Towards Virtual Life in 3D Cities

Daniel Thalmann,
Institute for Media Innovation,
Nanyang Technological University
Singapore

Our contributions since more than 10 years

Our contributions since more than 10 years

YaQ Architecture Overview

3 Components:

• Variety
• Navigation
• Real-Time

Complex Accessories (shopping bags, balloons, mugs)

- **Offline:**
 - For each complex accessory:
 - Which joint to constrain
 - How to constrain
 - Clamping \([\text{minAngle}, \text{maxAngle}]\)
 - Freezing \([\text{angle}]\)

- **At runtime:**
 1. Update animation as usual
 2. Overwrite frozen joints
 3. Use exponential maps to clamp joints

What is Motion Planning?

Path Planning
Collision Avoidance
Group Cohesion

Navigation Graph

- Vertices = Walkable Space
- Edges = Gates
- Navigation Flow = Set of Paths
- Provides Next Waypoint

Related Work: Continuum Crowds

- Create a Grid
- Group Pedestrians
- Compute Potential
- Provide Next Waypoint

Hybrid architecture

Regions of Interest

• Level 2: No Interest
 – Navigation Graph for Path Planning
 – No Dynamic Collision Avoidance

• Level 1: Low Interest
 – Ruled by Navigation Graph
 – Short - Term Obstacle Avoidance

• Level 0: High Interest
 – Ruled by Potential Fields
 – Long and Short - Term Avoidance

• Observation of interesting emergent behaviors, e.g., lane formations or panic effects, => crowd motion planning more realistic

Group Cohesion

• 4 step process
 1. Init: create groups
 – 2 – 4 pedestrians
 – Different templates
 – First member = leader
 2. Change Security Check
 – No intwp for members
 3. Speed Adaptation
 – Leader forward direction
 4. Waypoint Adaptation
Walking – navigation graph

• Rendered geometry

Walking – navigation graph

• Geometry semantics
Walking – roman crowd behavior

<table>
<thead>
<tr>
<th>geometry semantics</th>
<th>behavior</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>shop</td>
<td>get amphora</td>
<td>walk inside, get out with amphora.</td>
</tr>
<tr>
<td>bakery</td>
<td>get bread</td>
<td>walk inside, get out with bread.</td>
</tr>
<tr>
<td>young</td>
<td>rich</td>
<td>only rich people go there.</td>
</tr>
<tr>
<td>old</td>
<td>poor</td>
<td>only poor people go there.</td>
</tr>
<tr>
<td>door</td>
<td>look at</td>
<td>slow down, look through door.</td>
</tr>
<tr>
<td>window</td>
<td>look at</td>
<td>slow down, look through window.</td>
</tr>
<tr>
<td></td>
<td>stop look at</td>
<td>accelerate, stop looking.</td>
</tr>
</tbody>
</table>

Walking – shops
Walking – bakeries

Walking – bakeries/shops result
Walking – look at

Walking – stop look at
Walking – look at results

Crowd Patches

Patches: Static Objects

- No animation
- Constant position
- $\tau(0) = \tau(\pi)$
- Examples:
 - Tree
 - Signal
 - Bench
 - Trash
 - …

Patches: Endogenous Objects

- Animated and/or moving
- Remain inside a patch
- $\tau(0) = \tau(\pi)$
- Examples:
 - Wandering people,
 - Chatting people,
 - Wandering pets,
 - Shopping people,
 - …
Patches: Exogenous Objects

- Animated and moving
- Enter / leave patches
- $\tau(0) = \tau(\pi)$
- Examples: Walking people, Cars, ...

Overview
Real Trajectory Reuse

• **Initial step**: analysing recordings of multiple synchronized video cameras.

• **Second off-line stage**: fit as long as possible trajectory segments within predefined paths made of a succession of region goals.

• Pedestrians detector integrates binary masks from cameras.
• Ground-plane partitioned into grid cells.
• In each frame, detector estimates probability of each grid cell to be occupied by a person
• Tracking algorithm efficiently solves detection association task as global optimization problem
• Finally, post-process trajectories to obtain smooth and accurate trajectories.
Interaction Design

- Natural interface for user
- Device
 - MS Kinect Sensor
- Method
 - Template-based gesture recognition
- Interactions
 - Walk
 - Pick
 - Direct
 - Gather
 - Disperse
 - Lead
 - Stop

Two scenarios

- gathering the agents to a specific orientation.
- making agents disperse after gathering around the avatar
Thank you for your attention.

Questions ?…