Radiometric Performance of Digital Image Data Collection – A Comparison of ADS40, DMC, UltraCamD and Emerge DSS

Eija Honkavaara & Lauri Markelin

Department of Remote Sensing and Photogrammetry
Finnish Geodetic Institute

In Collaboration with Blom Kartta, Estonian Land Board, National Land Survey
Financially supported by Ministry of Agriculture and Forestry of Finland

Contents

- Introduction
- Image radiometry
- Radiometry of digital photogrammetric cameras
- Empirical results
- Conclusions
Introduction

- Radiometry: Measurement of electromagnetic radiation in wavelength range 0.01-1000 μm
- Digital number (DN)
- Radiometric properties of CCD sensors: linearity, low noise level, stability, good resolution, multispectral data
- Application of digital photogrammetric images
 - Improved performance and automation potential of conventional applications
 - New applications, quantitative use: multispectral classification, monitoring, change detection, ...
- Rigorous radiometric processing new issue for photogrammetric processing lines -> efficient radiometric processing chains needed to process huge amounts of photogrammetric data
- Radiometric performance of photogrammetric sensors is evaluated from public literature and empirically

Photogrammetric Week 2007, 4.9.2007

Image radiometry

DMC orthophoto mosaic

- Factors influencing DN
 - Atmosphere
 - Illumination
 - Object
 - Sensor and system
Influence of atmosphere and illumination

Atmosphere
- Molecular and aerosol scattering
- Absorption by gases (water vapor, ozone...)

Major radiation components
- A Direct component
- B Skylight
- C Path scattered radiance

Influence of atmosphere and illumination

Atmosphere
- Molecular and aerosol scattering
- Absorption by gases (water vapor, ozone...)

Major radiation components
- A Direct component
- B Skylight
- C Path scattered radiance

Object properties
- Reflectance as the function of the wavelength
- BRDF – Bidirectional Reflectance Distribution Function: Object reflectance as the function of the illumination and observation angles

Reflectance spectra
- Dry grass
- Seawater (open)
- Melting snow
- Pine

Digital photogrammetric sensors
Sensor and system

- Sensor: construction, parameters, quality, calibration
- Sensor settings: exposure, aperture, ...
- Post processing

Camera model

\[
E^i_{\lambda}(x, y) = \frac{\pi r_0(\lambda)}{4N^2} L_{\lambda}(x, y)
\]

\[
s_b(x, y) = \int_{\lambda_{\min}}^{\lambda_{\max}} R_b(\lambda) E^i_{\lambda}(x, y) d\lambda
\]

\[
e_b(x, y) = \frac{\tau_{\max}{\beta_{\max}}}{\tau_{\min}{\beta_{\min}}} s_b(\alpha, \beta) PSF (x - \alpha, y - \beta) d\alpha d\beta
\]

Sensor parameters
- Optics transmittance
- F-number
- Spectral sensitivity
- CCD pixel size
- PSF
- A/D conversion
- Gain and offset
Sensor/system radiometric calibration

- **Parameters**
 - Relative pixel wise calibration: normalize output of all detectors to the similar level
 - sensitivity of each pixel, defect pixels, light falloff, dark current
 - Spectral response
 - Absolute calibration (radiometric response): relationship between the incoming radiance and DN
 \[
 \text{Radiance} = \text{cal_gain} \times \text{DN} + \text{cal_offset}
 \]
 - Quality evaluation (linearity, uniformity, radiometric accuracy, dynamic range, sensitivity, noise, stray light, MTF, polarization...)

- **Methods**
 - Laboratory calibration using Integrating spheres/flat fields, MacBeth color targets, mono-chromators, calibrated light sources
 - In-flight calibration using lamps and/or reflective panels
 - Vicarious test field system calibration using calibrated reflectance targets, atmospheric observations, ...

Radiometric calibration matrix

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Laboratory</th>
<th>(In-flight)</th>
<th>Test-field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel sensitivity</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Light falloff</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Dark current</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Spectral response</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiometric response</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Camera characterization</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System characterization</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Photogrammetric Week 2007, 4.9.2007
Radiometric post processing

- Provide comparable DNs by eliminating effects by sensor/system, illumination, atmosphere, object anisotropy
- Image enhancement

<table>
<thead>
<tr>
<th></th>
<th>Visual</th>
<th>Classical remote sensing</th>
<th>BRDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>System correction -></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>uniform DN response to constant radiation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute radiometric correction -> object reflectance</td>
<td>(x)</td>
<td>(x)</td>
<td>x</td>
</tr>
<tr>
<td>DN -> Radiance transformation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmospheric correction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semi-Physical</td>
<td>x</td>
<td>x</td>
<td>(x)</td>
</tr>
<tr>
<td>Physical</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Reflectance calibration</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>BRDF correction</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Relative radiometric correction -> corrected DN</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Other: pan-sharpening, MTFC, noise removal, tonal adjustments (e.g. gamma correction), 16->8 bit transformations</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finnish Geodetic Institute
Eija.Honkavaara@fgi.fi
Photogrammetric Week 2007, 4.9.2007

Digital photogrammetric sensors

- **DMC**
 - Intergraph, 2007

- **UltraCam**
 - Microsoft, 2007

- **ADS40**
 - Leica Geosystems, 2007

- **DSS**
 - Applanix, 2007

Finnish Geodetic Institute
Eija.Honkavaara@fgi.fi
Photogrammetric Week 2007, 4.9.2007
Sensor parameters

<table>
<thead>
<tr>
<th></th>
<th>ADS40 1st/2nd</th>
<th>DMC</th>
<th>UltraCamD/ UltraCamX</th>
<th>DSS 301/322/349</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-CCD size (k)</td>
<td>12</td>
<td>3x2</td>
<td>4x3/ 4.8x3.1</td>
<td>4x4/ 5.5x4 / 7.2x5.4</td>
</tr>
<tr>
<td>Pixel size (μm)</td>
<td>6.5</td>
<td>12</td>
<td>9 / 7.2</td>
<td>9/ 9/ 6.8</td>
</tr>
<tr>
<td>A/D conversion (bit)</td>
<td>14</td>
<td>12</td>
<td>14 /</td>
<td>12</td>
</tr>
<tr>
<td>N channels</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>FOV (Along/across)</td>
<td>64/14.2, 2</td>
<td>69/42</td>
<td>65/46</td>
<td></td>
</tr>
<tr>
<td>TDI</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Pan sharpening ratio</td>
<td>no</td>
<td>4.8</td>
<td>3.6 / 3</td>
<td>no</td>
</tr>
</tbody>
</table>

Spectral response

Spectral response graphs

- **ADS40**
 - PAN
 - R
 - G
 - B
 - NIR

- **DMC**
 - PAN
 - R
 - G
 - B
 - NIR

- **UltraCamD**
 - PAN
 - R
 - G
 - B
 - NIR

- **DSS**
 - PAN
 - R
 - G
 - B
 - NIR

Photogrammetric Week 2007, 4.9.2007

Finnish Geodetic Institute

Eija.Honkavaara@fgi.fi

13

Photogrammetric Week 2007, 4.9.2007

Finnish Geodetic Institute

Eija.Honkavaara@fgi.fi

14
Radiometric calibration

- **ADS40**
 - flat field by NIST traceable Ulbricht sphere: relative calibration, radiometric response, DSNU, sensor characterization
 - NIST traceable spectral measurement unit: spectral response
 - In flight: DSNU

- **DMC**
 - flat field by Ulbricht sphere: relative calibration for each TDI, aperture, and temperature settings.
 - LUT generation for white balancing in post processing

- **UltraCamD**
 - by 60 flat field images using normal light lamps with known spectral illumination: relative calibration for each sensor and aperture setting

- **DSS**
 - MacBeth color targets, integrating spheres, and optimization software: pixel and column defects, dark signal, and pixel level gain corrections.

Radiometric post-processing

- **ADS40**: Chain for reflectance image generation
 - DN-> At-sensor radiance transformation using laboratory calibration data
 - Atmospheric correction: Modified dark pixel substraction method
 - Reflectance calibration
 - Semi empirical BRDF correction

- **DMC**
 - Application of laboratory calibration data
 - White balancing, 12 bit -> 8 bit conversions, pansharpening

- **UltraCamD**
 - Application of laboratory calibration data
 - 14 bit -> 8 bit conversions, pansharpening

- **DSS**
 - Application of laboratory calibration data
 - Image enhancements: image sharpening, color balance, 12 bit -> 8 bit conversions, Further processing by Inpho software
Reported problems

- ADS40
 - Limitations in dynamic range due to short integration times
 - Unrealistic colorimetric content due to separate spectral channels
 - Displacement of one of the MS-channels
- DMC
 - Color artifacts due to PAN-sharpening
 - Electronic TDI
- UltraCamD
 - Color artifacts due to PAN-sharpening
 - Color artifacts caused by the lens quality
 - Electronic TDI
- DSS
 - Reduced resolution and color artifacts due to mosaic filtering
 - Chromatic aberrations
 - Missing FMC of the DSS

Empirical tests at Sjökulla test field
Test flights

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Date</th>
<th>Flying height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UltraCamD</td>
<td>11.10.2004</td>
<td>450</td>
</tr>
<tr>
<td>UltraCamD</td>
<td>14-15.10.2004</td>
<td>450, 900, 2800, 5600</td>
</tr>
<tr>
<td>UltraCamD</td>
<td>14.5.2005</td>
<td>450</td>
</tr>
<tr>
<td>DSS 301</td>
<td>12.7.2005, 17.7.2005</td>
<td>1000, 3000</td>
</tr>
<tr>
<td>DMC + goniometer</td>
<td>31.8-2.9.2005</td>
<td>500, 800, 2500, 5000</td>
</tr>
<tr>
<td>ADS40</td>
<td>26-27.9.2005</td>
<td>1500, 2500</td>
</tr>
<tr>
<td>UltraCamD</td>
<td>1.7.2006, 5.7.2006</td>
<td>450, 900</td>
</tr>
<tr>
<td>Nikon D2X</td>
<td>1.7.2006</td>
<td>560</td>
</tr>
</tbody>
</table>

Finnish Geodetic Institute
Eija.Honkavaara@fgi.fi
Photogrammetric Week 2007, 4.9.2007

Reflectance-based test field calibration

- At-sensor radiance calculation
 - Measure
 - reflectance of ground target,
 - atmospheric properties
 - Model atmosphere by using radiative transfer code.
 - Propagate the ground target radiance through the modelled atmosphere.
 - Calculate at-sensor radiance by applying sensor spectral response

- Empirical study
 - Reference target: Portable gray scale calibrated partially at laboratory
 - Atmospheric correction using MODTRAN default models
 - Spectral response from sensor manufacturer
 - Quality evaluation by comparing the at-sensor radiances and DNs
 - Measures: linearity, sensitivity, dynamic range, absolute calibration

Finnish Geodetic Institute
Eija.Honkavaara@fgi.fi
Photogrammetric Week 2007, 4.9.2007
FGI portable grey scale

- 8 reference targets: 5 m x 5 m
- Nominal reflectance: 5% - 70%
- Reflectance measurements using ASD Field Spec Pro FR spectro radiometer at laboratory and at field

Grey scale BRDF

- Effect of wavelength
- Effect of observation angle

Reflectance difference at principal plane [%]

0 10 20 30 40 50 60 70 80 90
-40 -30 -20 -10 0 10 20 30 40

P05 P10 P20 P25 P30 P45 P50 P70
Results: DMC

- Excellent weather, experienced operator
- Raw DN
- Results
 - Linear
 - Over exposure and saturation at green channel
 - Dynamic range 12 bit for all channels
 - Green and NIR the most sensitive

Photogrammetric Week 2007, 4.9.2007

Absolute calibration, DMC

- Accuracy evaluation:
 - Calibration: 5% and 70% targets (5%, 50% for green channel) and accuracy evaluation using remaining 6 (5) targets
 - Relative accuracy better than < 5% (excluding green channel and 20% tarp)

<table>
<thead>
<tr>
<th>Band</th>
<th>param gain</th>
<th>offset</th>
<th>stddev gain</th>
<th>offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAN</td>
<td>2.54E-04</td>
<td>-</td>
<td>2.76E-06</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>2.09E-04</td>
<td>-</td>
<td>2.13E-06</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>1.55E-04</td>
<td>-</td>
<td>2.74E-06</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>2.36E-04</td>
<td>-</td>
<td>2.78E-06</td>
<td>-</td>
</tr>
<tr>
<td>NIR</td>
<td>2.16E-04</td>
<td>-4.69E-03</td>
<td>3.30E-06</td>
<td>8.41E-04</td>
</tr>
</tbody>
</table>

Nominal reflectance

Absolute values of radiances as % radiance

Photogrammetric Week 2007, 4.9.2007

Finnish Geodetic Institute
Eija.Honkavaara@fgi.fi
Results: ADS40

- Acceptable weather and illumination conditions, unexperienced operator
- System corrected DN's
- "Photogrammetric" recording mode -> artifacts on 2-3 brightest taps
- Results:
 - Linear
 - Great sensitivity differences, dynamic range
 - PAN: 13 bit
 - R, G: 10 bit
 - B: 9 bit
 - NIR: 11 bit

At-sensor radiances

ADS40, GSD = 25 cm
Results: UltraCamD

- Acceptable weather and illumination conditions, regular geometric calibration flight of a mapping company
- Raw DNs, only 4 targets
- Results:
 - Linear
 - Dynamic range 12.6 bit
 - Blue channel the least sensitive
 - Red channel saturated in 800 m flight

Results: DSS 301 CIR mode

- Acceptable weather and illumination conditions, unexperienced operator
- Regular output from mapping company (8 bit/pixel/channel)
- Saturated at >20% reflectance
- Sensitivity?
Radiometric resolution, 30% reflectance target

<table>
<thead>
<tr>
<th>Sensor</th>
<th>GSD</th>
<th>Pan, sd (%)</th>
<th>Green, sd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMC</td>
<td>5cm</td>
<td>5.1%</td>
<td></td>
</tr>
<tr>
<td>DMC</td>
<td>8cm</td>
<td>3.9%</td>
<td></td>
</tr>
<tr>
<td>DMC</td>
<td>25cm</td>
<td>3.4%</td>
<td></td>
</tr>
<tr>
<td>RC20</td>
<td>4cm</td>
<td>1.3%</td>
<td></td>
</tr>
<tr>
<td>DSS</td>
<td>3.5cm</td>
<td></td>
<td>Green</td>
</tr>
</tbody>
</table>

Radiometric resolution, 30% reflectance target

<table>
<thead>
<tr>
<th>Sensor</th>
<th>GSD</th>
<th>Pan, sd (%)</th>
<th>Green, sd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS40</td>
<td>25cm</td>
<td>2.4%</td>
<td>1.7%</td>
</tr>
<tr>
<td>DSS</td>
<td>16cm</td>
<td></td>
<td>1.7%</td>
</tr>
<tr>
<td>DMC</td>
<td>25cm</td>
<td>3.4%</td>
<td>3.4%</td>
</tr>
<tr>
<td>UltraCamD</td>
<td>25cm</td>
<td>2.3%</td>
<td>2.8%</td>
</tr>
<tr>
<td>RC25</td>
<td>25cm</td>
<td></td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Blue, sd=2.3% GSD=50 cm
Green, sd=1.7%

Finnish Geodetic Institute
Eija.Honkavaara@fgi.fi
Sensor improvement

- **UltraCamD->UltraCamX**
 - Pansharpening ratio ->3
 - Pixel size 9 -> 7.2 μm
 - New lens
- **ADS40 2nd generation**
 - Perfect co-registration of all multi-spectral bands by the new Tetrachroid beamsplitter
 - 4 times increased sensitivity compared to 1st generation sensors

Conclusions

- **Radiometry of digital photogrammetric sensors**
 - Large dynamic range (12-14 bit)
 - Linearity
 - Similar, high radiometric resolution over entire dynamic range
 - Low noise level
 - Multi-spectral data
 - Multi-angular data
- **Problems:**
 - DMC, UltraCamD: saturation
 - ADS40: low sensitivity of MS-channels
- **Applications**
 - Conventional metric and interpretative applications
 - Quantitative remote sensing, BRDF
 - Change detection
 - Historical data archives
Needed

- Fluent radiometric processing chains for various applications (visual, classification, BRDF)
- Recovering raw DNs from the processed values (storing transformations or raw data)
- Radiometric concepts for photogrammetric production lines
- Information from sensor manufacturers concerning
 - Sensor parameters, radiometric stability, radiometric quality
 - Radiometric calibration
 - DN processing chains
- Sensor absolute radiometric calibration at laboratory
- Radiometric system calibration using test fields

Thank you!

eija.honkavaara@fgi.fi
lauri.markelin@fgi.fi