Today's Orthophoto Production - The Business Model

Mostafa Madani

51st Photogrammetric Week

September 3-7, 2007 – Stuttgart, Germany

Images Courtesy of Stereocarto, Spain; PhotoScience, USA; AAM Hatch PTY Ltd., Australia

Presentation Outline

- Background
- Industry Trends
- Orthophoto Production
 - OrthoPro
 - PixelQue
- Production Issues
- Enterprise Photogrammetry
 - PixelPipe
- Summary
Orthophoto Workflow

Input Digital Images → Triangulation → DTM Extraction → Direct Georeferencing → Scan Photos

External DTM → DTM File

Ortho-rectify → Interactive/Automatic tone match Mosaic → Quality Control

Digital Ortho File

Digital Imagery

Facts
- 150,000 or more frames per year are acquired by digital camera owners
- Request for higher resolution and multi spectral imagery will increase
- Request for rapid response on natural disasters
- Teaming of photo flyers
- Large image programs will go fully digital during the next 3 years
 - National Agricultural Image Program and Imagery for the Nation
 - Microsoft, Google

Issues
- Downstream processing of imagery is a bottleneck
- How to manage, store, view, archive and distribute the data?
- Reduce cost / project time
- Improve QA/QC processes, less rework
- Need for automated and efficient production tools
- Demand for instant access to enterprise data through intranet as well as internet
Industry Trends: Digital vs. Film Cameras

Industry Trends: Digital vs. Film Cameras

Industry Trends

- A trend to larger orthophoto projects and shorter project times
 - USDA National Agriculture Imagery Program (NAIP)
 - Collect 1 and 2 meter natural color and color infrared imagery for the entire continental United States on a 1-year refresh cycle
 - 20% 1 meter and 80% 2 meter
 - Deliver imagery in the year of acquisition
 - Ordnance Survey, GB
 - 25cm national orthophotos
 - 3 to 5 year refresh cycle
 - IGN Spain
 - National orthophoto program
Industry Trends - Imagery for the Nation

- **Vision** – Provide sustainable and flexible digital imagery program that meets the needs of local, state, regional, tribal and federal agencies.

- **Program Cost** – Approximately $111 million per year or $333 million during the first 3-year.

<table>
<thead>
<tr>
<th>Ground Resolution</th>
<th>6-inch</th>
<th>1-foot</th>
<th>1-meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Type</td>
<td>Natural Color</td>
<td>Natural Color</td>
<td>Natural Color</td>
</tr>
<tr>
<td>Leaf On or Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Cloud Cover</td>
<td>0%</td>
<td>0%</td>
<td>10%</td>
</tr>
<tr>
<td>Horizontal Accuracy</td>
<td>2.5’ @ 95% NSSDA</td>
<td>5’ @ 95% NSSDA</td>
<td>25’ @ 95% NSSDA</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every 3 years</td>
<td>Every 3 Years</td>
<td>Every Year in 48 States Every 5 Years in Alaska & Hawaii</td>
</tr>
<tr>
<td>Federal Program Steward</td>
<td>USGS</td>
<td>USGS</td>
<td>US Dept. of Agriculture except Alaska (USGS)</td>
</tr>
</tbody>
</table>

County-wide Ortho Production Workflow

1. **Image Processing**
 - Pre-planning
 - Survey Control
 - Acquisition

2. **Orthorectification**
 - 12 to 8-bit conversion
 - County-wide color balance

3. **Aerial triangulation**

4. **Extract surface per frame**

5. **Final orthophotography tiles**

6. **Image tile compression**

7. **Delivery review**

8. **Deliver Product**
Orthophoto Production

- **County-wide Jobs**
 - Typical size about 2,000 images
 - Usually 8-bit color (RGB)
 - Various type of DTMs (stereo compiled, filtered LiDAR, auto-correlated points, or a combination of these)
 - 0.5 or 1.0 foot pixel resolution
 - 2000 to 4000 tiles output delivery
 - Final products 250 to 400 megabytes

- **Required Storage for Each Project**
 - 2.0 to 3.0 terabytes per ortho project
 - 0.5 to 1.0 terabytes for raw imagery
 - 1.0 to 1.5 terabytes for the ortho-rectified imagery
 - 0.5 terabytes for product tiles
 - 6.0 to 8.0 terabytes for 3 or 4 simultaneous projects

Orthophoto Production

- **Data Preparation**
 - Project setup
 - Different DTMs (format, coordinate systems, accuracy, etc)
 - Seamline generation

- **Overall Performance**
 - 6 to 8 hours rectifying 1500 color exposures to 0.5 foot pixel resolution using 28 processing nodes
 - 2 days dividing jobs to 3 to 4 parts for seamline editing and collection
 - 4-8 hours to produce large mosaics with overviews (batch processing)
 - 2 to 3 days - Quality control (manual)
 - Complete county-wide project with 1500 exposures within two weeks

- **Generally, as many as 6 to 8 different projects working at various stages of completion**
Orthophoto Production

State of Kentucky for NAIP

- Flights with two DMCs (from June 15 to September 21, 2006)
- 13,000 frames of photography flown at 20,000 ft
- DTM (USGS) – 1280 files
- Automatic seamline, mosaicking, and tonal balancing on multiple computers
- 2,730 DOQQs tiled sheets @ 0.2 m pixel size
- Multiple computers (2Ghz, 2 GB RAM or higher) were used

ImageStation OrthoPro

Included functions:

- Project definition
- Rectification
- Seamlines
 - Manual
 - Automatic
 - Editing
- Mosaicking
- Dodging
- True Orthophoto
- Auto-Ortho Production
OrthoPro Features...

- Use different DTM formats/coordinate systems
- Different seamline generation methods
- Red/Blue Image display tool for drawing seams
- Perform digital dodging (4-band files, and full 16-bit files)
- Apply LUT during rectify and mosaic
- Tone match and radiometric balance
- Mosaic along user-defined seam lines
- Graphic product selection through quad boundaries
- Create multiple output products in a single run
- Build for NDOP (DOQ & DOQQ) and NAIP productions

Why Distributed Processing?

- Reduce processing times linearly
 - Shorten project turn around times
 - Full quality control
- Use existing COTS TerraShare technology
 - Plugs easily into existing TS installations
- Easy to operate
 - System distributes jobs automatically
- Performance will depend on IO, Disk & network speed, etc.
System Configuration

OrthoPro

PixelQue

Storage

TerraShare Server & Advanced Server

Processing Nodes

How Distributed Processing Works?

Submitter application

OrthoPro

TerraShare Server & Advanced Server

DP Queue

Processing Nodes

DP Applications

Storage
Performance of Distributed Processing

Project Area
- Number of Photos: 145
- Number of Products: 35
- Imagery: 8 bit RGB, ~1ft GSD
- 80% Forward Lap, 10% Side Lap

Workstation (HP xw9300)
- Dual AMD x86 2.4GHz Processors
- 4 GB RAM
- IDE 80 GB Drives
- Gbit network
- WinXP SP 2

![Graph showing performance times for different numbers of nodes](image)

- Performance depends on IO, Disk & network speed, etc
- Typically encounter I/O bottlenecks with > 15-20 DP nodes
- Optimum configuration for OrthoPro is 10-15 nodes

ImageStation PixelQue

Finishing tools needed in orthophoto production

- Allows user to review entire image
- Errors flagged and queued
- Redline/Mark-up for rework

Highest cost in ortho production is QA/QC
ImageStation PixelQue

1. Allows user to review all images in project
 - User selects zoom factor
 - Then driven sector by sector to review entire image
 - Automatically advances to next image

2. Mark up errors and problem areas
 - Problems found may be fixed or marked up for later rework
 - User may define attribution of markers

3. Review of inspected image
 - Queued edit of problem markers
 - User corrects problems
 - User sets attribution to “fixed” after rework

4. Supports 4 band and 16bit images

PixelQue Commands...

- **Raster Fill**
 - Fill user selected area

- **Raster Splice**
 - Copy and paste user selected area
 - From one image to another

- **Pixel Clone**
 - User selects source
 - Brush shape and size
 - Feathering and Opacity
 - Copies to target

- **Local Warp**
 - Remove small distortions in orthophotos due to minor DTM errors

- **Raster Enhance (gradient)**

- **Raster Undo Brush (history brush)**
PixelQue Commands

- **Enhance Contrast**
 - Linear Percent
 - Linear Clip
 - Equalize
 - Gamma

- **Histogram**
 - Collect
 - Display

- **Look up tables**
 - Load, Save, Reset, Apply

- **Match Images**

PixelQue - Summary Key Features

- Georeferencing maintained
- Fast image loads
- Systematic inspection process helps eliminate gaps in coverage
- Apply edits to all 4 bands at the same time
- Apply Image Enhancement to MANY images at the same time
- Match many images to a single, source image
- Fast saves of images after raster editing
- Multi-user access to PixelQue Warehouse
Production Issues

- Typical production workflow comprises a number of different software tools from different vendors
- Software/tools typically have low to no level of integration
- Processes are workstation-centric
- Big projects with large volume of data
- Mixed data (formats, resolutions, coordinate systems)
- Multiple offices and outsourcing

Production Management Issues

- Is very manual (status reporting)
- Operators rely on paper tracking charts or make entries into Excel or Access tracking systems
- Operators use “file directory” to organize work
- Cannot view project status
- Inefficient - “home grown” tools and procedures to interface operations (input/output)
- Is very inefficient and error prone
- Production may stop if someone calls in sick!
Enterprise Production System Key Features

- Disparate input data
- Unified Database & Data Management
- Multi-user Transaction Control
- Workflow Guidance
- Distributed Processing Engine
- Production Logging/Reporting Tools
- Helper Functions
- Workflow Builder Tools
- Customizable and Scaleable
- Interoperability
- Flexibility
- Ease of use
- Accuracy

Benefits for Production Automation

Throughput optimization:
- Seamless production tracking based on on-line product generation status
- Operators can browse the information assets via a logical folder structure, footprints, or through metadata

Timely feedback:
- Production status is almost near-to real-time (no longer reflects the past)
- Production planning, control and reporting can be greatly simplified; and occur almost in real-time
- Distributed processing eliminates bottlenecks in computing intensive tasks

Production Intelligence:
- Metrics from old projects can be used to optimize process, find bottlenecks
PixelPipe - Solution Vision

“A highly automated ortho production process”

PixelPipe Overview

- Highly Automated
- Production management and status review
- Distributed processing
- Scaleable, adapts to workload
- Automated radiometry/color balancing
- QA/QC Capability
 - Errors flagged for operator attention
 - Redline/Mark-up for rework
- Licensing
 - By node/CPU/Metered or token usage
Stepwise Implementation

“A highly automated ortho production process”

Workflow/Production Management

<table>
<thead>
<tr>
<th>DMC PPS</th>
<th>AT & QC/QA</th>
<th>DTM Extraction</th>
<th>DTM Edit QA/QC</th>
<th>DTM Prep</th>
<th>Rectification</th>
<th>Mosaic</th>
<th>Ortho QA/QC</th>
</tr>
</thead>
</table>

Distributed Processing

Content Management

Summary

- Demand for orthophotos is very high
- PixelPipe is specifically being developed for high volume and throughput orthorectification/mosaicking production
- Directly supports the USGS orthoquad production and NAIP programs
- Highly Automated
 - Minimal operator intervention
 - Errors flagged for operator attention
- Distributed processing
 - Flexible and scalable
- Automated radiometry/color balancing
- QA/QC
 - Redline/Mark-up for rework
 - Queue for rework
Thank you for your attention.

Questions and Comments?

Dr. Mostafa Madani
Chief Photogrammetrist and Product Manager
Intergraph SG&I - Earth Imaging Solution Center

P (256) 730 - 1814
M (256) 617 - 2236
F (256) 730 - 2096
mostafa.madani@intergraph.com
http://www.intergraph.com/photogrammetry

Performance of Distributed processing

Rectification process

- 819 Images
- 294 DTMs

<table>
<thead>
<tr>
<th>Distributed Processing</th>
<th>Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 workstation</td>
<td>32 (no dist. processing)</td>
</tr>
<tr>
<td>2 workstations</td>
<td>17</td>
</tr>
<tr>
<td>4 workstations</td>
<td>9</td>
</tr>
</tbody>
</table>