Some Stuttgart Highlights of Photogrammetry and Remote Sensing

Dieter Fritsch

Keynote - The 55th Photogrammetric Week

Contents

1. Introduction
2. Camera Calibration – The Novel Approach
3. SURE – An Update
4. Geometric Processing of WorldView-2 Imagery
5. Conclusions
1. Introduction

- April 1, 1966: Fritz Ackermann was appointed Full Professor at the University of Stuttgart and launched the Institute for Photogrammetry
- Excellent contributions in: Analytical photogrammetry (Independent Models, Bundle Block Adjustment, Digital Image Correlation, GPS Photogrammetry, Laser Profiling, automated Aerial Triangulation,..)
- June 1, 1992: Dieter Fritsch was appointed Full Professor at the University of Stuttgart and Director of the Institute for Photogrammetry
- The last 23 years: Contributions to Laser Scanning, ISO, automated 3D City Model Generation, Conflation, 2D & 3D Generalization, Hybrid GIS, Camera Certifications & Calibrations, Dense Image Matching, UAV Photogrammetry, Close-range Photogrammetry, Mobile Mapping (Streets, Rails), SAR Remote Sensing, Optical Remote Sensing, Augmented Reality, 4D Reconstructions, ...

<table>
<thead>
<tr>
<th>Year</th>
<th>Pubs</th>
<th>Congress</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>60 Pubs</td>
<td>Congress</td>
</tr>
<tr>
<td>1993</td>
<td>24 Pubs</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>48 Pubs</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>44 Pubs</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>37 Pubs</td>
<td>Congress</td>
</tr>
<tr>
<td>1997</td>
<td>36 Pubs</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>50 Pubs</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>45 Pubs</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>28 Pubs</td>
<td>Congress</td>
</tr>
<tr>
<td>2001</td>
<td>29 Pubs</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>25 Pubs</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>18 Pubs</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>28 Pubs</td>
<td>Congress</td>
</tr>
<tr>
<td>2005</td>
<td>33 Pubs</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>22 Pubs</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>29 Pubs</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>21 Pubs</td>
<td>Congress</td>
</tr>
<tr>
<td>2009</td>
<td>34 Pubs</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>26 Pubs</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>22 Pubs</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>30 Pubs</td>
<td>Congress</td>
</tr>
<tr>
<td>2013</td>
<td>38 Pubs</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>22 Pubs</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>26 Pubs</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>775 Pubs</td>
<td></td>
</tr>
</tbody>
</table>
2.1 Camera Calibration – Intro

- Camera calibration is one essential subject in photogrammetry
 - Self-calibration by using additional parameters (APs)

- Traditional self-calibration APs for analogue (film-based) photogrammetry
 - Physical APs: Brown (1971), Brown (1976)
 - Polynomials APs: Ebner (1976), Grün (1978)
 - They were originated for analogue single-head camera systems

- Do they still work well in digital aerial photogrammetry?

2.1 Camera Calibration - Intro

- Digital Airborne Cameras
 - Most frame cameras employ multi-head, virtual composition techniques

- Integration of GPS/IMU system
 - Direct georeferencing (ISO).
 - What is the impact of the self-calibration approach?

- Some criticisms on traditional APs (Clarke and Fryer, 1998)
 - Some ‘have no foundations based on observable physical phenomena’.
 - High correlations.
2.1 Camera Calibration - Intro
Using extended collinearity equations

- Transformation from Image ➔ Object Space

\[
\begin{align*}
\bar{X} &= \bar{z} \frac{r_{11} \Delta X + r_{21} \Delta Y + r_{31} \Delta Z}{r_{13} \Delta X + r_{23} \Delta Y + r_{33} \Delta Z} + \Delta \bar{x} \\
\bar{Y} &= \bar{z} \frac{r_{12} \Delta X + r_{22} \Delta Y + r_{32} \Delta Z}{r_{13} \Delta X + r_{23} \Delta Y + r_{33} \Delta Z} + \Delta \bar{y}
\end{align*}
\]

with
\[
\begin{align*}
\Delta X &= X - X_0 & \bar{x} &= x - x_0 \\
\Delta Y &= Y - Y_0 & \bar{y} &= y - y_0 \\
\Delta Z &= Z - Z_0 & \bar{z} &= z - z_0 = -c
\end{align*}
\]

- typically the standard model is amended by additional parameters (AP) \(\Delta x, \Delta y \)
- allow for compensation of systematic errors in image space and estimation camera calibration parameters (dependent on block geometry)
- models are functions of reduced image coordinates
- classification of AP sets
 - physical models, obtained from physical interpretable params
 - pure mathematical models without physical meanings
 - combined/mixed models (combination of former two)

2.1 Camera Calibration - Reconsiderations

- Should the traditional APs be continued being used now?
 - If so, why?
 - If not, where are the new ones?

- Some challenges
 - Find the physical or mathematical foundations for APs
 - Decouple multi-corrections
 - Self-calibration APs
 - Misalignments
 - shift/drift effect in DGPS
 - IO parameters
 - EO
 - ...

© Institute for Photogrammetry, Univ. Stuttgart
2.1 Camera Calibration – Testsite Vaihingen/Enz

- Testsite Vaihingen/Enz, since 1995
- Established for the assessment tests of the Digital Photogrammetric Assembly (DPA) – helped ifp to get worldwide reputation
- Many tests have been supervised by ifp: Film-based (with & without ISO), digital (with/without ISO), …

2.2 Camera Calibration – A Function Approximation Using Polynomials

- Weierstrass Theorem
 - Any univariate function can be approximated with arbitrary accuracy by a polynomial of sufficiently high degree.
 \[\lim_{n \to \infty} p_n(x) = g(x) \]
- Orthogonal Polynomials
 - Discrete OPs
 - Continuous OPs
- Legendre orthogonal polynomials: continuous OPs
 \[|L_m(x)| \leq 1, \quad -1 \leq x \leq 1 \]
 \[\int_{-1}^{1} L_m(x)L_n(x)dx = \begin{cases} 0, & m \neq n \\ 1, & m = n \end{cases} \]
2.2 Camera Calibration – Legendre Polynomials

- Legendre polynomials possess the optimal approximation in the least-squares sense (Mason & Handscomb, 2002).

\[
\begin{align*}
L_0(x) &= 1 \\
L_1(x) &= x \\
L_2(x) &= \frac{1}{2} (3x^2 - 1) \\
L_3(x) &= \frac{1}{2} (5x^3 - 3x) \\
L_4(x) &= \frac{1}{8} (35x^4 - 30x^2 + 3) \\
L_5(x) &= \frac{1}{8} (63x^5 - 70x^3 + 15x) \\
L_6(x) &= \frac{1}{16} (231x^6 - 315x^4 + 105x^2 - 5)
\end{align*}
\]

- Development of Legendre self-calibration APs

- Width and length of images: \(2b_x, 2b_y\)

\[
\begin{align*}
l_m(x, b_x) &= L_m\left(\frac{x}{b_x}\right) \\
l_n(y, b_y) &= L_n\left(\frac{y}{b_y}\right) \\
F_{m,n} &= \int \int f_{m,n}(x, y; b_x, b_y) \, dx \, dy = l_m(x, b_x) l_n(y, b_y) \\
P_{m,n} &= 10^{-4} F_{m,n}, \quad |p_{m,n}| \leq 10^{-4}
\end{align*}
\]

\[
\int \int p_{i,j} p_{m,n} \, dx \, dy = 0 \quad \text{if} \quad i \neq m \quad \text{or} \quad j \neq n
\]

- Each distortion term is approximated by the combinations of

\[
\{p_{m,n}\}_{m,n}
\]
2.2 Camera Calibration – Legendre Polynomials

- Selecting M and N
 \[m = 0,1,\ldots,M, \quad n = 0,1,2,\ldots,N \]
- Eliminating two constant terms and four highly correlated terms.
- The number of Legendre APs
 \[L_{AP} = 2(M + 1)(N + 1) - 6 \]
 \[M = N = 2, \quad L_{AP} = 12 \]
 \[M = N = 3, \quad L_{AP} = 26 \]
 \[M = N = 4, \quad L_{AP} = 44 \]
 \[M = N = 5, \quad L_{AP} = 66 \]
 ...
 \[M = 3, N = 4, \quad L_{AP} = 34 \]
- So far, Legendre APs are successfully constructed.

2.2 Camera Calibration - Fourier Series

- Fourier series are also optimal base function for developing self-calibration APs
- Laplace’s Equation and Fourier Theorem
- Construction of bi-variate Fourier APs

\[\cos(mx \pm ny), \sin(mx \pm ny), \quad m, n = 0, \pm 1, \pm 2, \ldots \]
\[u = \frac{x}{b_x}, \quad v = \frac{y}{b_y}, \quad u \in [-\pi, \pi], v \in [-\pi, \pi] \]
\[c_{m,n} = 10^{-6} \cos(mu + nv), \quad s_{m,n} = 10^{-6} \sin(mu + nv) \]
\[\Delta x = \sum_{m=1}^{M} \sum_{n=-N}^{N} (a_{m,n} c_{m,n} + b_{m,n} s_{m,n}) + \sum_{n=1}^{N} (a'_{0,n} c_{0,n} + b'_{0,n} s_{0,n}) \]
\[\Delta y = \sum_{m=1}^{M} \sum_{n=-N}^{N} (a'_{m,n} c_{m,n} + b'_{m,n} s_{m,n}) + \sum_{n=1}^{N} (a'_{0,n} c_{0,n} + b'_{0,n} s_{0,n}) \]
2.3 Camera Calibration – The Novel Approach

Practical Tests

- Test datasets
 - It was carried out using flights over the Vaihingen/Enz testfield

Tests on DMC and UltracamX Cameras

- Block overview
 - Two cameras: DMC and UltracamX
 - Two fly heights: GSD 20cm and GSD 8cm
 - Two block configurations
 - Dense GCPs and high side-overlap (60%)
 - Sparse GCPs and low side-overlap (20%)

<table>
<thead>
<tr>
<th>Context</th>
<th>In-situ calibration</th>
<th>Operational project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor orientation</td>
<td>ISO</td>
<td>ISO</td>
</tr>
<tr>
<td>Forward overlap (p)</td>
<td>60% – 70%</td>
<td>60% – 70%</td>
</tr>
<tr>
<td>Cross strip</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Side overlap (q)</td>
<td>60%</td>
<td>20%</td>
</tr>
<tr>
<td>Image number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMC (GSD 20cm)</td>
<td>3 lines × 14/line = 42</td>
<td>2 lines × 14/line = 28</td>
</tr>
<tr>
<td>Ultracam-X (GSD 20cm)</td>
<td>3 lines × 12/line = 36</td>
<td>2 lines × 12/line = 24</td>
</tr>
<tr>
<td>DMC (GSD 8cm)</td>
<td>5 lines × 22/line = 110</td>
<td>3 lines × 22/line = 66</td>
</tr>
<tr>
<td>Ultracam-X (GSD 8cm)</td>
<td>5 lines × 35/line = 175</td>
<td>3 lines × 35/line = 105</td>
</tr>
<tr>
<td>GCP/ChP distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMC (GSD 20cm)</td>
<td>47 GCPs /138ChPs</td>
<td>4GCPs/181ChPs</td>
</tr>
<tr>
<td>Ultracam-X (GSD 20cm)</td>
<td>47 GCPs /138ChPs</td>
<td>4GCPs/181ChPs</td>
</tr>
<tr>
<td>DMC (GSD 8cm)</td>
<td>49 GCPs /69ChPs</td>
<td>4GCPs/114ChPs</td>
</tr>
<tr>
<td>Ultracam-X (GSD 8cm)</td>
<td>48 GCPs /68ChPs</td>
<td>4GCPs/112ChPs</td>
</tr>
</tbody>
</table>
2.3 Camera Calibration – Practical Tests

- Two examples of Legendre APs

 \[\Delta x = a_1 p_{x,0} + a_2 p_{x,2} + a_3 p_{x,4} + a_4 p_{x,6} + a_5 p_{x,8} \]
 \[+ a_6 p_{x,10} + a_7 p_{x,12} + a_8 p_{x,14} + a_9 p_{x,16} + a_{10} p_{x,18} \]
 \[+ a_{11} p_{x,20} + a_{12} p_{x,22} + a_{13} p_{x,24} + a_{14} p_{x,26} + a_{15} p_{x,28} \]
 \[+ a_{16} p_{x,30} + a_{17} p_{x,32} + a_{18} p_{x,34} + a_{19} p_{x,36} + a_{20} p_{x,38} \]
 \[+ a_{21} p_{x,40} + a_{22} p_{x,42} + a_{23} p_{x,44} + a_{24} p_{x,46} + a_{25} p_{x,48} \]
 \[+ a_{26} p_{x,50} + a_{27} p_{x,52} + a_{28} p_{x,54} + a_{29} p_{x,56} + a_{30} p_{x,58} \]

 \[\Delta y = a_1 p_{y,0} + a_2 p_{y,2} + a_3 p_{y,4} + a_4 p_{y,6} + a_5 p_{y,8} \]
 \[+ a_6 p_{y,10} + a_7 p_{y,12} + a_8 p_{y,14} + a_9 p_{y,16} + a_{10} p_{y,18} \]
 \[+ a_{11} p_{y,20} + a_{12} p_{y,22} + a_{13} p_{y,24} + a_{14} p_{y,26} + a_{15} p_{y,28} \]
 \[+ a_{16} p_{y,30} + a_{17} p_{y,32} + a_{18} p_{y,34} + a_{19} p_{y,36} + a_{20} p_{y,38} \]
 \[+ a_{21} p_{y,40} + a_{22} p_{y,42} + a_{23} p_{y,44} + a_{24} p_{y,46} + a_{25} p_{y,48} \]

For practical tests:

- Fourier APs, 16 params (maximum degree 1)

 \[\Delta x = a_1 c_{1,0} + a_2 c_{1,1} + a_3 c_{1,2} + a_4 c_{1,3} \]
 \[+ a_5 c_{1,4} + a_6 c_{1,5} + a_7 c_{1,6} + a_8 c_{1,7}, \]

 \[\Delta y = a_1 s_{1,0} + a_2 s_{1,1} + a_3 s_{1,2} + a_4 s_{1,3} \]
 \[+ a_5 s_{1,4} + a_6 s_{1,5} + a_7 s_{1,6} + a_8 s_{1,7}, \]

- Fourier APs, 48 params (maximum degree 2)

 \[\Delta x = a_1 c_{2,0} + a_2 c_{2,1} + a_3 c_{2,2} + a_4 c_{2,3} + a_5 c_{2,4} + a_6 c_{2,5} \]
 \[+ a_7 c_{2,6} + a_8 c_{2,7} + a_9 c_{2,8} + a_{10} c_{2,9} + a_{11} c_{2,10} + a_{12} c_{2,12} \]
 \[+ a_{13} c_{2,13} + a_{14} c_{2,14} + a_{15} c_{2,15} + a_{16} c_{2,16} + a_{17} c_{2,17} + a_{18} c_{2,18} \]
 \[+ a_{19} c_{2,19} + a_{20} c_{2,20} + a_{21} c_{2,21} + a_{22} c_{2,22} + a_{23} c_{2,23} + a_{24} c_{2,24} \]

 \[\Delta y = a_1 s_{2,0} + a_2 s_{2,1} + a_3 s_{2,2} + a_4 s_{2,3} + a_5 s_{2,4} + a_6 s_{2,5} + a_7 s_{2,6} + a_8 s_{2,7} + a_9 s_{2,8} + a_{10} s_{2,9} + a_{11} s_{2,10} + a_{12} s_{2,11} + a_{13} s_{2,12} \]
2.3 Camera Calibration – In-situ Scenario

- Dense GCPs and 60% side-overlap

![Graphs showing camera calibration results with dense GCPs](image)

- 4 GCPs and 20% side-overlap

![Graphs showing camera calibration results with 4 GCPs](image)

2.3 Camera Calibration – The Novel Approach

Operational Project Scenario

- 4 GCPs and 20% side-overlap

![Graphs showing camera calibration results with the novel approach](image)
2.3 Camera Calibration – The Novel Approach

Accuracy Comparisons

Correlation Analyses

<table>
<thead>
<tr>
<th>APs</th>
<th>corr.</th>
<th>EO</th>
<th>IO</th>
<th>IMU</th>
<th>Intra-corr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown APs</td>
<td>< 0.1</td>
<td>98%</td>
<td>78%</td>
<td>86%</td>
<td>78%</td>
</tr>
<tr>
<td>(21)</td>
<td>max</td>
<td>0.19</td>
<td>0.87</td>
<td>0.55</td>
<td>0.92</td>
</tr>
<tr>
<td>Grün APs</td>
<td>< 0.1</td>
<td>100%</td>
<td>80%</td>
<td>83%</td>
<td>88%</td>
</tr>
<tr>
<td>(44)</td>
<td>max</td>
<td>---</td>
<td>0.73</td>
<td>0.53</td>
<td>0.93</td>
</tr>
<tr>
<td>Legendre APs</td>
<td>< 0.1</td>
<td>100%</td>
<td>97%</td>
<td>100%</td>
<td>96%</td>
</tr>
<tr>
<td>(66)</td>
<td>max</td>
<td>---</td>
<td>0.44</td>
<td>---</td>
<td>0.57</td>
</tr>
<tr>
<td>Fourier APs</td>
<td>< 0.1</td>
<td>100%</td>
<td>89%</td>
<td>92%</td>
<td>92%</td>
</tr>
<tr>
<td>(16)</td>
<td>max</td>
<td>---</td>
<td>0.45</td>
<td>0.20</td>
<td>0.53</td>
</tr>
</tbody>
</table>

- Legendre APs and Fourier APs perform similarly best.
2.3 Camera Calibration – The Novel Approach

Distortion Determination

- **DMC (GSD 20cm)**

2.4 Summary

The new families of Legendre and Fourier self-calibration APs are excellent:

- Use mathematical base functions to approximate the unknown distortion function
- Fourier APs are rigorous, flexible and use a lower number of additional parameters – just 16 are sufficient!
 - Many other datasets were tested with DMC II, UltracamXp, DigiCAM cameras in different test fields.
- Fourier APs vs Polynomial APs
 - Fourier APs are theoretically preferable
 - Fourier APs are more efficient (less APs)
 - Fourier APs obtain more realistic distortion results

Fourier APs should be integrated in every Bundle Block Adjustment software!
2.5 References

3.1 SURE History – SUrface REconstruction

- 10/2009: After PhoWo’09 Interests of Vexcel Imaging GmbH on Study “Multiray Photogrammetry”
- 11/2009: Fritsch’ offer to Mathias Rothermel for PhD studies at ifp, started Jan 15, 2010, pilot programming of SGM algorithms
- 03/2010 Interests of LVG Munich on SGM, user of first ifp SGM pilot software, end 2010
- 05/2010: Kick-off meeting with Vexcel Imaging, study delivered Jan 12, 2011
- 04-12/2010: Master’s Thesis Konrad Wenzel in cooperation with Trimble inpho
3.1 SURE History – SUrface REconstruction

- 10/2010: Contact with IB Christofori to reconstruct the 2 Tympana of the Amsterdam Royal Palace by Dense Image Matching using Close Range photogrammetry
- 11/2010: Fritsch’ offer to Konrad Wenzel for PhD studies at ifp, started Jan 01, 2011, pilot programming of SGM algorithms
- 03/2011: Data collection in Amsterdam
- 10/2011: Delivery of dense point cloud to IB Christofori
- During period of data processing ifp developed own strategy for Structure-from-Motion and tSGM

3.1 SURE History – The Amsterdam Project

West Façade

- Multi-Camera System
 - 5 industrial cameras
- About 4000 images
- 6 Clusters
- Global Adjustment
 - 1.1 Million points
 - RMS: 0.5 pixels
- Dense Matching (SGM): 1.1 Billion points
Reconstruction of the Akhenaten Temple in Heliopolis/Cairo (Joint Project of Univ Leipzig, Univ Stuttgart and German University in Cairo)

- First explorations/excavations 2011 & 2012
- Pilots for 3D reconstructions using laser scanning & photogrammetry
- Bundle Adjustment: Visual SFM, bundler
- 34 images, Nikon DX2, 14MPix, c=24mm
- Dense Image Matching: SURE > 5.5 million points

Laser scan, 1.4 Mio points
GSD 1-2mm

DIM@SURE, 5.5 Mio points
GSD 0.5mm
3.1 SURE History– SUrface REconstruction

- 03-06/2012: Feasibility study for IGI with Oblique Imagery
- 05/2012-10/2012: Merger of two DIM software packages to one: SURE
- 06/2013: Decision to outsource further developments of SURE to nFrames, a TGU within the incubator TTI GmbH, Stuttgart
- 01/2015: All rights of SURE to nFrames GmbH, Stuttgart

3.2 SURE Update - Processing Pipeline Overview

- Structure of the dense matching pipeline
3.2 SURE Update – DSM Mesh

- Adaptive triangle size

3.2 SURE Update – True Ortho Generation

- Sharp edges
3. SURE Update – True Orthophotos

3. SURE Update – DSM Mesh

DSM edge refinement

Automatic seam leveling
3.2 SURE Update – 3D Mesh

Photorealistic texturing

Each face is seen in multiple views, how to select texture?
- Blending texture from multiple views
- Visible seams due to inaccurate orientation
- Differences in image scale: blurred textures
- Select texture from best view
 - Criterion for best view, for example nearest non-blurred view
 - To avoid seams: neighboring faces should be textured from the same image
- Cast as global optimization problem

$$E(l) = \sum_{F_i \in \text{Faces}} E_{\text{data}}(F_i, l_i) + \sum_{(F_i, F_j) \in \text{Edges}} E_{\text{smooth}}(F_i, F_j, l_i, l_j)$$

3.2 SURE – Texture Mapping
Example Nadir Flight (80/80, 10cm GSD)

3.3 Summary
Key features SURE

- Scalability to large data sets - e.g. city scale projects
- Completely automatic and configurable
- Supports all frame cameras in nadir or oblique configuration
- 8 Bit and 16 Bit multispectral imagery support
- Generation of georeferenced DSM tiles
- Automatic True Ortho generation and refinement
- Automatic 2.5D and 3D texturized meshes
- Orientation interfaces for Match-AT, VSFM, Photoscan, Pix4D and many more
- Multi-core implementation & graphics card support
- Distributed processing
- Multiple interfaces – graphical, command line or APIs
3.4 References SURE (2012 only)

4.1 Geometric Processing of WorldView-2

The Munich Stereo Images – Example 1

Copyright: DigitalGlobe

4.1 Geometric Processing of WV-2 Imagery

Rational Polynomial Coefficients

- Usually, satellite imagery does not provide the interior and exterior elements, but Rational Polynomial Coefficients (RPCs).

\[y = \frac{\text{Num}_L(B, L, H)}{\text{Den}_L(B, L, H)} \]
\[x = \frac{\text{Num}_S(B, L, H)}{\text{Den}_S(B, L, H)} \]

- For NumL, DenL, Nums and Dens, each one is a function of normalized latitude, longitude and elevation with 20 coefficients. So 80 coefficients for all.

\[
\begin{align*}
 B &= \frac{\text{lat} - \text{lat}_\text{off}}{\text{lat}_\text{scale}} \\
 L &= \frac{\text{lon} - \text{long}_\text{off}}{\text{long}_\text{scale}} \\
 H &= \frac{\text{height} - \text{height}_\text{off}}{\text{height}_\text{scale}} \\
 y &= \frac{j - \text{line}_\text{off}}{\text{line}_\text{scale}} \\
 x &= \frac{i - \text{sample}_\text{off}}{\text{sample}_\text{scale}}
\end{align*}
\]
4.1 Geometric processing of WV-2 Imagery

Challenges

- Airborne imagery
 - GSD: \(\sim10\) cm
 - Covering area: \(<5\) sqkm

- Satellite imagery
 - GSD: \(\sim50\) cm
 - Covering area: \(>10\) sqkm

Bundle Block Adjustment

Dense Image Matching

Very Dense DSM

4.2 Geometric Processing of WV-2 Imagery

Bias-Compensation

- With RPCs a bundle block adjustment can be done, but the accuracy of RPCs provided by satellite data provider is low. Therefore, often an affine model is used to compensate the bias.

 \[
 \Delta p^{(j)} = a_0^{(j)} + a_s^{(j)} \cdot sample_i^{(j)} + a_L^{(j)} \cdot line_i^{(j)}
 \]

 \[
 \Delta r^{(j)} = b_0^{(j)} + b_s^{(j)} \cdot sample_i^{(j)} + b_L^{(j)} \cdot line_i^{(j)}
 \]

- For each point \(i\) on image \(j\) the RPC bundle block adjustment observation equations are:

 \[
 F_{Li} = -line_i^{(j)} + p^{(j)}(\phi_k, \lambda_k, h_k) + \epsilon_{Li} + \Delta p^{(j)} = 0
 \]

 \[
 F_{Si} = -sample_i^{(j)} + r^{(j)}(\phi_k, \lambda_k, h_k) + \epsilon_{Si} + \Delta r^{(j)} = 0
 \]
4.3 Geometric Processing of WV-2 Imagery
Epipolar Image Generation

- Epipolar images are images without any vertical parallax or disparity.

- For traditional frame imagery, the perspective centre is fixed, the epipolar line is the intersection between the epipolar plane and the image plane.

- For push-broom sensors, the perspective centre is changing (as a function of time).

- How to solve the problem? With the projection trajectory method based on RPCs.

4.2 Geometric Processing of WorldView-2
Epipolar Image
4.3 Geometric processing of WV-2 Imagery

Disparity Image and DSM

Vertical difference at check points from airborne LiDAR

rms = 1.9989 m

DSM airborne images
(from DMC camera)

DSM WV-2 images

Part II – Research Projects

Universität Stuttgart
4.3 Geometric Processing of WV-2 Imagery
DSM Accuracy Analysis

Vertical difference at check points from airborne LiDAR

Vertical profiles DSM from DMC versus DSM from WV-2

- P1: 20 ChP DMC vs WV-2: RMS 1.41m
- P2: 20 ChP DMC vs WV-2: RMS 2.09m

4.4 Summary

- QuickBird and WV-2 images have been processed using an affine distortion model.
- Epipolar image generation using RCP trajectories
- Dense Image Matching with SURE delivers reasonable results: along roofs 1.4m RMS, along terrain 2.1m RMS
- Not yet all optimizations explored, we just started!
- Will continue with WV-3 imagery
5. Conclusions

- The Institute for Photogrammetry of the University of Stuttgart continued with the tradition to make an impact to R&D in photogrammetry, remote sensing and geoinformatics.
- Excellent staff members contributed to these developments in the last 5 decades
- **Remember the date: April 8, 2016 – 50th Anniversary of ifp, Stuttgart**
- Teaching is video-casted since 2006 – worldwide recognition!
- Exports of Teaching to GUC, Cairo and Berlin
- Exports of Teaching to SUSTECH, Khartoum, Sudan
- The Photogrammetric Week Series got a new profile in 2003 – open for all participants, open for Open PhoWo Partners!

Martina Kroma, Werner Schneider, Markus Englich, Dr. Eberhard Stark, Prof. Norbert Haala, Dr. Volker Walter, Dr. Michael Cramer, Prof. Ralf Bill, Prof. Michael Hahn, Prof. Ulrike Klein, Dr. Michael Glemser, Dr. Babak Ameri, Dieter Schmidt, Dieter Kraus, Prof. Monika Sester, Prof. Claus Brenner, Prof. Jan Böhm, Prof. Timo Balz, Prof. Martin Kada, Prof. George Vosselman, Prof. Yahya Alshawabkeh, Dr. Susanne Becker, Prof. Karl-Heinrich Anders, Martin Bofinger, Reinhold Burger, Dr. Jens Gühring, Beate Haala, Prof. Ralf Reulke, Jürgen Hefele, Dr. Heiner Hild, Dr. Michael Kiefner, Johannes Kilian, Darko Klinec, Daud Nwir, Dr. Michael Peter, Berthold Plietker, Antje Quednau, Esther Hinz, Dirk Stallmann, Dr. Holger Schade, Thomas Schürle, Sarah Schuhmacher, Dr. Carola Stauch, Christian Stätter, Alessandro Cefalu, Konrad Wenzel, Mathias Rothermel, Dr. Vassilis Tsingas, Franz Schneider, Chien-Tzung Tschiang, Yinyin Tun, Patrick Tutzauer, Dr. Steffen Volz, Heike Weiippert, Marianne Wind, Dr. Wassim Moussa, Dr. Fen Luo Ali Khosravani, Dr. Wolfgang Schmid, Mohammed Othman, Dr. Hainan Chen, Dr. Alexander Fietz, Dr. Yevgeniya Filippovska, Dr. Silke Rossipal, Dr. Rongfu Tang

Thank you all for your strong support – you made an impact!
Thank you for Participating the 55th Photogrammetric Week.

… when it started at the 44th Photogrammetric Week 1993