over 10 years).
 - Major equipment or instruments used for research purposes
 - Knowledge resources of scientific research such as collections, archives, structured information or systems for data processing
 - ICT infrastructures such as Grid, computing equipment, software and communication systems
 - any other unique facilities being used for scientific research

⇒ Research data infrastructures / scientific data infrastructures

- “Within the totality of the research infrastructure research data infrastructure refers to infrastructure institutions, providing research data for secondary analysis by the researchers for free or low cost. The data provided are mostly aligned with scientific issues."
 - Interoperability of tools and research data as well as their long-term availability and re-use
 - located at a single site or be distributed (centralized, distributed, or virtual)

Data storage and data dissemination

- A data repository (Latin repository = ‘warehouse’) is a managed place to store ordered documents that are publicly and widely available.
- Repository refers to the storage of data and documents using modern information and communication technologies and making them available on the Internet.

⇒ Making data available

- Examples of Research data repositories (www.re3data.org)
 - World Data Centres WDC-RSAT, WDC-Climate, Geophysics FIS ...

- In a data archive (Latin ‘Archivum’), however, only selected information is managed.

⇒ Capacity
 - Long-term (eg., >> 10 years)
 - Archive formats (PDF/A, ...) instead of primary formats
 - Retrieval: if required

⇒ Long-term storage

- Research Data Archive
 - Selection criteria must be comprehensible
 - Archive formats, open standards (formats, interfaces)
 - Permanent evaluation option? (Primary data OK?)
Virtual research environments (VRE)

- Virtual research environments provide all the necessary tools, data, information and services available so that the researcher is detached from resources and access problems (memory, CPU time, log-in etc.).
- The scientist of the future uses, independent of location and time, a virtual environment and finds programs, research data and secondary sources (such as publications, databases and services), which he needs for his current research work.
- He engages with his colleagues all over the world, immediately shares new information, analyzes it, adds its new findings and places them on the fly to his colleagues for discussion and further use.

Source: Definition AG "Virtual Research Environments" of the Covenant initiative "Digital Information" (http://www.allianzinitiative.de/de/handlungsfelder/virtualresearchenvironments/).

DFG Internetportal RIsources
http://risources.dfg.de/

- Digital archives and repositories (26 hits in Earth Sciences):
 - Aktuelle Wetterwerte deutscher Stationen (WETTER)
 - Animal Tracking Data (Movebank)
 - Biodiversitäts-Exploratorien (BioDiv-Exploratories)
 - Collaborative Climate Community Data and Processing Grid (C3Grid)
 - ...
 - Data Publisher for Earth & Environmental Science (PANGAEA)
 - Deutscher Wetterdienst - Klimadaten (KlimaD)
 - ...
 - GLUES Geodateninfrastruktur (GLUES GDI)
 - ...
 - Historische hydrographische Daten des BSH (ICDC)
 - ...
 - Virtuelles Kulturlandschaftslaboratorium (VKLandLab)
 - ...
 - World Data Center for Climate (WDCC)
 - World Data Center for Remote Sensing of the Atmosphere (WDC-RSAT)
Geoinformatics and e-Science

„Whatever occurs, occurs in space and time.“ (HILL, 2006).

1. Geographical names
Geographical names = indirect spatial references

- Published knowledge in libraries
- Keyword: Geographical Names

Geographical name directories resp. gazetteers are in a classical sense simply lists of toponyms in a given region, that should be made identifiable using additional information.

Solution approach:
- Spatial reference has to be made available → Georeferencing
- Coordinates as *formal* instead of geographical names as *informal representations*

DFG Project “Virtual Map Forum 2.0”:
- Extract place names and locations contained in the plane survey sheets in different time sections (1868-1945) for the area of the German Empire
- Georeferencing these place names
- Link with other existing directories by establishing a service based register of historical place names

Sources for geographical names

- Fusion of various data sources
- Number of site objects per source in the borders of the former German Empire (1871-1933)
 - Feature class filter e.g. OSM: city, town, village, suburb, hamlet, locality.

- GeoNames: http://www.geonames.org/
- Genealogical site directory: http://gov.genealogy.net/search/index
- OpenstreetMap: http://www.openstreetmap.org/
- BKG: http://www.geodatenzentrum.de/geodaten/
- GeoBeacon inkl. HONV-MV (VKLandLab-Project) http://139.30.132.26/beacon/search.html

- Geonames: 345,331
- GOV: 283,496
- OSM: 218,913
- BKG: 45,061
- GeoBeacon: ca. 91,000
- thereby: HONV-MV: 7,135

Sample GN/GOV/OSM/BKG

Geographical features spatially aggregated

- PostGIS database, spatial aggregation (1.000m perimeter)
- Collecting additional site names one source after the other
- Contributions of site names per source after spatial aggregation
 - Geonames: 345,331
 - GOV: 19,587
 - OSM: 11,695
 - GeoBeacon/HONV-MV: ca. 1,200
 - BKG: 47

377,946 site features for the former German Empire (currently available)

URL Demo Webclient: http://139.30.132.26/vk2/honvWMS.html

Ausschnitt des gesammelten Ortsnamensbestandes
- Sammlung von URLs bzw. Weblinks mit Verweis auf den jeweiligen Datensatz in der Webpräsenz des Datenanbieters
- Bereitstellung über WebMapService (GetFeatureInfo)
- Annotationsschlagmöglichkeit für Nutzer auf Basis der Altkarten

HONV-Demo mit 377,946 Objekten
URL: http://139.30.132.26/vk2/honvWMS.html

2. Virtual research environment for cultural landscape research

VKLandLab – Project goals

Technology
- Establishing a VRE for interdisciplinary cultural landscape research.
- Integration of different well known components of data driven infrastructures such as InternetGIS, data bases, primary data repositories, authentification structures.
- Enhancements with respect to collaborative elements such as wikis, blogs, project management, content management, data tagging etc.

Investigation area in space and time
- Focussing on the area Mecklenburg in the last 230 years.
- Offering georeferenced old maps from 1786, younger aerial and satellite imagery of the last 40 years and recent geoinformation

Benefits for the interdisciplinary scientific community
- Allowing spatio-temporal research questions on various levels of scale in space (regional 1:200.000 to local 1:25.000) and time (240 years in 3 time slices, the last 40 years again in 3 time slices and recent data)
- Supporting interdisciplinary collaboration of scientists in Rostock and elsewhere focussing on research work and not on technology
VKLandLab—Reference architecture (OGC-like)

Portal VKLandLab

Content Management System
TYPO3 (Uni Rostock)

Portal Services

Internet

Service-based Resources
OGC W*S, OAI-PHM, …

Data Service

WebGIS kwwmap
Portrayal Services
Data Capture Services

Catalogue
GeoNetwork Opensource
Catalogue Services

Uni Rostock (GG)
• (Hist.) maps
• Aerial imagery
• Branch data
• …

UB Rostock
• Hist. Documents
• Naming catalogue

LUNG, LAIV
• Environmental data
• National geodata
• …

Source: Bill [Ed.](2012)

Portal

- Content Management System
 TYPO3
- Corporate Identity = Layout
 Rostock University
- Collaboration environment
 Sharepoint, Wiki

https://www.uni-rostock.de/index.php?id=vklandlab
Internet GIS kvwmap

- OpenSource WebGIS-framework kvwmap to capture, store, analyse and present spatial information
- Data and portrayal services
- On top of UMN-MapServer
- PostgreSQL database

Catalogue/Meta data

- Catalogue service: Search and find spatial data based query parameters such as data topic, -origin and -matter.
- Centralized meta information system according to ISO 19115/19139
- GeoNetwork OpenSource
Spatial data infrastructure

- **Carl Friedrich von Wiebeking (1786-1788):**
 - 1:24,000
 - 48 sheets
 - ~2 GB

- **Plane survey sheet (1877-1889):**
 - 1:25,000
 - ~168 sheets
 - ~18 GB

- **Friedrich Wilhelm Karl von Schmettau (1788):**
 - 1:50,000
 - 16 sheets
 - ~2 GB

- **ATKIS DTK 10 (2000) u.a.:**
 - Plane survey sheet (1877-1889)

Source: Bill [Ed.](2012) Prof. Dr. R. Bill

Geodata sources

Time scale

recent
- 2011
- 1999
- 1989
- 1973

1890
- Plane survey sheet

Historic
- 1788
- 1786

Old maps
- Schmettau
- Wiebeking

Map portals LaiV/LUNG
- ATKIS DTK
- CORINE 2006
- CORINE 2000
- CORINE 1990

Geobasic- & Environmental data:
- ATKIS DTK, DOP, DGM
- ATKIS DLM moorland, greenland, fallow land, acre land, water, forest, ...
- Geology, soil overview, ground water, geotopes
- Administrative borders

Uni Rostock Branch data:
- Kettle holes, forest, water, vegetation, agriculture, wet areas/swamps, settlement areas, parks, garden, alleys, streets...
- Hist. administrative borders

Source: Bill [Ed.](2012) Prof. Dr. R. Bill
3. Virtual topographic map forum for the German Empire

- Prussian land surveying - „Messtischblätter (MTB)“ plane survey sheets
 - Complete full area coverage with cartographic map sheets in the range of the former German Empire (Deutsches Reich 1871-1933)
 - More than 6,000 MTB in the scale 1 : 25,000, from 1868 til 1965
 - 674 MTB in the scale 1 : 100,000

Source: SLUB Dresden
Area coverage and time slots

Frühest verfügbare Zeitschnitt je Messtischblatt
Maßstab 1: 6 000 000

Anzahl Kartenblätter pro Jahr

Source: Bill/Koldrack/Walter (2015)

Virtuelles Kartenforum 2.0

Map forum 1.0
Map forum 2.0

Non georeferenced MTB
Georeferencing
WMS

Source: Bill/Koldrack/Walter (2015)
Georeferenzierung kann als räumliches Metakonzept betrachtet werden, womit räumliche Referenzinformation einem Datensatz mitgegeben wird. Hierzu gehören die Wahl des geodätischen Bezugssystems und die Festlegung der Passpunkte, die zur Überführung verwendet werden sollen. Den eigentlichen Überführungsschritt leistet dann die Geokodierung.

1.1 EPSG:4314 = Deutsches Hauptdreiecksnetz (Geographische Koordinaten mit Datum Potsdam) und Ellipsoid von Bessel
1.2 Messung der vier Gitterpunkte am Kartenrand

„Geokodierung" behandelt den tatsächlichen Transformationsschritt, der notwendig ist, um Daten verschiedenartiger Georeferenzierung in ein gewünschtes Referenzsystem umzurechnen. Bei Rasterdaten schließt dies z.B. das Resampling der Bildelemente mit ein. ...

2.1 Ebene überbestimmte Transformationen mit 4 bis 6 Parametern
2.2 Resampling mittels „nearest neighbour“.

Georeferencing of MTBs and topographic maps

- POIs = Corners of the map (X,Y known)
- One person for 6,000 MTB: 10 Minutes per MTB 75 working days

Crowdsourcing by non-experts
Automatic image processing

Diploma work P. Röhm, 2011
Georeferencing historical maps

- Heterogeneous map layout
- Further problems

Source: Bill/Koldrack/Walter (2015)

Georeferencing by Crowdsourcing

VKForum 2.0 Client for georeferencing
→ http://kartenforum.slub-dresden.de/vkviewer/
Georeferencing by image processing

- Determining the image content
- Hough-Transformation/morphologic operators
- Extraction of the inner frame lines
- Intersection of the framelines

Source: Bill/Koldrack/Walter (2015)

Comparing Crowd versus image processing

- In total 5,395 map sheets have been measured by both methods.
- In 40% of the georeferencing the computer achieves a better coordinate accuracy, in 60% the human crowd.
- Differences between both georeferencing approaches lies in 93% of all cases under +- 10m.

Source: Bill/Koldrack/Walter (2015)
4. GLUES SDI for Scientific Environmental Data
Global Assessment of Land Use Dynamics on Greenhouse Gas Emissions and Ecosystem Services

Objectives:
- Publication and sharing of model data, analysis results and basic scenarios of the involved research groups.
- Seamless integration of existing data sources through the GDI, for example, for the calculation of scientific models or comparative analysis.
- Stakeholders of different areas are supported by spatial search and analysis tools to find research results and to understand and to use them for their own planning and management activities.

Source: Mäs/Henzen/Müller/Bernard (2014)

GLUES – spatio-temporal processing functionality

- Time series analysis
- Interactive classification

Source: Mäs/Henzen/Müller/Bernard (2014)
4. (Marine) spatial data infrastructures

Marine Data Infrastructure (MDI-DE)

Legend

SP1: Coastal engineering and coastal water protection
- Principal applicant
 Federal Waterways Engineering and Research Institute
- Project participants
 1. Authority for coastal protection, national parks and marine protection in Schleswig-Holstein
 2. Authority for water management, coast protection and nature conservation in Lower Saxony
 3. National Park Office of the Lower Saxony Wadden Sea
 4. Federal Administration of Waterways and Navigation – Directorate Northwest
 5. Federal Administration of Waterways and Navigation – Directorate North

SP2: Protection of the marine environment
- Principal applicant
 Federal Maritime and Hydrographic Agency
- Project participants
 6. State office for agriculture, environment and rural areas
 7. State office for environment, conservation and geology

SP3: Maritime conservation
- Federal Agency for Nature Conservation

SP4: Scientific accompanying research
- Professorship for Geodesy and Geoinformatics, University of Rostock

Source: Die Küste (2014): Volume 82
Information sharing

- INSPIRE: Interoperability of spatial data and services, meta data, data access, monitoring
- Reporting duties: WFD, MSFD, Natura2000

Data flow within information networks and reporting

Source: Die Küste (2014): Volume 82

Major components

Source: Die Küste (2014): Volume 82
MDI-DE is based on the linkage of spatially distributed infrastructure nodes. The Infrastructure node (ISN) within MDI-DE describes hard- and software of a local server architecture, being able to manage spatial data and metadata and to disseminate this by standardised services. According to the "Publish-Find-Bind-Principle" the individual components are interacting with each other using OGC conformal services.

Data base:
- Oracle
- Microsoft SQL Server
- PostgreSQL/PostGIS
- ...

GIS-/Map-Server:
- GeoServer
- ArcGIS-Server
- UMN MapServer
- ...

Metadata:
- NOKIS
- GeoNetwork
- InGrid/PortalU
- terracatalog
- ...

Client:
- Cadenza
- geoExt
- BfN-Viewer
- sdi.suite
- OpenLayers
- ...

Inquiry: Protected sites Wismarer Bucht
Result comes from: Kartenportal M-V

Conclusion

http://www.gcu.ac.uk/library/SMILE/Communicating_information/conclusion_contents.html
e-Science
- New opportunities and new challenges for scientists
- Research data infrastructures needed

Geoinformatics
- Valuable contribution to e-Science
- Spatial reference is representing an ordering criterion
 - Direct and indirect georeferencing
- Linking various resources
- Web-based OGC reference architecture as basis for research data infrastructures
- Spatial functionality offers analytic tools