Online geocoding and evaluation of large scale imagery without GPS

Wolfgang Förstner, Richard Steffen
Department of Photogrammetry
Institute for Geodesy and Geoinformation
University of Bonn
Photogrammetric Week, 6. September 2007

Motivation

• **Cooperation with company:**
 Photogrammetric analysis of image sequences
 – Driver assistance (observation of traffic)
 – Monitoring the car interior (airbag)
 →
 – Investigation into configurations
 – Development of real time solutions

• **IGI at Photogrammetric Week 2005**
 – Demo of drone from Microdrones

• **Interest in simultaneous localisation and mapping (SLAM) = Photogrammetry**
Video camera:
Panasonic Lumix
848 x 480 pel
→ video

Thanks to Prof. A. Grimm

Online geocoding and evaluation without GPS?

Goal

Provide tools
• Georeferencing
• 3D-mensuration
• 3D-object description

for everybody (non-specialists)
• Geoscience
• Agriculture
• Police
• Architecture
• Archeology
• ...
Motivation (4/4)

- **small photogrammetric projects (< 1 qkm)**
 - Single buildings
 - Archeological sites
- **flying on demand**
 - Traffic accidents
 - Rural area after thunderstorm
- **light and cheap platform**
 - No aeroplane
 - No helicopter
- **navigation by user**

... historical examples

1893: the first U.S. patent for aerial photography was issued to Cornele B. Adams of Augusta, Ga. (No. 510,758)

1906: Earthquake, San Fransisco, 18. 4. 1906 from kite
Today

Topic of presentation

• Large scale imagery:
 Low altitude: (< 300 m h\(_g\))

• Online:
 In time, up to real time (30 Hz)

• Geocoding:
 Absolute referencing

• Evaluation
 Mensuration, 3D-reconstruction

• Why without GPS/INS?
 may be not available
 GPS: down town, indoor
 INS: cost

Wolfgang Förstner/Richard Steffen 6. 9. 2007
Online geocoding and evaluation without GPS?
Outline

1. Georeferencing of imagery
2. Evaluation of imagery

Context:
- no external sensor
- large scale imagery
 - small footprint (< 100 x 100 m²)
 - arbitrary orientation (ω, φ, κ)

Georeferencing

Only supporting automatic procedures

- **Control points**
 - Image patches (e.g. Rauhala 1995)
 - need to be similar (correlation, mutual information)
 - simple test with Google images **failed**

- **Control features**
 - lines, regions, ...

 same problems to be expected

⇒ **Digital surface model**
 - (Strunz/Ebner 1988)
 - Cf. Matching of LIDAR-strips (Pfeiffer)
DSM as Control: MGS-MOLA DTM (1998)

THE TOPOGRAPHY OF MARS
BY THE MARS ORBITER LASER ALTIMETER (MOLA)

Block - orbits 266, 279, 292

Height differences to MOLA-DTM before and after processing
Drachenfels LIDAR-DSM with sub-patch

per image patch: 15 matched points
On-Line use of DSM for improving INS

Runnals/Grooves 2005

\[p(x|y) \]

Evaluation

1. Orientation
 - Video-sequence \(\rightarrow \) Kalman filter
 - Key-frames (1/10) \(\rightarrow \) bundle adjustment

2. Surface reconstruction

\(\rightarrow \) Videos 1 and 2

Flying height: appr. 30 m
848 x 480 pel
Online geocoding and evaluation without GPS?

First-, middle- and last image

Tracks

track / tracklength

of tracks per image
Automatic bundle adjustment

(Förstner/Läbe 2005)

- Fully automatic
- Lowe features
- Relative orientation of pairs and triplets
- Blunder detection
- Free block adjustment

Kalman Filter

- system model, state vector ca. 3000 elements
 - constant translation and rotation velocity
 13 parameters for orientation and its velocity
 \((X_0, q, v, \omega)\)
 - Up to 1000 static 3D-points (inverse depth)
 \((X, Y, 1/Z)\)

- observation model
 Collinearity constraint (Gauß-Helmert-Model)
 \(x'Z^* - cX^* = 0\) \quad \(y'Z^* - cY^* = 0\)
 Accuracy: \(\sigma_x = 0.5\) pel
Orientation (1/2)

Position: Bundle adjustment \leftrightarrow Kalman filter

Orientation (2/2)

Rotation: bundle adjustment \leftrightarrow Kalman filter

Online geocoding and evaluation without GPS?

Wolfgang Förstner/Richard Steffen 6. 9. 2007
Point clouds from BA

video 1

video 2

Point cloud from Match-T

Wolfgang Förstner/Richard Steffen 6. 9. 2007
Online geocoding and evaluation without GPS?
Theoretical accuracy after BA

68% point errors < 18 cm

First controlled test: Rheinaue Bonn

(Zug 2007)

- flying height 20 m
- 1 strip, 12 images
- pre-calibration (< 4 pel correction)
- 34 check points (total station, 2 cm)
- 5 cm GSD

- bundle adjustment
- expected $\sigma_Z = 5$ cm

$\Rightarrow \text{rmse}(xy) = 3$ cm, $\text{rmse}(z) = 7$ cm
CPU-time

- **First own implementation in C++: 5 Hz**
 Including up to 1000 points in state vector

- **Implementation of Schlaile et al. 2006: 28 Hz**
 Reduced number of points (ca. 50)

Conclusions (1/2)

- **Georeferencing**
 - Use GPS if available
 - If GPS is not available and terrain not flat, use DSM
 - Use INS if available
 - If INS not available, use image sequence (if textured)
Conclusions (2/2)

• **Real-time**
 – RT AT feasible
 – Exploitation of GHM in KF
 – RT DSM (rough) feasible (byproduct of KF)
 – RT orthophoto feasible
 – RT orthophoto (full resolution) in near future

• **Open**
 – Robustify algorithms
 – INS ↔ image sequence
 – Image sequences ↔ HR key frames
 – Tackle truly 3D-point cloud → visualization

Wolfgang Förstner/Richard Steffen 6. 9. 2007 Online geocoding and evaluation without GPS?