Modelling 3D Avatar for Virtual Try on

NADIA MAGNENAT-THALMANN
DIRECTOR MIRALAB – UNIVERSITY OF GENEVA
DIRECTOR INSTITUTE FOR MEDIA INNOVATION, NTU, SINGAPORE
WWW.MIRALAB.CH/

Creating Digital Humans

Vertex by vertex design:

© MIRALab

Gypsum Statue of Humphrey Bogart
Meshgrid plotted on the statue with a pencil
Vertex by vertex, each coordinate is transferred into the computer intuitively
Model is rendered

Some other models that are used for modeling(1987)
Creating Digital Humans

Sculpting a geometric primitive

- Free-form interactive modeling with a geometric primitive.

Peter Ratner, 3-D Human Modeling and Animation, Wiley Pub., 2003

Creating Digital Humans

Digital human modeling software

- Uses Template
 - Models
 - Postures
 - Motions
 - Gestures
 - Textures
Creating Digital Humans

3D Body Scanners

- Acquires precise surface structure.

Creating Digital Humans

- 3D body scanner
 - Image based 3D scanner
 - 80 compact cameras synchronized and control from a single computer placed on hexagonal structure

- Output:
 - 80 pictures taken simultaneously from various angles
 - 3D reconstructed avatar
Creating Digital Humans

- Post processing using agisoft photoscan
- Generate automatically mask to facilitate reconstruction
- Remove green artefact on the skin to improve texture quality

Modeling Pipeline

Body Scan

Almost automatic
3DS Max and MIRALab plugins
some user interaction
Industry Standard
COLLADA format
Rapid Visualization
Environment
Early Cloth Simulation Models at MIRALab

Problems to be solved in Clothing Research

Mechanical Properties of Cloth
- How to describe the mechanical behavior of cloth.

Mechanical Modeling
- How to simulate these properties on virtual cloth.

Numerical Integration
- How to solve the differential equations resulting from the mechanical model.

Collision Detection
- How to detect efficiently contacts between cloth and other objects.

Collision Response
- How to take into account these contacts in the simulation.

1. **Mechanical Properties**

- **Internal Forces** (From surface deformations)
 - Elasticity (metric, curvature)
 - Viscosity
 - Plasticity

- **External Forces** (From environment interactions)
 - Gravity, Air Viscosity
 - Contact reaction, Friction
 - Miscellaneous Interactions
2. Mechanical Modeling

- Representation of Mechanical Parameters on a Virtual Cloth Surface
 - Geometrical modeling: Surface discretization
 - Triangles, Quadrangles, ...
 - Polygons, Bezier patches, ...
 - Regular grid, Arbitrary topology, ...
 - Animation: Time discretization
 - Successive frames along time.

3. Numerical Integration

- The mechanical model defines a law relating force to position and speed:
 \[F(P(t), P'(t)) \]

- Newton’s law relates acceleration to force and mass:
 \[F = M \ P''(t) \]

- A differential system should be resolved along time
 - Huge number of degrees of freedom:
 - Efficient methods are needed.
 \[M \ P''(t) = F(P(t), P'(t)) \]
4-5 Collision Detection and Response

• Integrating Collision Effects in the Mechanical Model
 • Reaction Effects
 • Prevent interpenetration of surfaces.
 • Necessary for geometrical consistency.
 • Friction Effects
 • Dissipative forces that oppose sliding.
 • Contribute to realistic contact effects.

Exhibition Robert Piguet

• Exhibition Robert Piguet: “High Fashion in Equations”
 • Project in collaboration with The Swiss Fashion Museum of Yverdon-les-Bains, Switzerland

• Context of the collaboration
 • The Swiss Fashion Museum of Yverdon-les-Bains had the privilege of receiving **3,000 original sketches** made by several trainees of renowned Designer Robert Piguet. The exhibit, titled Exposition Robert Piguet: From 1933 to 1951, traces Mr. Piguet’s career.
Exhibition Robert Piguet

• New ideas are illustrated with aesthetic drawings.

Sketches by Marc Bohan, Hubert de Givenchy and Serge Guérin

Exhibition Robert Piguet

• Having the desired 3D shape in mind, the 2D patterns are designed by experts according to pattern construction rules:
Exhibition Robert Piguet

Model designed by Givenchy

Exhibition Robert Piguet

Model designed by Guèrin
Exhibition Robert Piguet

Model designed by Givenchy

Exhibition Robert Piguet also film selected at SIGGRAPH ELECTRONIC THEATER (2007, San Diego, USA)
What is a Virtual Try On?

• An (online) application, allowing you to try on virtual objects (before purchase).
• There are many (online) examples
 • Jewelry
 • Watches
 • Glasses
 • Garments

A Virtual Try On for garments

• A Virtual Try On for garments has been approached from many different angles
 • Evaluate garments for style
 • The commercial majority falls into this category
 • Evaluate garments for fit
 • Academic research and some commercial solutions
• A spectrum of approaches

<table>
<thead>
<tr>
<th>2D</th>
<th>2.5D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photos of actual garments or Drawings</td>
<td>2D elements viewable from many angles</td>
<td>Full 3D real-time rendering</td>
</tr>
<tr>
<td>Overlaid on a model’s body</td>
<td>Gives the illusion of 3D</td>
<td>Both models and garments are meshes</td>
</tr>
<tr>
<td>like paper dolls</td>
<td>Input can come from either 2D or 3D</td>
<td>Possibly includes animation and simulation</td>
</tr>
</tbody>
</table>
VTO Approaches: 2.5D

My Virtual Model

Mimic Me

Optitex 3D Virtual Clothing

Our Virtual Try On: Overview

- 3D Application
- Real-time simulation of garments
- Try-On using Virtual Human
- Real-time 3D avatar creation based on user morphology
- Garments customisation
- Virtual mirror using Microsoft Kinect
- Multi-device and multi-user system
Our Virtual Try On: Body sizing

- An accurate body is essential
 - To “try on” clothing, you need a virtual body that represents your own

- Start from a template body
 - Generate a body with your sizes based on anthropometric data
 - Use a picture of the user to increase immersion and realism

Interface and Interaction

- Kinect client
 - Morphology extraction using depth image
Interface and Interaction

- Kinect client
 - Real-time reconstruction of the animation

Our Virtual Try On: Demo
Thank you for your attention